Hierarchical Cs–Pollucite Nanozeolite Modified with Novel Organosilane as an Excellent Solid Base Catalyst for Claisen–Schmidt Condensation of Benzaldehyde and Acetophenone
Abstract
:1. Introduction
2. Experimental
2.1. Reproducible Synthesis of Hierarchically Structured Cs–Pollucite Nanocrystals
2.2. Characterization
2.3. Catalytic Claisen–Schmidt Condensation Reaction Study
2.4. Catalyst Reusability Study
3. Results and Discussion
3.1. Synthesis and Characterization of Hierarchical Cs–Pollucite Nanozeolites
3.2. Catalytic Reaction Study
3.2.1. Effects of the Reaction Temperature and Time
3.2.2. Effect of Catalyst Loading
3.2.3. Effect of the Acetophenone to Benzaldehyde Molar Ratio
3.2.4. Catalyst Comparative Study
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations and Symbols
AlPO-11 | Aluminophosphate number 11 |
AlPO-5 | Aluminophosphate number 5 |
ca. | Circa (approximately) |
CO2-TPD | Temperature-programmed desorption of carbon dioxide |
DEC | Decoupling |
DFT | Density Functional Theory |
Ea | Activation energy |
FAU | Faujasite |
FESEM | Field emission scanning electron microscopy |
GC-FID | Gas chromatography–flame ionization detector |
GC-MS | Gas chromatography–mass spectrometry |
ICP-OES | Inductively coupled plasma–optical emission spectroscopy |
IR | Infrared |
LTA | Linde Type A |
MAS | Magic angle spinning |
NMR | Nuclear magnetic nesonance |
P/Po | Partial pressure |
PDADMA | Polyallyldimethylammonium |
R2 | R-squared |
SAPO-5 | Silicoaluminophosphate number 5 |
SBET | Specific surface area |
Sext | External surface area |
Smicro | Micropore surface area |
TG | Thermogravimetry |
TMS | Tetramethylsilane |
TPHAC | Dimethylheptadecyl[3-(trimethoxysilyl)propyl]ammonium chloride |
TPOAC | Dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride |
Vmicro | Micropore volume |
Vtotal | Total pore volume |
XRD | X-ray diffraction |
σ | Pore size |
References
- Davis, M.E. Ordered porous materials for emerging applications. Nature 2002, 417, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, M.; Ng, E.-P.; Bakhtiari, K.; Vinciguerra, M.; Ahmad, H.A.; Awala, H.; Mintova, S.; Daghighi, M.; Rostami, F.B.; De Vries, M.; et al. Zeolite Nanoparticles for Selective Sorption of Plasma Proteins. Sci. Rep. 2015, 5, 17259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, E.-P.; Nur, H.; Wong, K.-L.; Muhid, M.N.M.; Hamdan, H. Generation of Brönsted acidity in AlMCM-41 by sulphation for enhanced liquid phase tert-butylation of phenol. Appl. Catal. A Gen. 2007, 323, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.-F.; Deekomwong, K.; Wittayakun, J.; Ling, T.C.; Muraza, O.; Adam, F.; Ng, E.-P. Crystal growth study of K-F nanozeolite and its catalytic behavior in Aldol condensation of benzaldehyde and heptanal enhanced by microwave heating. Mater. Chem. Phys. 2017, 196, 295–301. [Google Scholar] [CrossRef]
- Mastinu, A.; Kumar, A.; Maccarinelli, G.; Bonini, S.A.; Premoli, M.; Aria, F.; Gianoncelli, A.; Memo, M. Zeolite Clinoptilolite: Therapeutic Virtues of an Ancient Mineral. Molecules 2019, 24, 1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, G.; Li, J.; Pang, X.; Wang, H.; Hua, J.; He, J.; Fang, S.-M.; Chang, Y.-X. A Beta/ZSM-22 Zeolites-Based-Mixed Matrix Solid-Phase Dispersion Method for the Simultaneous Extraction and Determination of Eight Compounds with Different Polarities in Viticis Fructus by High-Performance Liquid Chromatography. Molecules 2019, 24, 3423. [Google Scholar] [CrossRef] [Green Version]
- De Klerk, A. Zeolites as Catalysts for Fuels Refining after Indirect Liquefaction Processes. Molecelus 2018, 23, 115. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-S.; Cho, K.-S.; Lee, Y.-K. Structure and Activity of Ni2P/Desilicated Zeolite β Catalysts for Hydrocracking of Pyrolysis Fuel Oil into Benzene, Toluene, and Xylene. Catalysts 2020, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Chen, K.; Yan, X.; Hu, X.; Zhang, Y.; Wu, J. Synthesis of ZSM-5 Zeolite Using Coal Fly Ash as an Additive for the Methanol to Propylene (MTP) Reaction. Catalysts 2019, 9, 788. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Li, J.; Lu, Z. Hollow-structured pollucite microspheres and the formation mechanism. Microporous Mesoporous Mater. 2019, 282, 228–236. [Google Scholar] [CrossRef]
- Brundu, A.; Cerri, G. Thermal transformation of Cs-clinoptilolite to CsAlSi5O12. Microporous Mesoporous Mater. 2015, 208, 44–49. [Google Scholar] [CrossRef]
- IZA-SC. Database of Zeolite Structures. Available online: http://www.iza-structure.org/databases/ (accessed on 25 December 2019).
