Preparation and Characterization of Activated Carbon Obtained from Water Treatment Plant Sludge for Removal of Cationic Dye from Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Activated Carbon
2.2. Characterization of the Activated Carbon
2.3. Kinetics and Equilibrium Models
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mudakkar, S.R.; Zaman, K.; Khan, M.M.; Ahmad, M. Energy for economic growth, industrialization, environment and natural resources: Living with just enough. Renew. Sustain. Energy Rev. 2013, 25, 580–595. [Google Scholar] [CrossRef]
- Santos, D.C.; Adebayo, M.A.; de Fátima Pinheiro Pereira, S.; Prola, L.D.T.; Cataluña, R.; Lima, E.C.; Saucier, C.; Gally, C.R.; Machado, F.M. New carbon composite adsorbents for the removal of textile dyes from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies. Korean J. Chem. Eng. 2014, 31, 1470–1479. [Google Scholar] [CrossRef]
- Natural Resources Defense Concil. Available online: https://www.nrdc.org/stories/water-pollution-everything-you-need-know (accessed on 29 July 2020).
- Ahmad, T.; Ahmad, K.; Alam, M. Sustainable management of water treatment sludge through 3’R’ concept. J. Clean. Prod. 2016, 124, 1–13. [Google Scholar] [CrossRef]
- Chiang, K.Y.; Chou, P.H.; Hua, C.R.; Chien, K.L.; Cheeseman, C. Lightweight bricks manufactured from water treatment sludge and rice husks. J. Hazard. Mater. 2009, 171, 76–82. [Google Scholar] [CrossRef]
- Dharmappa, H.B.; Hasia, A.; Hagare, P. Water treatment plant residuals management. Water Sci. Technol. 1997, 35, 45–56. [Google Scholar] [CrossRef]
- Bugbee, G.J.; Frink, C.R. Alum sludge as a soil amendment: Effects on soil properties and plant growth. Bull. Conn. Agric. Exp. Stn. 1985. [Google Scholar] [CrossRef] [Green Version]
- Tuan, P.A.; Mika, S.; Pirjo, I. Sewage sludge electro-dewatering treatment—A review. Dry. Technol. 2012, 30, 691–706. [Google Scholar] [CrossRef]
- Ling, Y.P.; Tham, R.H.; Lim, S.M.; Fahim, M.; Ooi, C.H.; Krishnan, P.; Matsumoto, A.; Yeoh, F.Y. Evaluation and reutilization of water sludge from fresh water processing plant as a green clay substituent. Appl. Clay Sci. 2017, 143, 300–306. [Google Scholar] [CrossRef]
- Ahmad, T.; Ahmad, K.; Ahad, A.; Alam, M. Characterization of water treatment sludge and its reuse as coagulant. J. Environ. Manag. 2016, 182, 606–611. [Google Scholar] [CrossRef]
- Rizzo, L.; Meric, S.; Guida, M.; Kassinos, D.; Belgiorno, V. Heterogenous photocatalytic degradation kinetics and detoxification of an urban wastewater treatment plant effluent contaminated with pharmaceuticals. Water Res. 2009, 43, 4070–4078. [Google Scholar] [CrossRef]
- Gonçalves, I.M.C.; Gomes, A.; Brás, R.; Ferra, M.I.A.; Amorim, M.T.P.; Porter, R.S. Biological treatment of effluent containing textile dyes. Coloration Technol. 2000, 116, 393–397. [Google Scholar] [CrossRef] [Green Version]
- Deegan, A.M.; Shaik, B.; Nolan, K.; Urell, K.; Oelgemöller, M.; Tobin, J.; Morrissey, A. Treatment options for wastewater effluents from pharmaceutical companies. Int. J. Environ. Sci. Technol. 2011, 8, 649–666. [Google Scholar] [CrossRef] [Green Version]
- Puchana-Rosero, M.J.; Adebayo, M.A.; Lima, E.C.; Machado, F.M.; Thue, P.S.; Vaghetti, J.C.P.; Umpierres, C.S.; Gutterres, M. Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 504, 105–115. [Google Scholar] [CrossRef]
- Zou, J.; Dai, Y.; Wang, X.; Ren, Z.; Tian, C.; Pan, K.; Li, S.; Abuobeidah, M.; Fu, H. Structure and adsorption properties of sewage sludge-derived carbon with removal of inorganic impurities and high porosity. Bioresour. Technol. 2013, 142, 209–217. [Google Scholar] [CrossRef]
- Zaini, M.A.A.; Zakaria, M.; Setapar, S.M.; Che-Yunus, M.A. Sludge-adsorbents from palm oil mill effluent for methylene blue removal. J. Environ. Chem. Eng. 2013, 1, 1091–1098. [Google Scholar] [CrossRef]
- Kant, R. Textile dyeing industry an environmental hazard. Nat. Sci. 2012, 04, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Natural Resources Defense Concil. Available online: https://www.nrdc.org/issues/encourage-textile-manufacturers-reduce-pollution (accessed on 29 July 2020).
