Techno-Economic Analysis and Physicochemical Properties of Ceiba pentandra as Second-Generation Biodiesel Based on ASTM D6751 and EN 14214
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Data Collection
2.2.2. Life Cycle Cost
2.2.3. Potential Fuel Saving
2.2.4. Sensitivity Analysis
2.2.5. Biodiesel Taxation and Subsidy Scenarios
2.2.6. Potential Environmental Impact
2.3. Total Carbon Saving
3. Results
3.1. Economic Indicators
3.2. Life Cycle Cost Analysis and Payback Period
3.3. Potential Fuel Saving
3.4. Sensitivity Analysis
3.5. Biodiesel Taxation and Subsidy Scenarios
3.6. Potential Environmental Impact
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclatures
BC | Biodiesel needed (tons) |
BCC | Carbon stock for biodiesel cropland (ton/ha) |
BFP | Biodiesel fuel price ($/L) |
BP | By-product credits ($) |
CC | Capital cost ($) |
CLR | Cropland required (ha) |
CPP | Carbon payback period (year) |
CPW | Compound present worth factor ($) |
CCPO | Crude Ceiba pentandra oil |
d | Depreciation cost |
EC | Energy content of diesel fuel (GJ/ton) |
EY | Ethanol yield (kg/ha) |
FBC | Final biodiesel unit cost ($/L) |
FC | Feedstock cost ($) |
FP | Feedstock price ($) |
FU | Feedstock consumption (tons) |
GC | Diesel consumption (tons) |
GCF | Glycerol Conversion Factor ($) |
GP | Glycerol Price ($) |
GR | Diesel replacement (tons) |
HVB | Heating value of biodiesel fuel (MJ/kg) |
HVG | Heating value of diesel fuel (MJ/kg) |
i | Project year (year) |
Life cycle cost ($) | |
LSC | Carbon stock for natural forest (ton/ha) |
MC | Maintenance cost ($) |
MR | Maintenance rate (%) |
NAE | Net emission reduction |
n | Project life time (year) |
Fossil diesel replacement rate (%) | |
OC | Operating cost ($) |
OR | Operating rate ($/ton) |
PC | Annual Biodiesel Production Capacity (tons/year) |
PP | Payback Period (year) |
PV | Present Value |
ρ | Density (kg/m3) |
r | Discount rate (%) |
RC | Replacement cost ($) |
SR | Substitution ratio of biodiesel to diesel fuel (%) |
SV | Salvage value ($) |
TAX | Annual total tax ($/year) |
TBS | Annual total biodiesel sales ($/year) |
TCS | Total carbon saving (tons) |
TFS | Total potential fuel saving |
TPC | Annual total production cost ($/year) |
TR | Tax ratio (%) |
$ | All monetary unit is in US dollar |
EN | European standard |
ASTM | American Society for Testing and Materials |
CPME | Ceiba pentandra methyl ester |
References
- Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E. Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective. Energy 2013, 55, 879–887. [Google Scholar] [CrossRef]
- Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E.; Fattah, I.M.R.; Mobarak, H.M. Comparative evaluation of performance and emission characteristics of Moringa oleifera and Palm oil based biodiesel in a diesel engine. Ind. Crop. Prod. 2014, 53, 78–84. [Google Scholar] [CrossRef]
- Damanik, N.; Ong, H.C.; Mofijur, M.; Tong, C.W.; Silitonga, A.S.; Shamsuddin, A.H.; Sebayang, A.H.; Mahlia, T.M.I.; Wang, C.T.; Jang, J.H. The Performance and Exhaust Emissions of a Diesel Engine Fuelled with Calophyllum inophyllum—Palm Biodiesel. Processes 2019, 7, 597. [Google Scholar] [CrossRef]
