Inverter Efficiency Analysis Model Based on Solar Power Estimation Using Solar Radiation
Abstract
:1. Introduction
2. PV System and Solar Power Estimation Model
2.1. PV System Overview
2.2. Solar Power Estimation and Inverter Efficiency Analysis
2.3. Linear Regression Model
3. Yield from TEF Energy Network Monitoring System Implementation
3.1. PV System Monitoring
3.2. Collection of PV System Data
4. Proposed Method of Analysis
4.1. Data Preprocessing
4.2. Linear Correlation Analysis
5. Results and Discussion
5.1. Target PV Monitoring System
5.2. Model Validation
5.3. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Salcedo-Sanz, S.; Pérez-Bellido, Á.M.; Ortiz-García, E.G.; Portilla-Figueras, A.; Prieto, L.; Correoso, F. Accurate short-term wind speed forecasting by exploiting diversity in input data using banks of artificial neural networks. Neurocomputing 2009, 72, 1336–1341. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, L.; Liu, Z.; Wang, J. Integrated forecasting method for wind energy management: A case study in China. Processes 2020, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Gao, Z.; Liu, Y.; Zhang, A.; Yin, X. Actuator and sensor fault classification for wind turbine systems based on fast Fourier transform and uncorrelated multi-linear principal component analysis techniques. Processes 2020, 8, 1066. [Google Scholar] [CrossRef]
- Liu, B.; Li, K.; Niu, D.D.; Liu, Y. The characteristic analysis of the solar energy photovoltaic power generation system. IOP Conf. Ser. Mater. Sci. Eng. 2017, 164, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Manzoor, E.; Ghulam, A.; Irfan, K.; Paul, M.K.; Mashood, N.; Ali, R.; Umar, F. Recent approaches of forecasting and optimal economic dispatch to overcome intermittency of wind and photovoltaic (PV) systems: A review. Energies 2019, 12, 4392. [Google Scholar]
- Ahn, H.W.; Cho, Y.S. Study on certification policy for stabilization of photovoltaic industry—A case study of PV power plant O&M-. J. Clim. Chang. Res. 2015, 6, 105–111. [Google Scholar]
- Li, P.; Zhang, C.; Long, H. Solar power interval prediction via lower and upper bound estimation with a new model initialization approach. Energies 2019, 12, 4146. [Google Scholar] [CrossRef] [Green Version]
- Burger, B.; Kranzer, D.; Stalter, O. Cost reduction of PV-Inverters with SiC-DMOSFETs. In Proceedings of the 5th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 11–13 March 2008; pp. 1–5. [Google Scholar]
- Wang, F.; Zhen, Z.; Wang, B.; Mi, Z. Comparative study on KNN and SVM based weather classification models for day ahead short term solar PV power forecasting. Appl. Sci. 2018, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Brecl, K.; Topič, M. Photovoltaics (PV) system energy forecast on the basis of the local weather forecast: Problems, uncertainties and solutions. Energies 2018, 11, 1143. [Google Scholar] [CrossRef] [Green Version]
- Cha, W.C.; Park, J.H.; Cho, U.R.; Kim, J.C. Design of generation efficiency fuzzy prediction model using solar power element data. J. Trans. Korean Inst. Electr. Eng. 2014, 63, 1423–1427. [Google Scholar]
- Yang, Z.; Mourshed, M.; Liu, K.; Xu, X.; Feng, S. A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting. Neurocomputing 2020, 397, 415–421. [Google Scholar] [CrossRef]
- Wang, J.; Qian, Z.; Wang, J.; Pei, Y. Hour-ahead photovoltaic power forecasting using an analog plus neural network ensemble method. Energies 2020, 13, 3259. [Google Scholar] [CrossRef]
- Nespoli, A.; Ogliari, E.; Leva, S.; Massi Pavan, A.; Mellit, A.; Lughi, V.; Dolara, A. Day-ahead photovoltaic forecasting: A comparison of the most effective techniques. Energies 2019, 12, 1621. [Google Scholar] [CrossRef] [Green Version]