- Wong, S.-F.; Deekamwong, K.; Wittayakun, J.; Ling, T.C.; Muraza, O.; Lee, H.L.; Adam, F.; Ng, E.-P. Nanocrystalline K-F Zeolite from Rice Husk Silica as an Eco-friendly Solid Base Catalyst for the Synthesis of Jasminaldehyde under Microwave Irradiation. Sains Malays. 2018, 47, 337–345. [Google Scholar]
- Wong, S.-F.; Awala, H.; Vincente, A.; Retoux, R.; Ling, T.C.; Mintova, S.; Mukti, R.R.; Ng, E.-P. K-F zeolite nanocrystals synthesized from organic-template-free precursor mixture. Microporous Mesoporous Mater. 2017, 249, 105–110. [Google Scholar] [CrossRef]
- Ghrear, T.M.A.; Rigolet, S.; Daou, T.J.; Mintova, S.; Ling, T.C.; Tan, S.H.; Ng, E.-P. Synthesis of Cs-ABW nanozeolite in organotemplate-free system. Microporous Mesoporous Mater. 2019, 277, 78–83. [Google Scholar] [CrossRef]
- Ng, E.-P.; Wong, K.-L.; Ng, D.T.-L.; Awala, H.; Mukti, R.R.; Adam, F.; Mintova, S. AlPO-5 nanocrystals templated by 1-ethyl-2,3-dimethylimidazolium hydroxide and their textural and water sorption properties. Mater. Chem. Phys. 2017, 188, 49–57. [Google Scholar] [CrossRef]
- Mohammad, S.A.G.; Ahmad, N.H.; Goldyn, K.; Mintova, S.; Ling, T.C.; Ng, E.-P. Nanosized Cs-pollucite zeolite synthesized under mild condition and its catalytic behaviour. Mater. Res. Exp. 2018, 6, 025026. [Google Scholar] [CrossRef]
- Ng, E.-P.; Mohammad, S.A.G.; Rigolet, S.; Daou, T.J.; Mintova, S.; Ling, T.C. Micro- and macroscopic observations of the nucleation process and crystal growth of nanosized Cs-pollucite in an organotemplate-free hydrosol. New J. Chem. 2019, 43, 17433–17440. [Google Scholar] [CrossRef]
- Feyen, M.; Weidenthaler, C.; Güttel, R.; Schlichte, K.; Holle, U.; Lu, A.H.; Schüth, F. High-temperature stable, iron-based core-shell catalysts for ammonia decomposition. Chemistry 2011, 17, 598–605. [Google Scholar] [CrossRef]
- Zhang, Z.; Pinnavaia, T.J. Mesoporous gamma-alumina formed through the surfactant-mediated scaffolding of peptized pseudoboehmite nanoparticles. Langmuir 2010, 26, 10063–10067. [Google Scholar] [CrossRef]
- Courtois, J.; Byström, E.; Irgum, K. Novel monolithic materials using poly(ethylene glycol) as porogen for protein separation. Polymer 2006, 47, 2603–2611. [Google Scholar] [CrossRef]
- Le Ray, A.-M.; Gautier, H.; Bouler, J.-M.; Weiss, P.; Merle, C. A new technological procedure using sucrose as porogen compound to manufacture porous biphasic calcium phosphate ceramics of appropriate micro- and macrostructure. Ceram. Int. 2010, 36, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Vaysse, M.; Khan, M.K.; Sundararajan, P. Carbon Nanotube Reinforced Porous Gels of Poly(methyl methacrylate) with Nonsolvents as Porogens. Langmuir 2009, 25, 7042–7049. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Tian, P.; Yang, M.; Fan, D.; Wang, L.; Xu, S.; Wang, C.; Wang, D.; Yang, Y.; Liu, Z. Synthesis of hierarchical beta zeolite by using a bifunctional cationicpolymer and the improved catalytic performance. RSC Adv. 2015, 5, 9852–9860. [Google Scholar] [CrossRef]
- Fu, X.; Sheng, X.; Zhou, Y.; Fu, Z.; Zhao, S.; Bu, X.; Zhang, C. Design of micro–mesoporous zeolite catalysts for alkylation. RSC Adv. 2016, 6, 50630–50639. [Google Scholar] [CrossRef]