- Anwar, M.; Rasul, M.G.; Ashwath, N.; Rahman, M.M. Optimisation of second-generation biodiesel production from Australian native stone fruit oil using response surface method. Energies 2018, 11, 2566. [Google Scholar] [CrossRef]
- Mofijur, M.; Rasul, M.G.; Hyde, J.; Azad, A.K.; Mamat, R.; Bhuiya, M.K. Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction. Renew. Sustain. Energy Rev. 2016, 53, 265–278. [Google Scholar] [CrossRef]
- Kusumo, F.; Silitonga, A.S.; Masjuki, H.H.; Ong, H.C.; Siswantoro, J.; Mahlia, T.M.I. Optimization of transesterification process for Ceiba pentandra oil: A comparative study between kernel-based extreme learning machine and artificial neural networks. Energy 2017, 134, 24–34. [Google Scholar] [CrossRef]
- Norhasyima, R.S.; Mahlia, T.M.I. Advances in CO2 utilization technology: A patent landscape review. J. CO2 Util. 2018, 26, 323–335. [Google Scholar] [CrossRef]
- Mehrali, M.; Latibari, S.T.; Mehrali, M.; Mahlia, T.M.I.; Metselaar, H.S.C.; Naghavi, M.S.; Sadeghinezhad, E.; Akhiani, A.R. Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material. Appl. Therm. Eng. 2013, 61, 633–640. [Google Scholar] [CrossRef]
- Latibari, S.T.; Mehrali, M.; Mehrali, M.; Mahlia, T.M.I.; Metselaar, H.S.C. Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol-gel method. Energy 2013, 61, 664–672. [Google Scholar] [CrossRef]
- Emily Chow, T.H. Reuters: Malaysia in Talks to Move Start Up of B10 Biodiesel Program to July. Reuters web site. 2016. Available online: https://it.reuters.com/article/GCA-Commodities/idUSKCN0Z60IB (accessed on 2 June 2019).
- Sani, Y.M.; Daud WM, A.W.; Abdul Raman, A.A. Biodiesel Feedstock and Production Technologies: Successes, Challenges and Prospects; IntechOpen: London, UK, 2012. [Google Scholar]
- Dharma, S.; Masjuki, H.H.; Ong, H.C.; Sebayang, A.H.; Silitonga, A.S.; Kusumo, F.; Mahlia, T.M.I. Optimization of biodiesel production process for mixed Jatropha curcas-Ceiba pentandra biodiesel using response surface methodology. Energy Convers. Manag. 2016, 115, 178–190. [Google Scholar] [CrossRef]
- Hudiyono, S.; Handayani, S.; Susilo, B. Esterification of glucose fatty acids of coconut oil catalyzed by Candida rugosa lipase EC 3.1.1.3 immobilized on an Indonesia’s natural zeolite matrix. World Appl. Sci. J. 2012, 19, 1105–1111. [Google Scholar]
- Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Ong, H.C.; Chong, W.T. Experimental study on performance and exhaust emissions of a diesel engine fuelled with Ceiba pentandra biodiesel blends. Energy Convers. Manag. 2013, 76, 828–836. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Masjuki, H.H.; Ong, H.C.; Sebayang, A.H.; Dharma, S.; Kusumo, F.; Siswantoro, J.; Milano, J.; Daud, K.; Mahlia, T.M.I.; et al. Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine. Energy 2018, 159, 1075–1087. [Google Scholar] [CrossRef]
- Bhuiya MM, K.; Rasul, M.G.; Khan MM, K.; Ashwath, N.; Azad, A.K.; Hazrat, M.A. Second generation biodiesel: Potential alternative to edible oil-derived biodiesel. Energy Procedia 2014, 61, 1969–1972. [Google Scholar] [CrossRef]