- Kwon, O.H.; Lee, K.S. Photovoltaic system energy performance analysis using meteorological monitoring data. J. Korean Sol. Energy Soc. 2018, 38, 11–31. [Google Scholar]
- Lee, S.Y.; Cha, B.H.; Kim, W.S.; Lee, Y.M. The solar power forecasting based on weather forecasting and statistics analysis. In Proceedings of the Fall Conference of the Korean Society for New and Renewable Energy, Jeju, Korea, 13–14 November 2019; p. 317. [Google Scholar]
- Zdyb, A.; Gulkowski, S. Performance assessment of four different photovoltaic technologies in Poland. Energies 2020, 13, 196. [Google Scholar] [CrossRef] [Green Version]
- Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; Deventer, W.V.; Horan, B.; Stojcevski, A. Forecasting of photovoltaic power generation and model optimization: A review. Renew. Sustain. Energy Rev. 2018, 81, 912–928. [Google Scholar] [CrossRef]
- Chung, M.H. Comparison of estimation methods by different photovoltaic software and performance evaluation. J. Korea Inst. Ecol. Archit. Environ. 2019, 19, 93–99. [Google Scholar]
- Abraham, B.; Ledolter, J. Statistical Methods for Forecasting; Wiley: New York, NY, USA, 2009; Volume 234. [Google Scholar]
- Potts, W.J. Neural Network Modeling: Course Notes; SAS Institute Inc.: Cary, NC, USA, 2000. [Google Scholar]
- Hossain, C.A.; Chowdhury, N.; Longo, M.; Yaïci, W. System and cost analysis of stand-alone solar home system applied to a developing country. Sustainability 2019, 11, 1403. [Google Scholar] [CrossRef] [Green Version]
- Roman, E.; Alonso, R.; Ibañez, P.; Elorduizapatarietxe, S.; Goitia, D. Intelligent PV module for grid-connected PV systems. IEEE Trans. Ind. Electron. 2006, 53, 1066–1073. [Google Scholar] [CrossRef]
- Rashid, M.H. Power Electronics Handbook; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Cerón, I.; Caamaño-Martín, E.; Neila, F.J. State-of-the-art’of building integrated photovoltaic products. Renew. Energy 2013, 58, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.T.; Park, Y.M.; Sung, T.K.; Jung, C.B.; Kim, B.C.; Kim, M.S. Analysis of power conversion efficiency of inverter for photovoltaic power generation system. In Proceedings of the Winter Conference of the Korean Institute of Electrical Engineers, Daejeon, Korea, 28 November 2014; pp. 421–424. [Google Scholar]
- Tian, A.-Q.; Chu, S.-C.; Pan, J.-S.; Liang, Y. A novel pigeon-inspired optimization based MPPT technique for PV systems. Processes 2020, 8, 356. [Google Scholar] [CrossRef] [Green Version]
- Gohar Ali, H.; Vilanova Arbos, R.; Herrera, J.; Tobón, A.; Peláez-Restrepo, J. Non-linear sliding mode controller for photovoltaic panels with maximum power point tracking. Processes 2020, 8, 108. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y. Integrated management system to improve photovoltaic operation efficiency. J. Internet Broadcast. Commun. 2019, 19, 113–118. [Google Scholar]
- McCandless, T.; Dettling, S.; Haupt, S.E. Comparison of implicit vs. explicit regime identification in machine learning methods for solar irradiance prediction. Energies 2020, 13, 689. [Google Scholar] [CrossRef] [Green Version]
- Moncada, A.; Richardson, W., Jr.; Vega-Avila, R. Deep learning to forecast solar irradiance using a Six-Month UTSA SkyImager dataset. Energies 2018, 11, 1988. [Google Scholar] [CrossRef] [Green Version]
- Mpfumali, P.; Sigauke, C.; Bere, A.; Mulaudzi, S. Day ahead hourly global horizontal irradiance forecasting—Application to South African Data. Energies 2019, 12, 3569. [Google Scholar] [CrossRef] [Green Version]
