RETRACTED: A Sugarcane-Bagasse-Based Adsorbent Employed for Mitigating Eutrophication Threats and Producing Biodiesel Simultaneously
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Acid-Modified Sugarcane-Bagasse-Based Adsorbents
2.2. Determination of Adsorbent Point of Zero Charge
2.3. Characteristics of Eutrophic Water
2.4. Setups for Eutrophic Water Treatment
2.5. Microalgal Lipid Extraction and Transesterification into Fatty Acid Methyl Esters (FAMEs) of Biodiesel
2.6. Assessment of the Reusability of Spent Sugarcane-Bagasse-Based Adsorbent
3. Results and Discussion
3.1. Enhancement of Microalgal Biomass Adsorption from Eutrophic Water
3.2. Biodiesel Derived from Harvested Microalgal Biomass
3.3. Potential Reusability of Spent Sugarcane-Bagasse-Based Adsorbent
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Altmann, J.; Rehfeld, D.; Träder, K.; Sperlich, A.; Jekel, M. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal. Water Res. 2016, 92, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Azmi, N.B.; Bashir, M.J.; Sethupathi, S.; Wei, L.J.; Aun, N.C. Stabilized landfill leachate treatment by sugarcane bagasse derived activated carbon for removal of color, COD and NH3-N–optimization of preparation conditions by RSM. J. Environ. Chem. Eng. 2015, 3, 1287–1294. [Google Scholar] [CrossRef]
- Barros, A.I.; Gonçalves, A.L.; Simões, M.; Pires, J.C. Harvesting techniques applied to microalgae: A review. Renew. Sustain. Energy Rev. 2015, 41, 1489–1500. [Google Scholar] [CrossRef]
- Daliry, S.; Hallajsani, A.; Mohammadi Roshandeh, J.; Nouri, H.; Golzary, A. Investigation of optimal condition for Chlorella vulgaris microalgae growth. Glob. J. Environ. Sci. Manag. 2017, 3, 217–230. [Google Scholar]
- Meinel, F.; Zietzschmann, F.; Ruhl, A.S.; Sperlich, A.; Jekel, M. The benefits of powdered activated carbon recirculation for micropollutant removal in advanced wastewater treatment. Water Res. 2016, 91, 97–103. [Google Scholar] [CrossRef]
- Gerardo, M.L.; Van Den Hende, S.; Vervaeren, H.; Coward, T.; Skill, S.C. Harvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plants. Algal Res. 2015, 11, 248–262. [Google Scholar] [CrossRef]
- International Energy Agency. Key Worlds Energy Statistics 2014; OECD Publishing: Paris, France, 2014. [Google Scholar]
- Liu, J.; Zhu, Y.; Tao, Y.; Zhang, Y.; Li, A.; Li, T.; Zhang, C. Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol. Biofuels 2013, 6, 98. [Google Scholar] [CrossRef]
- Mohanta, D.; Ahmaruzzaman, M. Bio-inspired adsorption of arsenite and fluoride from aqueous solutions using activated carbon@ SnO 2 nanocomposites: Isotherms, kinetics, thermodynamics, cost estimation and regeneration studies. J. Environ. Chem. Eng. 2018, 6, 356–366. [Google Scholar] [CrossRef]
- Rashid, N.; Rehman MS, U.; Sadiq, M.; Mahmood, T.; Han, J.I. Current status, issues and developments in microalgae derived biodiesel production. Renew. Sustain. Energy Rev. 2014, 40, 760–778. [Google Scholar] [CrossRef]
- Milledge, J.J.; Heaven, S. A review of the harvesting of micro-algae for biofuel production. Rev. Env. Sci. Bio Technol. 2013, 12, 165–178. [Google Scholar] [CrossRef]
