Effects of Dark Brown Sugar Replacing Sucrose and Calcium Carbonate, Chitosan, and Chitooligosaccharide Addition on Acrylamide and 5-Hydroxymethylfurfural Mitigation in Brown Sugar Cookies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Chemicals
2.2. Cookie Preparation and Physicochemical Properties of Brown Sugar Cookies
2.3. Assay for Reducing Sugars of Brown Sugar Cookies
2.4. Chromaticity Testing
2.5. Method for Extracting and Measuring Acrylamide and HMF in Brown Sugar Cookies
2.6. Extract Preparation for Assays of Antioxidant Activity and 1,1-Diphenyl-2-picrylhydrazyl Hydrate (DPPH) Radical Scavenging
2.7. Ferrous Ion Chelating Activity
2.8. Determination of Reducing Power
2.9. Texture Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Effects of the Addition of Dark Brown Sugar, Calcium Carbonate, Chitosan, and Chioligosaccharide on the Formation of Acrylamide and HMF in Cookies and Their Physicochemical Properties
3.2. Reducing Sugar in Brown Sugar Dough and Cookies
3.3. Radical-Scavenging Activity of Brown Sugar Cookies
3.4. Texture Analysis of Cookies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Asikin, Y.; Hirose, N.; Tamaki, H.; Ito, S.; Oku, H. Effects of different drying-solidification processes on physical properties, volatile fraction, and antioxidant activity of non-centrifugal cane brown sugar. LWT-Food Sci. Technol. 2016, 66, 340–347. [Google Scholar] [CrossRef]
- Centre for Food Safety. Acrylamide in Dark Brown Sugar. Food Safety Focus 2015 Food Incident Highlight. Available online: https://www.cfs.gov.hk/english/multimedia/multimedia_pub/multimedia_pub_fsf_111_03.html (accessed on 29 May 2019).
- Ducat, G.; Felsner, M.L.; Da Costa Neto, P.R.; Quinaia, S.P. Development and in house validation of a new thermogravimetric method for water content analysis in soft brown sugar. Food Chem. 2015, 177, 158–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asikin, Y.; Kamiya, A.; Mizu, M.; Takara, K.; Tamaki, H.; Wada, K. Changes in the physicochemical characteristics including flavor components and Maillard reaction products of non-centrifugal cane brown sugar during storage. Food Chem. 2014, 149, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Lineback, D.R.; Coughlin, J.R.; Stadler, R.H. Acrylamide in foods: A review of the science and future considerations. Annu. Rev. Food Sci. Technol. 2012, 3, 15–35. [Google Scholar] [CrossRef] [PubMed]
- Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.; Tornqvist, M. Acrylamide: A cooking carcinogen? Chem. Res. Toxicol. 2000, 13, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Surh, Y.J.; Tannenbaum, S.R. Activation of the Maillard reaction product 5-(hydroxmethyl)furfural to strong mutagens via allylic sulfonation and chlorination. Chem. Res. Toxicol. 1994, 7, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Quarta, B.; Anese, M. The effect of salts on acrylamide and 5-hydroxymethylfurfural formation in glucose-asparagine model solutions and biscuits. J. Food Nutr. Res. 2010, 49, 69–77. [Google Scholar]
- Cheng, W.C.; Kao, Y.M.; Shih, D.Y.C.; Chou, S.S.; Yeh, A.I. Validation of an improved LC/MS/MS method for acrylamide analysis in food. J. Food Drug Anal. 2009, 17, 190–197. [Google Scholar]
- Acar, O.C.; Pollio, M.; Di Monaco, R.; Fogliano, V.; Gokmen, V. Effect of calcium on acrylamide level and sensory properties of cookies. Food Bioprocess Technol. 2012, 5, 519–526. [Google Scholar] [CrossRef]