- Cho, H.S.; Cho, K.; de Menorval, L.-C.; Ryoo, R. Generation of Mesoporosity in LTA Zeolites by Organosilane Surfactantfor Rapid Molecular Transport in Catalytic Application. Chem. Mater. 2009, 21, 5664–5673. [Google Scholar] [CrossRef]
- Inayat, A.; Knoke, I.; Spiecker, E.; Schwieger, W. Assemblies of Mesoporous FAU-Type Zeolite Nanosheets. Angew. Chem. Int. Ed. 2012, 51, 1962–1965. [Google Scholar] [CrossRef]
- Choi, M.; Srivastava, R.; Ryoo, R. Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chem. Commun. 2006, 42, 4380–4382. [Google Scholar] [CrossRef]
- Diao, Z.; Cheng, L.; Hou, X.; Rong, D.; Lu, Y.; Yue, W.; Sun, D. Fabrication of the Hierarchical HZSM-5 Membrane with Tunable Mesoporosity for Catalytic Cracking of n-Dodecane. Catalysts 2019, 9, 155. [Google Scholar] [CrossRef] [Green Version]
- Ng, E.-P.; Bahaman, N.; Mukti, R.R.; Ling, T.-C.; Ng, Y.H.; Adam, F. Detailed kinetic observation revealing the formation mechanism of chiral mesoporous silica (CMS) synthesized by cooperative self-assembly of anionic chiral surfactant. Mater. Res. Bull. 2015, 62, 192–199. [Google Scholar] [CrossRef]
- Wang, C.; Yang, M.; Tian, P.; Xu, S.; Yang, Y.; Wang, D.; Yuan, Y.; Liu, Z. Dual template-directed synthesis of SAPO-34nanosheet assemblies with improved stability in themethanol to olefins reaction. J. Mater. Chem. A 2015, 3, 5608–5616. [Google Scholar] [CrossRef]
- Zhang, M.; Xia, Z.; Liu, Q. Thermally stable KxCs1−xAlSi2O6:Eu2+ phosphorsand their photoluminescence tuning. J. Mater. Chem. C 2017, 5, 7489–7494. [Google Scholar] [CrossRef]
- Cheong, Y.-W.; Wong, K.-L.; Ling, T.C.; Ng, E.-P. Rapid synthesis of nanocrystalline zeolite W with hierarchical mesoporosity as an efficient solid basic catalyst for nitroaldol Henry reaction of vanillin with nitroethane. Mater. Express 2018, 8, 463–468. [Google Scholar] [CrossRef]
- Ng, E.-P.; Goh, J.-Y.; Ling, T.C.; Mukti, R.R. Eco-friendly synthesis for MCM-41 nanoporous materials using the non-reacted reagents in mother liquor. Nanoscale Res. Lett. 2013, 8, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, E.-P.; Awala, H.; Ghoy, J.-P.; Vicente, A.; Ling, T.C.; Ng, Y.H.; Mintova, S.; Adam, F. Effects of ultrasonic irradiation on crystallization and structural properties of EMT-type zeolite nanocrystals. Mater. Chem. Phys. 2015, 159, 38–45. [Google Scholar] [CrossRef]
- Ng, E.-P.; Lim, G.K.; Khoo, G.-L.; Tan, K.-H.; Ooi, B.S.; Adam, F.; Ling, T.C.; Wong, K.-L. Synthesis of colloidal stable Linde Type J (LTJ) zeolite nanocrystals from rice husk silica and their catalytic performance in Knoevenagel reaction. Mater. Chem. Phys. 2015, 155, 30–35. [Google Scholar] [CrossRef]
- Chen, Z.; Dong, L.; Chen, C.; Wang, Y.; Wang, Y.; Zhang, J.; Qian, W.; Hong, M. Direct synthesis of core-shell MFI zeolites with spatially tapered trimodal mesopores via controlled orthogonal self-assembly. Nanoscale 2019, 11, 16667–16676. [Google Scholar] [CrossRef]
- Choo, M.-Y.; Juan, J.C.; Oi, L.E.; Ling, T.-C.; Ng, E.-P.; Noorsaadah, A.R.; Centi, G.; Lee, K.T.; Rahman, N.A. The role of nanosized zeolite Y in the H2-free catalytic deoxygenation of triolein. Catal. Sci. Technol. 2019, 9, 772–782. [Google Scholar] [CrossRef]