- Olkiewicz, M.; Fortuny, A.; Stüber, F.; Fabregat, A.; Font, J.; Bengoa, C. Evaluation of different sludges from WWTP as a potential source for biodiesel production. Procedia Eng. 2012, 42, 634–643. [Google Scholar] [CrossRef]
- Su, S.; Liu, Q.; Liu, J.; Zhang, H.; Li, R.; Jing, X.; Wang, J. Functionalized Sugarcane Bagasse for U (VI) Adsorption from Acid and Alkaline Conditions. Sci. Rep. 2018, 8, 793. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Jiang, C.; Yang, L.; Liu, N. Adsorption of Lactobacillus acidophilus on attapulgite: Kinetics and thermodynamics and survival in simulated gastrointestinal conditions. LWT Food Sci. Technol. 2017, 78, 189–197. [Google Scholar] [CrossRef]
- Kharat, D.S. Adsorption of Reactive Blue 19 Dye by Sugarcane Bagasse and the Proposed Modelling. Curr. Env. Eng. 2018, 5, 155–165. [Google Scholar] [CrossRef]
- Shehzad, A.; Bashir, M.J.; Sethupathi, S.; Lim, J.W. An overview of heavily polluted landfill leachate treatment using food waste as an alternative and renewable source of activated carbon. Process Saf. Environ. Prot. 2015, 98, 309–318. [Google Scholar] [CrossRef]
- Ofomaja, A.; Naidoo, E.; Modise, S. Removal of copper (II) from aqueous solution by pine and base modified pine cone powder as biosorbent. J. Hazard. Mater. 2009, 168, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Mohd-Sahib, A.A.; Lim, J.W.; Lam, M.K.; Uemura, Y.; Isa, M.H.; Ho, C.D.; Rosli, S.S. Lipid for biodiesel production from attached growth Chlorella vulgaris biomass cultivating in fluidized bed bioreactor packed with polyurethane foam material. Bioresour. Technol. 2017, 239, 127–136. [Google Scholar] [CrossRef]
- Argun, M.E.; Dursun, S. Removal of heavy metal ions using chemically modified adsorbents. J. Int. Environ. Appl. Sci. 2006, 1, 27–40. [Google Scholar]
- Duan, W.; Xu, X.; Ling, C.; Xu, G.; Su, S. Preparation of acid-modified-attapulgite/Al2(SO4)3 adsorbent for enhanced removal of dom in WWTP secondary effluent. Fresenius Environ. Bull. 2016, 4637–4644. [Google Scholar]
- Shehzad, A.; Bashir, M.J.; Sethupathi, S.; Lim, J.W. An insight into the remediation of highly contaminated landfill leachate using sea mango based activated bio-char: Optimization, isothermal and kinetic studies. Desalin. Water Treat. 2016, 57, 22244–22257. [Google Scholar] [CrossRef]
- Leong, K.Y.; See, S.; Lim, J.W.; Bashir, M.J.; Ng, C.A.; Tham, L. Effect of process variables interaction on simultaneous adsorption of phenol and 4-chlorophenol: Statistical modeling and optimization using RSM. Appl. Water Sci. 2017, 7, 2009–2020. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T. Catalytic transesterification of high viscosity crude microalgae lipid to biodiesel: Effect of co-solvent. Fuel Process. Technol. 2013, 110, 242–248. [Google Scholar] [CrossRef]
- Song, M.; Pei, H.; Hu, W.; Ma, G. Evaluation of the potential of 10 microalgal strains for biodiesel production. Biores. Technol. 2013, 141, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Hoekman, S.K.; Broch, A.; Robbins, C.; Ceniceros, E.; Natarajan, M. Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 2012, 16, 143–169. [Google Scholar] [CrossRef]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.; Posewitz, M.; Seibert, M.; Darzins, A. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef]