- Silitonga, A.; Shamsuddin, A.; Mahlia, T.; Milano, J.; Kusumo, F.; Siswantoro, J.; Dharma, S.; Sebayang, A.; Masjuki, H.; Ong, H.C. Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization. Renew. Energy 2019, 146, 1278–1291. [Google Scholar] [CrossRef]
- Coh, B.H.H.; Ong, H.C.; Cheah, M.Y.; Chen, W.H.; Yu, K.L.; Mahlia, T.M.I. Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review. Renew. Sustain. Energy Rev. 2019, 107, 59–74. [Google Scholar]
- Hossain, N.; Zaini, J.; Mahlia, T.; Azad, A.K. Elemental, morphological and thermal analysis of mixed microalgae species from drain water. Renew. Energy 2019, 131, 617–624. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Ong, H.C.; Kusumo, F.; Aditiya, H.B.; Ghazali, N.N.N. Schleichera oleosa L oil as feedstock for biodiesel production. Fuel 2015, 156, 63–70. [Google Scholar] [CrossRef]
- Ong, H.C.; Silitonga, A.S.; Mahlia, T.M.I.; Masjuki, H.H.; Chong, W.T. Investigation of biodiesel production from Cerbera manghas biofuel sources. Energy Procedia 2014, 61, 436–439. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Mahlia, T.M.I.; Kusumo, F.; Dharma, S.; Sebayang, A.H.; Sembiring, R.W.; Shamsuddin, A.H. Intensification of Reutealis trisperma biodiesel production using infrared radiation: Simulation, optimisation and validation. Renew. Energy 2019, 133, 520–527. [Google Scholar] [CrossRef]
- Kusumo, F.; Silitonga, A.S.; Ong, H.C.; Masjuki, H.H.; Mahlia, T.M.I. A comparative study of ultrasound and infrared transesterification of Sterculia foetida oil for biodiesel production. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 1339–1346. [Google Scholar] [CrossRef]
- Ong, H.C.; Milano, J.; Silitonga, A.S.; Hassan, M.H.; Shamsuddin, A.H.; Wang, C.T.; Indra Mahlia, T.M.; Siswantoro, J.; Kusumo, F.; Sutrisno, J. Biodiesel production from Calophyllum inophyllum-Ceiba pentandra oil mixture: Optimization and characterization. J. Clean. Prod. 2019, 219, 183–198. [Google Scholar] [CrossRef]
- Leung, D.Y.C. Development of a clean biodiesel fuel in Hong Kong using recycled oil. Water Air Soil Pollut. 2001, 130, 277–282. [Google Scholar] [CrossRef]
- Mushrush, G.W.; Wynne, J.H.; Willauer, H.D.; Lloyd, C.T.; Hughes, J.M.; Beal, E.J. Recycled soybean cooking oils as blending stocks for diesel fuels. Ind. Eng. Chem. Res. 2004, 43, 4944–4946. [Google Scholar] [CrossRef]
- Kumar, M.S.; Jaikumar, M. A comprehensive study on performance, emission and combustion behavior of a compression ignition engine fuelled with WCO (waste cooking oil) emulsion as fuel. J. Energy Inst. 2014, 87, 263–271. [Google Scholar] [CrossRef]
- López, I.; Pinzi, S.; Leiva-Candia, D.; Dorado, M.P. Multiple response optimization to reduce exhaust emissions and fuel consumption of a diesel engine fueled with olive pomace oil methyl ester/diesel fuel blends. Energy 2016, 117, 398–404. [Google Scholar] [CrossRef]
- de Almeida, V.F.; García-Moreno, P.J.; Guadix, A.; Guadix, E.M. Biodiesel production from mixtures of waste fish oil, palm oil and waste frying oil: Optimization of fuel properties. Fuel Process. Technol. 2015, 133, 152–160. [Google Scholar] [CrossRef]