- Chang, Y.W.; Sung, W.C.; Chen, J.Y. Effect of different molecular weight chitosans on the mitigation of acrylamide formation and the functional properties of the resultant Maillard reaction products. Food Chem. 2016, 199, 581–589. [Google Scholar] [CrossRef]
- Sung, W.C.; Chang, Y.W.; Chou, Y.H.; Hsiao, H.I. The functional properties of chitosan-glucose-asparagine Maillard reaction products and mitigation of acrylamide formation by chitosans. Food Chem. 2018, 243, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, R.C.; Jang, S. Chemical intervention strategies for substantial suppression of acrylamide formation in fried potato products. Adv. Exp. Med. Biol. 2005, 561, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Gokmen, V.; Senyuva, H.Z. Acrylamide formation is prevented by diavalent cations during the Maillard reaction. Food Chem. 2007, 103, 196–203. [Google Scholar] [CrossRef]
- Gokmen, V.; Acar, O.C.; Koksel, H.; Acar, J. Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chem. 2007, 104, 1136–1142. [Google Scholar] [CrossRef]
- Gokmen, V.; Akbudak, B.; Serpen, A.; Acar, J.; Turan, Z.M.; Eris, A. Effects of controlled atmosphere storage and low-dose irradiation on potato tuber components affecting acrylamide and color formations upon frying. Eur. Food Res. Technol. 2007, 224, 681–687. [Google Scholar] [CrossRef]
- Amrein, T.M.; Schonbachler, B.; Escher, F.; Amado, R. Acrylamide in gingerbread: Critical factors for formation and possible ways for reduction. J. Agric. Food Chem. 2004, 52, 4282–4288. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, M.; Grob, K. Model studies on acrylamide formation in potato, wheat flour and corn starch; ways to reduce acrylamide contents in bakery ware. Mitt. Lebensm. Hyg. 2003, 94, 406–422. [Google Scholar]
- Jung, M.Y.; Choi, D.S.; Ju, J.W. A novel technique for limitation of acrylamide formation in fried and baked corn chips and in French fries. J. Food Sci. 2003, 68, 1287–1290. [Google Scholar] [CrossRef]
- Brathen, E.; Kita, A.; Knutsen, S.H.; Wicklund, T. Addition of glycine reduces the content of acrylamide in cereal and potato products. J. Agric. Food Chem. 2005, 53, 3259–3264. [Google Scholar] [CrossRef]
- Pedreschi, F.; Kaack, K.; Granby, K. The effect of asparaginase on acrylamide formation in French fries. Food Chem. 2008, 109, 386–392. [Google Scholar] [CrossRef]
- Ciesarova, Z.; Kiss, E.; Boegl, P. Impact of L-asparaginase on acrylamide content in potato products. J. Food Nutr. Res. 2006, 45, 141–146. [Google Scholar]
- AACC. Approved Methods of the American Association of Cereal Chemists, 10th ed.; AACC: Saint Paul, MN, USA, 2000. [Google Scholar]
- Hwang, H.S.; Singh, M.; Lee, S. Properties of cookies made with natural wax-vegetable oil organogels. J. Food Sci. 2016, 81, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.; Morales, F.J. Effect of hydroxytyrosol and olive leaf extract on 1, 2-dicarbonyl compounds, hydroxymethylfurfural and advanced glycation end products in a biscuit model. Food Chem. 2017, 217, 602–609. [Google Scholar] [CrossRef] [PubMed]
- James, C.S. Analytical Chemistry of Foods; Chapman and Hall: New York, NY, USA, 1995. [Google Scholar]