Concentration of H2SO4 Used for Adsorbent Modification (M) | 0.1 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
---|---|---|---|---|---|---|
Adsorption efficiency (%) | 88.0 ± 0.5 | 88.6 ± 0.3 | 89.4 ± 0.8 | 89.6 ± 0.9 | 86.6 ± 0.1 | 85.9 ± 0.1 |
Adsorption capacity (mg/g) | 106.9 ± 0.4 | 107.6 ± 0.3 | 108.5 ± 0.3 | 108.9 ± 0.3 | 105.0 ± 0.3 | 104.3 ± 0.4 |
Carbon Number — FAME Species | Composition in Biodiesel (%) |
---|---|
C14:1 — M. myristoleate | 0.78 |
C15:0 — M. pentadecenoate | 0.97 |
C15:1 — M. cis—10—pentadecenoate | 1.25 |
C16:0 — M. palmitate | 13.76 |
C16:1 — M. palmitoleate | 1.49 |
C17:1 — M. cis—10—heptadecanoate | 2.88 |
C18:0 — M. stearate | 22.08 |
C18:1 — cis M. oleate | 7.14 |
C 18:1 — (E) — M. 9—octadecanoate | 7.74 |
C18:2 — M. linoleate | 8.39 |
C18:2 — M. linolelaidate | 6.60 |
C18:3 — M. y—linolenate | 0.74 |
C20:1 — M. eicosenoate | 7.04 |
C20:2 — M. cis—11,14—eicosadienoate | 3.95 |
C20:3 — M. cis—11,14,17—eicosatrienoate | 2.10 |
C21:0 — M. heneicosanoate | 1.44 |
C22:0 — M. arachidate | 0.35 |
C22:1 — M. erucate | 4.23 |
C22:6 — M. cis—4,7,10,13,16,19—docosahexaer | 0.80 |
C23:0 — M. tricosanoate | 5.30 |
C24:0 — M. lignocerate | 0.97 |
Reusability (Cycle) | Cycle-1 | Cycle-2 | Cycle-3 | Cycle-4 | Cycle-5 |
---|---|---|---|---|---|
Adsorption efficiency (%) | 91.5 ± 1.1 | 77.5 ± 1.3 | 38.2 ± 1.5 | 48.8 ± 8.3 | 44.7 ± 3.0 |
Adsorption capacity (mg/g) | 192.9 ± 0.1 | 129.0 ± 4.0 | 59.8 ± 2.2 | 82.5 ± 0.1 | 70.3 ± 1.0 |
Lipid-exhausted adsorbent (g) | 0.42 ± 0.00 | 0.4 ± 0.03 | 0.33 ± 0.03 | 0.32 ± 0.01 | 0.29 ± 0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan Basri, W.N.F.; Daud, H.; Lam, M.K.; Cheng, C.K.; Oh, W.D.; Tan, W.N.; Shaharun, M.S.; Yeong, Y.F.; Paman, U.; Kusakabe, K.; et al. RETRACTED: A Sugarcane-Bagasse-Based Adsorbent Employed for Mitigating Eutrophication Threats and Producing Biodiesel Simultaneously. Processes 2019, 7, 572. https://doi.org/10.3390/pr7090572
Wan Basri WNF, Daud H, Lam MK, Cheng CK, Oh WD, Tan WN, Shaharun MS, Yeong YF, Paman U, Kusakabe K, et al. RETRACTED: A Sugarcane-Bagasse-Based Adsorbent Employed for Mitigating Eutrophication Threats and Producing Biodiesel Simultaneously. Processes. 2019; 7(9):572. https://doi.org/10.3390/pr7090572
Chicago/Turabian StyleWan Basri, Wan Nurain Farahah, Hanita Daud, Man Kee Lam, Chin Kui Cheng, Wen Da Oh, Wen Nee Tan, Maizatul Shima Shaharun, Yin Fong Yeong, Ujang Paman, Katsuki Kusakabe, and et al. 2019. "RETRACTED: A Sugarcane-Bagasse-Based Adsorbent Employed for Mitigating Eutrophication Threats and Producing Biodiesel Simultaneously" Processes 7, no. 9: 572. https://doi.org/10.3390/pr7090572
APA StyleWan Basri, W. N. F., Daud, H., Lam, M. K., Cheng, C. K., Oh, W. D., Tan, W. N., Shaharun, M. S., Yeong, Y. F., Paman, U., Kusakabe, K., Abdul Kadir, E., Show, P. L., & Lim, J. W. (2019). RETRACTED: A Sugarcane-Bagasse-Based Adsorbent Employed for Mitigating Eutrophication Threats and Producing Biodiesel Simultaneously. Processes, 7(9), 572. https://doi.org/10.3390/pr7090572