- Sanli, H.; Canakci, M.; Alptekin, E.; Turkcan, A.; Ozsezen, A.N. Effects of waste frying oil based methyl and ethyl ester biodiesel fuels on the performance, combustion and emission characteristics of a DI diesel engine. Fuel 2015, 159, 179–187. [Google Scholar] [CrossRef]
- Zaher, F.A.; Megahed, O.A.; El Kinawy, O.S. Utilization of used frying oil as diesel engine fuel. Energy Sources 2003, 25, 819–826. [Google Scholar] [CrossRef]
- Milano, J.; Ong, H.C.; Masjuki, H.H.; Silitonga, A.S.; Chen, W.H.; Kusumo, F.; Dharma, S.; Sebayang, A.H. Optimization of biodiesel production by microwave irradiation-assisted transesterification for waste cooking oil-Calophyllum inophyllum oil via response surface methodology. Energy Convers. Manag. 2018, 158, 400–415. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Mahlia, T.M.I.; Ong, H.C.; Riayatsyah, T.M.I.; Kusumo, F.; Ibrahim, H.; Dharma, S.; Gumilang, D. A comparative study of biodiesel production methods for Reutealis trisperma biodiesel. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 2006–2014. [Google Scholar] [CrossRef]
- Ashok, B.; Thundil Karuppa Raj, R.; Nanthagopal, K.; Tapaswi, A.; Jindal, A.; Hari Subbish Kumar, S. Animal fat methyl ester as a fuel substitute for DI compression ignition engine. Int. J. Thermodyn. 2016, 19, 206–212. [Google Scholar]
- Ramos, Á.; García-Contreras, R.; Armas, O. Performance, combustion timing and emissions from a light duty vehicle at different altitudes fueled with animal fat biodiesel, GTL and diesel fuels. Appl. Energy 2016, 182, 507–517. [Google Scholar] [CrossRef]
- Teixeira, L.S.G.; Couto, M.B.; Souza, G.S.; Filho, M.A.; Assis, J.C.R.; Guimarães, P.R.B.; Pontes, L.A.M.; Almeida, S.Q.; Teixeira, J.S.R. Characterization of beef tallow biodiesel and their mixtures with soybean biodiesel and mineral diesel fuel. Biomass Bioenergy 2010, 34, 438–441. [Google Scholar] [CrossRef]
- Dhanasekaran, R.; Krishnamoorthy, V.; Rana, D.; Saravanan, S.; Nagendran, A.; Rajesh Kumar, B. A sustainable and eco-friendly fueling approach for direct-injection diesel engines using restaurant yellow grease and n-pentanol in blends with diesel fuel. Fuel 2017, 193, 419–431. [Google Scholar] [CrossRef]
- Hanafi, S.A.; Elmelawy, M.S.; Shalaby, N.H.; El-Syed, H.A.; Eshaq, G.; Mostafa, M.S. Hydrocracking of waste chicken fat as a cost effective feedstock for renewable fuel production: A kinetic study. Egypt. J. Pet. 2016, 25, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Yahyaee, R.; Ghobadian, B.; Najafi, G. Waste fish oil biodiesel as a source of renewable fuel in Iran. Renew. Sustain. Energy Rev. 2013, 17, 312–319. [Google Scholar] [CrossRef]
- Damanik, N.; Ong, H.C.; Tong, C.W.; Mahlia, T.M.I.; Silitonga, A.S. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends. Environ. Sci. Pollut. Res. 2018, 25, 15307–15325. [Google Scholar] [CrossRef]
- Uddin, M.N.; Techato, K.; Taweekun, J.; Rahman, M.M.; Rasul, M.G.; Mahlia, T.M.I.; Ashrafur, S.M. An overview of recent developments in biomass pyrolysis technologies. Energies 2018, 11, 3115. [Google Scholar] [CrossRef]