- Dinç, S.; Javidipour, I.; Özbas, Ö.; Tekin, A. Utilization of zero-trans non-interesterified and interesterified shortenings in cookie production. J. Food Sci. Technol. 2014, 51, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Barber, D.S.; Hunt, J.R.; Ehrich, M.F.; Lehning, E.J.; LoPachin, R.M. Metabolism, toxicokinetics and hemoglobin adduct formation in rats following subacute and subchronic acrylamide dosing. Neurotoxicology 2001, 22, 341–353. [Google Scholar] [CrossRef]
- Oral, R.A.; Mortas, M.; Dogan, M.; Sarioglu, K.; Yazici, F. New approaches to determination of HMF. Food Chem. 2014, 143, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Lee, J.M.; Do, J.S.; Bang, W.S. Antioxidant activities and quality characteristics of omija (Schizandra chinesis Baillon) cookies. Food Sci. Biotechnol. 2015, 24, 931–937. [Google Scholar] [CrossRef]
- Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 1992, 40, 945–948. [Google Scholar] [CrossRef]
- Oyaizu, M. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi 1988, 35, 771–775. [Google Scholar] [CrossRef]
- Tarancón, P.; Salvador, A.; Sanz, T. Sunflower oil-water-cellulose ether emulsions as trans-fatty acid-free fat replacers in biscuits: Texture and acceptability study. Food Bioprocess Technol. 2013, 6, 2389–2398. [Google Scholar] [CrossRef]
- Nguyen, H.T.; van der Fels-Klerx, H.J.I.; van Boekel, M.A.J.S. Acrylamide and 5-hydroxymethylfurfural formation during biscuit baking. Part II: Effect of the ratio of reducing sugars and asparagines. Food Chem. 2017, 230, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Polovková, M.; Šimko, P. Determination and occurrence of 5-hydroxymethyl-2-furaldehyde in white and brown sugar by high performance liquid chromatography. Food Control. 2017, 78, 183–186. [Google Scholar] [CrossRef]
- Risner, C.H.; Kiser, M.J.; Dube, M.F. An Aqueous High-Performance Liquid Chromatographic Procedure for the Determination of 5-Hydroxymethylfurfural in Honey and Other Sugar-containing Materials. J. Food Sci. 2006, 71, 179–184. [Google Scholar] [CrossRef]
- Kroh, L.W. Caramelisation in food and beverages. Food Chem. 1994, 51, 373–379. [Google Scholar] [CrossRef]
- Telegdy Kovats, L.; Orsi, F. Some observations on caramelisation. Period. Polytech. 1973, 17, 373–385. [Google Scholar]
- Locas, C.P.; Yaylayan, V.A. Isotope labeling studies on the formation of 5-(hydroxymethyl)-2-furaldehyde (HMF) from sucrose by pyrolysis-GC/MS. J. Agric. Food Chem. 2008, 56, 6717–6723. [Google Scholar] [CrossRef] [PubMed]
- Clawson, A.R.; Taylor, A.J. Chemical changes during cooking of wheat. Food Chem. 1993, 47, 337–343. [Google Scholar] [CrossRef]
- Hamlet, C.G.; Sadd, P.A. Effects of yeast stress and pH on 3-monchloropropanediol (3-MCPD)-producing reactions in model dough systems. Food Addit. Contam. 2005, 22, 616–623. [Google Scholar] [CrossRef]
- Levin, R.A.; Ryan, S.M. Determining the effect of calcium cations on acrylamide formation in cooked wheat products using a model system. J. Agric. Food Chem. 2009, 57, 6823–6829. [Google Scholar] [CrossRef]
- Clydesdale, F.M. Minerals: Their chemistry and fate in food. In Trace Minerals in Food; Smith, K., Ed.; Marcel Dekker: New York, NY, USA, 1988; pp. 57–94. [Google Scholar]
- Dos Santos, J.M.; Quináia, S.P.; Felsner, M.L. Fast and direct analysis of Cr, Cd and Pb in brown sugar by GF AAS. Food Chem. 2018, 260, 19–26. [Google Scholar] [CrossRef]
- Doolittle, R.F.; Falter, H.; Horn, M.J.; Kannan, K.K.; Mross, G.A.; Laursen, R.A.; Needleman, S.B.; Nieboer, E.; Reichlin, M. Advanced Methods in Protein Sequence Determination; Springer Science & Business Media: New York, NY, USA, 2012; Volume 25. [Google Scholar]