- Carrera, B.; Kim, K. Comparison analysis of machine learning techniques for photovoltaic prediction using weather sensor data. Sensors 2020, 20, 3129. [Google Scholar] [CrossRef]
- Rodríguez, F.; Fleetwood, A.; Galarza, A.; Fontán, L. Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control. Renew. Energy 2018, 126, 855–864. [Google Scholar] [CrossRef]
- Lotfi, M.; Javadi, M.; Osório, G.J.; Monteiro, C.; Catalão, J.P.S. A novel ensemble algorithm for solar power forecasting based on kernel density estimation. Energies 2020, 13, 216. [Google Scholar] [CrossRef] [Green Version]
- Dolara, A.; Grimaccia, F.; Leva, S.; Mussetta, M.; Ogliari, E. A physical hybrid artificial neural network for short term forecasting of PV plant power output. Energies 2015, 8, 1138. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.W.; Mourshed, M.; Rezgui, Y. Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression. Energy 2018, 164, 465–474. [Google Scholar] [CrossRef]
- Kim, S.G.; Jung, J.Y.; Sim, M.K. A two-step approach to solar power generation prediction based on weather data using machine learning. Sustainability 2019, 11, 1501. [Google Scholar] [CrossRef] [Green Version]
- AlKandari, M.; Ahmad, I. Solar power generation forecasting using ensemble approach based on deep learning and statistical methods. Appl. Comput. Inform. 2020. [Google Scholar] [CrossRef]
- Suresh, V.; Janik, P.; Rezmer, J.; Leonowicz, Z. Forecasting solar PV output using convolutional neural networks with a sliding window algorithm. Energies 2020, 13, 723. [Google Scholar] [CrossRef] [Green Version]
- Bacher, P.; Madsen, H.; Aalborg Nielsen, H. Online short-term solar power forecasting. Sol. Energy 2009, 83, 1772–1783. [Google Scholar] [CrossRef] [Green Version]
- Detyniecki, M.; Marsala, C.; Krishnan, A.; Siegel, M. Weather-based solar energy prediction. In Proceedings of the 2012 IEEE International Conference, Fuzzy Systems, Brisbane, Australia, 10–15 June 2012; pp. 1–7. [Google Scholar]
- Abdullah, N.A.; Abd Rahim, N.; Gan, C.K.; Nor Adzman, N. Forecasting solar power using Hybrid Firefly and Particle Swarm Optimization (HFPSO) for optimizing the parameters in a Wavelet Transform-Adaptive Neuro Fuzzy Inference System (WT-ANFIS). Appl. Sci. 2019, 9, 3214. [Google Scholar] [CrossRef] [Green Version]
- Le, N.T.; Benjapolakul, W. Evaluation of contribution of PV array and inverter configurations to rooftop PV system energy yield using machine learning techniques. Energies 2019, 12, 3158. [Google Scholar] [CrossRef] [Green Version]
- Abuella, M.; Chowdhury, B. Solar power probabilistic forecasting by using multiple linear regression analysis. In Proceedings of the IEEE Southeastcon, Ft. Lauderdale, FL, USA, 9–11 April 2015; pp. 1–5. [Google Scholar]
- Ko, J.P.; Kim, E.J.; Byun, H.R. Normalization of face images subject to directional illumination using linear model. J. Comput. Sci. Eng. 2004, 31, 54–60. [Google Scholar]
- Lim, D.H.; Kim, J.S.; Lee, B.G. Wave information estimation and revision using linear regression model. J. Korea Multimed. Soc. 2016, 19, 1377–1385. [Google Scholar] [CrossRef]
- Kim, H.S.; Lim, W.T.; Lee, J.C.; Lee, K.W.; Park, K.T. Motion estimation method using multiple linear regression model. Vis. Commun. Image Process. 1997, 3024, 600–607. [Google Scholar]
- Heo, Y.J.; Choi, M.K.; Lee, H.G.; Lee, S.C. Regional projection histogram matching and linear regression based video stabilization for a moving vehicle. Korean Inst. Broadcast Media Eng. 2014, 19, 798–809. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Gao, Z. Improvement of refrigeration efficiency by combining reinforcement learning with a coarse model. Processes 2019, 7, 967. [Google Scholar] [CrossRef] [Green Version]