- Hena, S.; Fatimah, S.; Tabassum, S. Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour. Ind. 2015, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mahlia, T.; Syaheed, H.; Abas, A.; Kusumo, F.; Shamsuddin, A.; Ong, H.C.; Bilad, M. Organic Rankine Cycle (ORC) System Applications for Solar Energy: Recent Technological Advances. Energies 2019, 12, 2930. [Google Scholar] [CrossRef]
- Davis, R.; Aden, A.; Pienkos, P.T. Techno-economic analysis of autotrophic microalgae for fuel production. Appl. Energy 2011, 88, 3524–3531. [Google Scholar] [CrossRef]
- Mofijur, M.; Mahlia, T.M.I.; Silitonga, A.S.; Ong, H.C.; Silakhori, M.; Hasan, M.H.; Putra, N.; Rahman, S. Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview. Energies 2019, 12, 3167. [Google Scholar] [CrossRef]
- Makareviciene, V.; Gumbyte, M.; Skorupskaite, V.; Sendzikiene, E. Biodiesel fuel production by enzymatic microalgae oil transesterification with ethanol. J. Renew. Sustain. Energy 2017, 9, 023101. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Masjuki, H.H.; Ong, H.C.; Mahlia, T.M.I.; Kusumo, F. Optimization of extraction of lipid from Isochrysis galbana microalgae species for biodiesel synthesis. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 1167–1175. [Google Scholar] [CrossRef]
- Aditiya, H.B.; Chong, W.T.; Mahlia, T.M.I.; Sebayang, A.H.; Berawi, M.A.; Nur, H. Second generation bioethanol potential from selected Malaysia’s biodiversity biomasses: A review. Waste Manag. 2016, 47, 46–61. [Google Scholar] [CrossRef] [PubMed]
- Alhamid, M.I.; Daud, Y.; Surachman, A.; Sugiyono, A.; Aditya, H.B.; Mahlia TM, I. Potential of geothermal energy for electricity generation in Indonesia: A review. Renew. Sustain. Energy Rev. 2016, 53, 733–740. [Google Scholar]
- Amin, M.; Putra, N.; Kosasih, E.A.; Prawiro, E.; Luanto, R.A.; Mahlia, T.M.I. Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Appl. Therm. Eng. 2017, 112, 273–280. [Google Scholar] [CrossRef]
- Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I. Techno-economic analysis of an optimized photovoltaic and diesel generator hybrid power system for remote houses in a tropical climate. Energy Convers. Manag. 2013, 69, 163–173. [Google Scholar] [CrossRef]
- Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I. Characterization of PV panel and global optimization of its model parameters using genetic algorithm. Energy Convers. Manag. 2013, 73, 10–25. [Google Scholar] [CrossRef]
- Ong, H.C.; Masjuki, H.H.; Mahlia, T.M.I.; Silitonga, A.S.; Chong, W.T.; Yusaf, T. Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine. Energy 2014, 69, 427–445. [Google Scholar] [CrossRef]
- Pratt, L.M.; Strothers, J.; Pinnock, T.; Hilaire, D.S.; Bacolod, B.; Cai, Z.B.; Sim, Y.L. Hydrocarbon fuels from brown grease: Moving from the research laboratory toward an industrial process. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2017. [Google Scholar]
- Arslan, R.; Ulusoy, Y. Utilization of waste cooking oil as an alternative fuel for Turkey. In Proceedings of the 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, 20–23 November 2016; pp. 1–6. [Google Scholar]