- Payet, B.; Shum Cheong Sing, A.; Smadja, J. Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: Determination of their polyphenolic and volatile constitutents. J. Agric. Food Chem. 2005, 53, 10074–10079. [Google Scholar] [CrossRef] [PubMed]
- Yen, M.T.; Yang, J.H.; Mau, J.L. Antoxidant properties of chitosan from crab shells. Carbohydr. Polym. 2008, 74, 840–844. [Google Scholar] [CrossRef]
- Park, P.J.; Je, J.Y.; Kim, S.K. Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydr. Polym. 2004, 55, 17–22. [Google Scholar] [CrossRef]
- Chien, P.J.; Sheu, F.; Huang, W.T.; Su, M.S. Effect of molecular weight of chitosans on their antioxidatie activities in apple juice. Food Chem. 2007, 102, 1192–1198. [Google Scholar] [CrossRef]
Diameter (cm) | Thickness (cm) | Spread Ratio | |
---|---|---|---|
SC | 6.09 ± 0.07 b | 0.78 ± 0.11 a | 8.02 ± 1.05 b |
HC | 6.63 ± 0.08 a | 0.56 ± 0.04 b | 12.12 ± 0.84 a |
HCa | 6.54 ± 0.05 a | 0.52 ± 0.04 b | 12.72 ± 0.88 a |
HCh | 6.53 ± 0.03 a | 0.53 ± 0.03 b | 12.52 ± 0.74 a |
HCho | 6.62 ± 0.13 a | 0.51 ± 0.03 b | 13.28 ± 1.19 a |
LC | 6.61 ± 0.11 a | 0.57 ± 0.07 b | 11.83 ± 1.46 a |
LCa | 6.58 ± 0.13 a | 0.51 ± 0.03 b | 13.14 ± 0.56 a |
LCh | 6.57 ± 0.07 a | 0.57 ± 0.06 b | 11.62 ± 1.29 a |
LCho | 6.59 ± 0.03 a | 0.49 ± 0.03 b | 13.54 ± 0.68 a |
L | a | b | ΔE | BI | |
---|---|---|---|---|---|
SC | 62.80 ± 4.00 a | 4.3 ± 0.61 f | 33.6 ± 2.17 a | - | 78.42 |
HBC | 42.30 ± 1.26 d | 7.0 ± 0.27 ab | 23.3 ± 0.82 cd | - | 89.06 |
HBCa | 42.30 ± 0.87 d | 7.1 ± 0.31 a | 23.2 ± 0.62 cd | 0.14 | 88.78 |
HBCh | 42.90 ± 0.75 cd | 6.9 ± 0.05 abc | 23.6 ± 0.58 cd | 0.68 | 88.57 |
HBCho | 31.50 ± 2.77 f | 6.2 ± 0.68 de | 16.5 ± 1.95 f | 12.79 | 86.21 |
LBC | 47.50 ± 3.83 b | 6.5 ± 0.45 cd | 26.1 ± 1.95 b | - | 86.60 |
LBCa | 41.60 ± 3.47 d | 6.7 ± 0.27 bc | 22.8 ± 2.03 d | 6.76 | 88.18 |
LBCh | 44.10 ± 3.00 c | 6.2 ± 0.17 de | 24.1 ± 1.84 c | 3.96 | 86.30 |
LBCho | 33.20 ± 1.93 e | 6.1 ± 0.29 e | 17.4 ± 1.09 e | 16.74 | 85.28 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shyu, Y.-S.; Hsiao, H.-I.; Fang, J.-Y.; Sung, W.-C. Effects of Dark Brown Sugar Replacing Sucrose and Calcium Carbonate, Chitosan, and Chitooligosaccharide Addition on Acrylamide and 5-Hydroxymethylfurfural Mitigation in Brown Sugar Cookies. Processes 2019, 7, 360. https://doi.org/10.3390/pr7060360
Shyu Y-S, Hsiao H-I, Fang J-Y, Sung W-C. Effects of Dark Brown Sugar Replacing Sucrose and Calcium Carbonate, Chitosan, and Chitooligosaccharide Addition on Acrylamide and 5-Hydroxymethylfurfural Mitigation in Brown Sugar Cookies. Processes. 2019; 7(6):360. https://doi.org/10.3390/pr7060360
Chicago/Turabian StyleShyu, Yung-Shin, Hsin-I Hsiao, Jui-Yu Fang, and Wen-Chieh Sung. 2019. "Effects of Dark Brown Sugar Replacing Sucrose and Calcium Carbonate, Chitosan, and Chitooligosaccharide Addition on Acrylamide and 5-Hydroxymethylfurfural Mitigation in Brown Sugar Cookies" Processes 7, no. 6: 360. https://doi.org/10.3390/pr7060360
APA StyleShyu, Y.-S., Hsiao, H.-I., Fang, J.-Y., & Sung, W.-C. (2019). Effects of Dark Brown Sugar Replacing Sucrose and Calcium Carbonate, Chitosan, and Chitooligosaccharide Addition on Acrylamide and 5-Hydroxymethylfurfural Mitigation in Brown Sugar Cookies. Processes, 7(6), 360. https://doi.org/10.3390/pr7060360