Type | Description |
---|---|
Operating System | Ubuntu 18.04 LTS |
Hardware | Intel Xeon E5530 2.4 GHz 8 MB L3/8 GB RAM/8 TB |
RTU | Windows 7/Intel J5005/4 GB RAM/1 TB |
Protocol | TCP/IP/RS485, MODBUS |
Column | Data Type | Default | Comment |
---|---|---|---|
env_index | INT(11) | AUTO_INCREMENT | Index |
env_date | DATE | NULL | DATE |
env_time | TIME | NULL | TIME |
env_horizonsolar | FLOAT(12) | NULL | horizontal solar radiation |
env_vertsolar | FLOAT(12) | NULL | vertical solar radiation |
env_modtemp | FLOAT(12) | NULL | module temperature |
env_airtemp | FLOAT(12) | NULL | outside temperature |
Column | Data Type | Default | Comment |
---|---|---|---|
pow_index | INT(11) | AUTO_INCREMENT | Index |
pow_id | INT(11) | “1” | Inverter id |
pow_date | DATE | NULL | DATE |
pow_time | TIME | NULL | TIME |
pow_dcv | INT(11) | NULL | dc voltage |
pow_dca | DOUBLE(22,0) | NULL | dc ampere |
pow_dcp | DOUBLE(22,0) | NULL | dc power (W) |
pow_acvr | INT(11) | NULL | ac voltage (R) |
pow_acvs | INT(11) | NULL | ac voltage (S) |
pow_acvt | INT(11) | NULL | ac voltage (T) |
pow_acar | FLOAT(12) | NULL | ac ampere (R) |
pow_acas | FLOAT(12) | NULL | ac ampere (S) |
pow_acat | FLOAT(12) | NULL | ac ampere (T) |
pow_acp | DOUBLE(22,0) | NULL | ac power (W) |
pow_pf | DOUBLE(22,0) | NULL | power factor |
pow_totpower | DOUBLE(22,0) | “0” | cumulative power (W) |
pow_freq | FLOAT(12) | NULL | frequency (Hz) |
Data (Unit) | Minimum | Median | Mean | Maximum | Standard Deviation |
---|---|---|---|---|---|
DC Power (W) | 200 | 4900 | 4680 | 11,200 | 2125.33 |
AC Power (W) | 100 | 4800 | 4568 | 11,100 | 2135.06 |
Vertical solar Radiation(W/) | 9.733 | 518.533 | 572.657 | 1026.677 | 201.08 |
Horizontal solar Radiation(W/) | 9.733 | 572.200 | 572.857 | 1211.933 | 271.37 |
Corr. | Vertical Solar Radiation | Horizontal Solar Radiation |
---|---|---|
DC Power | 0.907067 | 0.937929 |
AC Power | 0.906583 | 0.937743 |
Variable | Vertical Solar Radiation | Horizontal Solar Radiation |
---|---|---|
(intercept) | 471.84924 | <2.2 × 10−16 |
Horizontal solar radiation | 7.34580 | <2.2 × 10−16 |
0.8228 |
Index | DC Power (Observed) | Linear Model Estimated | Difference |
---|---|---|---|
1 | 1000 | 1253.4424 | −253.4424 |
125 | 1100 | 1417.9883 | −317.9883 |
249 | 4400 | 4073.9147 | 326.0853 |
342 | 2000 | 2384.0528 | −384.0528 |
435 | 2900 | 3055.9967 | −155.9967 |
544 | 1000 | 1448.8406 | −448.8406 |
Margin of Error | RMSE | Difference |
---|---|---|
0% | 500.0695 | 0.1213013 |
5% | 384.4624 | 0.0991206 |
10% | 369.0405 | 0.0951060 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.-Y.; Hong, S.-H.; Lim, S.-C.; Song, B.-S.; Park, S.-W.; Huh, J.-H.; Kim, J.-C. Inverter Efficiency Analysis Model Based on Solar Power Estimation Using Solar Radiation. Processes 2020, 8, 1225. https://doi.org/10.3390/pr8101225
Park C-Y, Hong S-H, Lim S-C, Song B-S, Park S-W, Huh J-H, Kim J-C. Inverter Efficiency Analysis Model Based on Solar Power Estimation Using Solar Radiation. Processes. 2020; 8(10):1225. https://doi.org/10.3390/pr8101225
Chicago/Turabian StylePark, Chul-Young, Seok-Hoon Hong, Su-Chang Lim, Beob-Seong Song, Sung-Wook Park, Jun-Ho Huh, and Jong-Chan Kim. 2020. "Inverter Efficiency Analysis Model Based on Solar Power Estimation Using Solar Radiation" Processes 8, no. 10: 1225. https://doi.org/10.3390/pr8101225
APA StylePark, C.-Y., Hong, S.-H., Lim, S.-C., Song, B.-S., Park, S.-W., Huh, J.-H., & Kim, J.-C. (2020). Inverter Efficiency Analysis Model Based on Solar Power Estimation Using Solar Radiation. Processes, 8(10), 1225. https://doi.org/10.3390/pr8101225