- Patel, R.; Duran, S.K. Performance characteristics of waste cooking oil produced biodiesel/diesel fuel blends. Int. J. Mech. Eng. Technol. 2017, 8, 1485–1491. [Google Scholar]
- Yang, J.; Fujiwara, T.; Geng, Q. Life cycle assessment of biodiesel fuel production from waste cooking oil in Okayama City. J. Mater. Cycles Waste Manag. 2017, 19, 1457–1467. [Google Scholar] [CrossRef]
- Chen, C.Y.; Lee, W.J.; Mwangi, J.K.; Wang, L.C.; Wu, J.L.; Lin, S.L. Reduction of persistent organic pollutant emissions during incinerator start-up by using crude waste cooking oil as an alternative fuel. Aerosol Air Qual. Res. 2017, 17, 899–912. [Google Scholar] [CrossRef]
- Sharma, S.K.; Shukla, D.D.; Khatri, K.K.; Rajput, N.S. Performance evaluation of diesel engine using biodiesel fuel derived from waste cooking refined soyabean oil. Int. J. Mech. Prod. Eng. Res. Dev. 2017, 7, 103–110. [Google Scholar]
- Hellmuth, D.N.M. Ceiba Pentandra—Sacred Tree for Classic Maya, National Tree for Guatemala Today; Flaar Mesoamerica: Mexico, 2011. [Google Scholar]
- Jamaluddin, N.A.M. Techno-Economic Analysis and Physicochemical Properties of Ceiba Pentandra as a Second-Generation Biodiesel Based on ASTM D6751 and EN 14214. Bachelor Degree Thesis, University Tenaga Nasional, Selangor, Malaysia, 2017. [Google Scholar]
- Riayatsyah, T.M.I.; Ong, H.C.; Chong, W.T.; Aditya, L.; Hermansyah, H.; Mahlia, T.M.I. Life cycle cost and sensitivity analysis of Reutealis trisperma as non-edible feedstock for future biodiesel production. Energies 2017, 10, 877. [Google Scholar] [CrossRef]
- Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Honnery, D. Life cycle cost and sensitivity analysis of palm biodiesel production. Fuel 2012, 98, 131–139. [Google Scholar] [CrossRef]
- Howell, S. Time to take the biodiesel plunge? Render Mag. 2005, 1, 10–14. [Google Scholar]
- Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Della Pina, C. From glycerol to value-added products. Angew. Chem. Int. Ed. 2007, 46, 4434–4440. [Google Scholar] [CrossRef]
- Ong, H.C.; Masjuki, H.; Mahlia, T.; Silitonga, A.; Chong, W.; Leong, K. Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine. Energy Convers. Manag. 2014, 81, 30–40. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H.; Chong, W.T. Characterization and production of Ceiba pentandra biodiesel and its blends. Fuel 2013, 108, 855–858. [Google Scholar] [CrossRef]
- Silitonga, A.; Ong, H.; Masjuki, H.; Mahlia, T.; Chong, W.; Yusaf, T.F. Production of biodiesel from Sterculia foetida and its process optimization. Fuel 2013, 111, 478–484. [Google Scholar] [CrossRef]
Properties | Unit | ASTM D6751 Limit | EN 14,214 Limit | CIME [66] | CPME [67] | RTME [62] | SFME [68] |
---|---|---|---|---|---|---|---|
Kinematic viscosity at 40 °C | mm2/s | 1.9–6.0 | 3.5–5.0 | 3.45 | 4.16 | 6.48 | 3.96 |
Density at 15 °C | kg/m3 | 880 | 860–900 | 877.6 | 876.9 | 892 | 879.1 |
Flash point | °C | Min. 130 | Min. 120 | 165.5 | 156.5 | 206.5 | 160.5 |
Pour point | °C | −15 to 16 | - | 2.0 | 2.5 | −2 | −3.0 |