- Ghrear, T.M.A.; Ng, E.-P.; Vaulot, C.; Daou, T.J.; Ling, T.C.; Tan, S.H.; Ooi, B.S.; Mintova, S. Recyclable synthesis of Cs-ABW zeolite nanocrystals from non-reacted mother liquors with excellent catalytic henry reaction performance. J. Environ. Chem. Eng. 2020, 8, 103579. [Google Scholar] [CrossRef]
- Schneider, D.; Mehlhorn, D.; Zeigermann, P.; Kärger, J.; Valiullin, R. Transport properties of hierarchical micro–mesoporous materials. Chem. Soc. Rev. 2016, 45, 3439–3467. [Google Scholar] [CrossRef] [Green Version]
- Ben-Arfa, B.A.; Salvado, I.M.M.; Frade, J.R.; Pullar, R.C. Fast route for synthesis of stoichiometric hydroxyapatite by employing the Taguchi method. Mater. Des. 2016, 109, 547–555. [Google Scholar] [CrossRef]
- Adam, F.; Appaturi, J.N.; Ng, E.-P. Halide aided synergistic ring opening mechanism of epoxides and their cycloaddition to CO2 using MCM-41-imidazolium bromide catalyst. J. Mol. Catal. A Chem. 2014, 386, 42–48. [Google Scholar] [CrossRef]
Sample | SBET (m2 g−1) | Sext (m2 g−1) | Smicro (m2 g−1) | Vmicro (cm3 g−1) | Vtotal (cm3 g−1) |
---|---|---|---|---|---|
CP-0 | 38 | 38 | 0 | 0 | 0.29 |
CP-0.3 | 62 | 59 | 3 | 0.002 | 0.30 |
CP-1.0 | 108 | 71 | 37 | 0.011 | 0.49 |
CP-2.0 | 152 | 89 | 63 | 0.019 | 0.63 |
Sample | Si | Al | Cs | Si/Al Ratio | Cs/Al Ratio | |||
---|---|---|---|---|---|---|---|---|
mg L−1 | mmol L−1 | mg L−1 | mmol L−1 | mg L−1 | mmol L−1 | |||
CP-0 | 113.18 | 4.03 | 51.26 | 1.90 | 265.82 | 2.00 | 2.12 | 1.05 |
CP-0.3 | 107.65 | 3.83 | 49.10 | 1.82 | 241.89 | 1.82 | 2.10 | 1.00 |
CP-1.0 | 91.81 | 3.66 | 47.21 | 1.75 | 235.25 | 1.77 | 2.09 | 1.01 |
CP-2.0 | 88.46 | 3.51 | 44.79 | 1.66 | 221.95 | 1.67 | 2.11 | 1.00 |
Samples | TPD-NH3 Acidity (µmol g−1) | |||
---|---|---|---|---|
Weak-To-Mild (30–200 °C) | Mild (295–562 °C) | Mild-To-Strong (390–800 °C) | Total | |
CP-0 | 33.3 | 11.0 | 14.4 | 58.7 |
CP-0.3 | 33.7 | 11.7 | 19.3 | 64.7 |
CP-1.0 | 34.4 | 12.4 | 22.6 | 69.4 |
CP-2.0 | 35.4 | 15.2 | 27.3 | 77.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammad S., A.G.; Khoerunnisa, F.; Rigolet, S.; Daou, T.J.; Ling, T.-C.; Ng, E.-P. Hierarchical Cs–Pollucite Nanozeolite Modified with Novel Organosilane as an Excellent Solid Base Catalyst for Claisen–Schmidt Condensation of Benzaldehyde and Acetophenone. Processes 2020, 8, 96. https://doi.org/10.3390/pr8010096
Mohammad S. AG, Khoerunnisa F, Rigolet S, Daou TJ, Ling T-C, Ng E-P. Hierarchical Cs–Pollucite Nanozeolite Modified with Novel Organosilane as an Excellent Solid Base Catalyst for Claisen–Schmidt Condensation of Benzaldehyde and Acetophenone. Processes. 2020; 8(1):96. https://doi.org/10.3390/pr8010096
Chicago/Turabian StyleMohammad S., Aleid Ghadah, Fitri Khoerunnisa, Severinne Rigolet, T. Jean Daou, Tau-Chuan Ling, and Eng-Poh Ng. 2020. "Hierarchical Cs–Pollucite Nanozeolite Modified with Novel Organosilane as an Excellent Solid Base Catalyst for Claisen–Schmidt Condensation of Benzaldehyde and Acetophenone" Processes 8, no. 1: 96. https://doi.org/10.3390/pr8010096
APA StyleMohammad S., A. G., Khoerunnisa, F., Rigolet, S., Daou, T. J., Ling, T.-C., & Ng, E.-P. (2020). Hierarchical Cs–Pollucite Nanozeolite Modified with Novel Organosilane as an Excellent Solid Base Catalyst for Claisen–Schmidt Condensation of Benzaldehyde and Acetophenone. Processes, 8(1), 96. https://doi.org/10.3390/pr8010096