Cloud point | °C | −3 to 12 | - | 2.0 | 3.0 | −1 | −3.0 |
Calorific value | MJ/kg | – | 35min | 41.442 | 40.493 | 40.098 | 40.427 |
Acid value | mg KOH/g | 0.5 max. | 0.5 max. | 0.34 | 0.38 | 0.26 | 0.14 |
Copper corrosion strip | – | 3 max | − | 1a | 1a | 1b | - |
Water content | %vol. | 0.05 max. | 500a max. | 0.015 | 0.045 | - | - |
Sulfur content (S 15 grade) | ppm | 15 max. | - | 6.23 | 13.97 | 14.85 | - |
FAME content | %m/m | - | 96.5 min | 98.7 | 98.6 | - | - |
Input Data | Data |
---|---|
Year enacted | 2019 |
Project lifetime (n. Year) | 20 |
Interest rate (r, %) | 8.0% |
Plant capacity (ton/year) | 50,000 |
Feedstock cost, S (%) | 2.0% |
Feedstock price ($/ton) | 980 |
Operating cost/unit (Or, $/ton/FAME) | 250 |
Maintenance cost/unit (Or, $/ton/FAME) | 2.50% |
The yield of biodiesel (FAME) conversion | 98% |
Feedstock price, Feedstock consumption (FP-FU, Tons) | 51,020 |
Depreciation Model (D, %) | 10% |
Replacement Cost ($ Million) | 10,000,000 |
Glycerol Conversion Factor from Feedstock Oil (Gcf, kg/Ton) | 100 |
By Product Price ($/Ton Glycerol) | 300 |
Glycerol Price by Product (Tons) | 5102.04 |
By Product Price Increase Ratio (%) | 0% |
Tax (%) | 15% |
Subsidy for Biodiesel Cost ($/L) G 1 | 0.1 |
Subsidy for Biodiesel Cost ($/L) G 2 | 0.18 |
Diesel (Fossil) Selling Price ($/L) | 0.58 |
Biodiesel Selling Price for First to Tenth Year ($/L) | 0.58 |
Biodiesel Selling Price for Eleven To Till The End ($/L) | 2 |
Density (kg/m3) | 877 |
Indicator | Life Cycle Cost ($) | Unit Cost ($/L of Biodiesel) |
---|---|---|
Capital cost | 11,882,425 | 0.0119 |
Operating cost | 122,726,843 | 0.1227 |
Maintenance cost | 2,916,585 | 0.0029 |
Feedstock cost | 579,013,752 | 0.5790 |
Salvage value | 260,841 | 0.0003 |
By product credit | 15,027,777 | 0.0150 |
Total biodiesel cost | 701,250,988 | 0,6765 |
Payback period (year) | 3.7 |
Year | Diesel Consumption | Diesel Replacement/Saving | ||
---|---|---|---|---|
(Million Litres) | (Tons) | (Million Litres) | (Tons) | |
2019 | 8778 | 8,526,812 | 509 | 426,341 |
2020 | 9020 | 8,761,778 | 523 | 438,089 |
2021 | 9261 | 8,996,743 | 537 | 449,837 |
2022 | 9503 | 9,231,709 | 551 | 461,585 |
2023 | 9745 | 9,466,675 | 566 | 473,334 |
2024 | 9987 | 9,701,641 | 580 | 485,082 |
2025 | 10,229 | 9,936,607 | 594 | 496,830 |
2026 | 10,471 | 10,171,573 | 608 | 508,579 |
2027 | 10,713 | 10,406,539 | 622 | 520,327 |
2028 | 10,955 | 10,641,505 | 636 | 532,075 |
2029 | 11,197 | 10,876,471 | 650 | 543,824 |
2030 | 11,438 | 11,111,437 | 664 | 555,572 |
2031 | 11,680 | 11,346,403 | 678 | 567,320 |
2032 | 11,922 | 11,581,369 | 692 | 579,068 |
2033 | 12,164 | 11,816,335 | 706 | 590,817 |
2034 | 12,406 | 12,051,301 | 720 | 602,565 |
2035 | 12,648 | 12,286,267 | 734 | 614,313 |
2036 | 12,890 | 12,521,233 | 748 | 626,062 |
2037 | 13,132 | 12,756,198 | 762 | 637,810 |
2038 | 13373 | 12,991,164 | 776 | 649,558 |
$/L | Biodiesel | Fossil Diesel | |||
---|---|---|---|---|---|
Total Tax Exemption | 15% of Tax | Subsidy ($/L) 0.10 | Subsidy ($/L) 0.18 | ||
Biodiesel cost | 0.676 | 0.676 | 0.676 | 0.676 | - |
Taxes/subsidy | 0 | 0.101 | 0.100 | 0.180 | - |
Total | 0.676 | 0.778 | 0.576 | 0.496 | 0.581 |
Total cost | 0.687 | 0.790 | 0.586 | 0.504 | 0.581 |
Diesel Consumption | Diesel Replacement Rate | Diesel Replacement Rate | Biodiesel Needed | Cropland Required | Total Energy Saving (Diesel) | Total Carbon Saving |
---|---|---|---|---|---|---|
DC | DR | BC | CLR | TES | TCS | |
8,526,812 (TONS) | (%) | (TONS) | (TONS) | (HA) | (GJ) | (KG) |
2019 | 1% | 85,268 | 90,765 | 28,297 | 3,675,056 | 129,356 |
2020 | 2% | 170,536 | 181,529 | 56,594 | 7,350,112 | 258,712 |
2021 | 3% | 255,804 | 272,294 | 84,892 | 11,025,167 | 388,068 |
2022 | 4% | 341,072 | 363,058 | 113,189 | 14,700,223 | 517,424 |
2023 | 5% | 426,341 | 453,823 | 141,486 | 18,375,279 | 646,780 |
2024 | 6% | 511,609 | 544,587 | 169,783 | 22,050,335 | 776,136 |
2025 | 7% | 596,877 | 635,352 | 198,081 | 25,725,391 | 905,492 |
2026 | 8% | 682,145 | 726,116 | 226,378 | 29,400,446 | 1,034,848 |
2027 | 9% | 767,413 | 816,881 | 254,675 | 33,075,502 | 1,164,204 |
2028 | 10% | 852,681 | 907,645 | 282,972 | 36,750,558 | 1,293,560 |
2029 | 15% | 1,279,022 | 1,361,468 | 424,459 | 55,125,837 | 1,940,339 |
2030 | 20% | 1,705,362 | 1,815,291 | 565,945 | 73,501,116 | 2,587,119 |
2031 | 25% | 2,131,703 | 2,269,113 | 707,431 | 91,876,395 | 3,233,899 |
2032 | 30% | 2,558,043 | 2,722,936 | 848,917 | 110,251,674 | 3,880,679 |
2033 | 35% | 2,984,384 | 3,176,759 | 990,403 | 128,626,953 | 4,527,458 |
2034 | 40% | 3,410,725 | 3,630,581 | 1,131,890 | 147,002,232 | 5,174,238 |
2035 | 45% | 3,837,065 | 4,084,404 | 1,273,376 | 165,377,511 | 5,821,018 |
2036 | 50% | 4,263,406 | 4,538,226 | 1,414,862 | 183,752,790 | 6,467,798 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamaluddin, N.A.M.; Riayatsyah, T.M.I.; Silitonga, A.S.; Mofijur, M.; Shamsuddin, A.H.; Ong, H.C.; Mahlia, T.M.I.; Rahman, S.M.A. Techno-Economic Analysis and Physicochemical Properties of Ceiba pentandra as Second-Generation Biodiesel Based on ASTM D6751 and EN 14214. Processes 2019, 7, 636. https://doi.org/10.3390/pr7090636
Jamaluddin NAM, Riayatsyah TMI, Silitonga AS, Mofijur M, Shamsuddin AH, Ong HC, Mahlia TMI, Rahman SMA. Techno-Economic Analysis and Physicochemical Properties of Ceiba pentandra as Second-Generation Biodiesel Based on ASTM D6751 and EN 14214. Processes. 2019; 7(9):636. https://doi.org/10.3390/pr7090636
Chicago/Turabian StyleJamaluddin, N.A.M., Teuku Meurah Indra Riayatsyah, Arridina Susan Silitonga, M. Mofijur, Abd Halim Shamsuddin, Hwai Chyuan Ong, Teuku Meurah Indra Mahlia, and S.M. Ashrafur Rahman. 2019. "Techno-Economic Analysis and Physicochemical Properties of Ceiba pentandra as Second-Generation Biodiesel Based on ASTM D6751 and EN 14214" Processes 7, no. 9: 636. https://doi.org/10.3390/pr7090636
APA StyleJamaluddin, N. A. M., Riayatsyah, T. M. I., Silitonga, A. S., Mofijur, M., Shamsuddin, A. H., Ong, H. C., Mahlia, T. M. I., & Rahman, S. M. A. (2019). Techno-Economic Analysis and Physicochemical Properties of Ceiba pentandra as Second-Generation Biodiesel Based on ASTM D6751 and EN 14214. Processes, 7(9), 636. https://doi.org/10.3390/pr7090636