- Mahmoud, D.K.; Salleh, M.A.M.; Karim, W.A.W.A.; Idris, A.; Abidin, Z.Z. Batch adsorption of basic dye using acid treated kenaf fibre char: Equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 2012, 181–182, 449–457. [Google Scholar] [CrossRef]
- Kornaros, M.; Lyberatos, G. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. J. Hazard. Mater. 2006, 136, 95–102. [Google Scholar] [CrossRef]
- Lee, J.W.; Choi, S.P.; Thiruvenkatachari, R.; Shim, W.G.; Moon, H. Submerged microfiltration membrane coupled with alum coagulation/powdered activated carbon adsorption for complete decolorization of reactive dyes. Water Res. 2006, 40, 435–444. [Google Scholar] [CrossRef]
- Selcuk, H. Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dye. Pigment. 2005, 64, 217–222. [Google Scholar] [CrossRef]
- Dutta, K.; Mukhopadhyay, S.; Bhattacharjee, S.; Chaudhuri, B. Chemical oxidation of methylene blue using a Fenton-like reaction. J. Hazard. Mater. 2001, 84, 57–71. [Google Scholar] [CrossRef]
- Buonomenna, M.G.; Gordano, A.; Golemme, G.; Drioli, E. Preparation, characterization and use of PEEKWC nanofiltration membranes for removal of Azur B dye from aqueous media. React. Funct. Polym. 2009, 69, 259–263. [Google Scholar] [CrossRef]
- Liu, C.H.; Wu, J.S.; Chiu, H.C.; Suen, S.Y.; Chu, K.H. Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers. Water Res. 2007, 41, 1491–1500. [Google Scholar] [CrossRef]
- Muruganandham, M.; Swaminathan, M. TiO2-UV photocatalytic oxidation of Reactive Yellow 14: Effect of operational parameters. J. Hazard. Mater. 2006, 135, 78–86. [Google Scholar] [CrossRef]
- Arami, M.; Limaee, N.Y.; Mahmoodi, N.M.; Tabrizi, N.S. Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull. J. Hazard. Mater. 2006, 135, 171–179. [Google Scholar] [CrossRef]
- Ai, L.; Jiang, J. Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene-carbon nanotube hybrid. Chem. Eng. J. 2012, 192, 156–163. [Google Scholar] [CrossRef]
- Siswoyo, E.; Qoniah, I.; Lestari, P.; Fajri, J.A.; Sani, R.A.; Sari, D.G.; Boving, T. Development of a floating adsorbent for cadmium derived from modified drinking water treatment plant sludge. Environ. Technol. Innov. 2019, 14, 100312. [Google Scholar] [CrossRef]
- Ren, X.; Chen, C.; Nagatsu, M.; Wang, X. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem. Eng. J. 2011, 170, 395–410. [Google Scholar] [CrossRef]
- Saleh, T.A.; Gondal, M.A.; Drmosh, Q.A.; Yamani, Z.H.; AL-yamani, A. Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nano particles on multiwall carbon nanotubes. Chem. Eng. J. 2011, 166, 407–412. [Google Scholar] [CrossRef]
- Saleh, T.A.; Gupta, V.K. Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J. Colloid Interface Sci. 2011, 362, 337–344. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2016, 306, 666–669. [Google Scholar]
- Jia, W.; Lu, S. Few-layered graphene oxides as superior adsorbents for the removal of Pb(II) ions from aqueous solutions. Korean J. Chem. Eng. 2014, 31, 1265–1270. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, N.; Yin, B. Preparation of sludge-based activated carbon and its application in dye wastewater treatment. J. Hazard. Mater. 2008, 153, 22–27. [Google Scholar] [CrossRef]
- Tang, S.; Zheng, C.; Zhang, Z. Effect of inherent minerals on sewage sludge pyrolysis: Product characteristics, kinetics and thermodynamics. Waste Manag. 2018, 80, 175–185. [Google Scholar] [CrossRef]
- Liu, C.; Tang, Z.; Chen, Y.; Su, S.; Jiang, W. Characterization of mesoporous activated carbons prepared by pyrolysis of sewage sludge with pyrolusite. Bioresour. Technol. 2010, 101, 1097–1101. [Google Scholar] [CrossRef]
- de Souza Macedo, J.; da Costa Júnior, N.B.; Almeida, L.E.; da Silva Vieira, E.F.; Cestari, A.R.; de Fátima Gimenez, I.; Carreño, N.L.V.; Barreto, L.S. Kinetic and calorimetric study of the adsorption of dyes on mesoporous activated carbon prepared from coconut coir dust. J. Colloid Interface Sci. 2006, 298, 515–522. [Google Scholar] [CrossRef]
- Zhang, W.; Mao, S.; Chen, H.; Huang, L.; Qiu, R. Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions. Bioresour. Technol. 2013, 147, 545–552. [Google Scholar] [CrossRef]
- Calvete, T.; Lima, E.C.; Cardoso, N.F.; Vaghetti, J.C.P.; Dias, S.L.P.; Pavan, F.A. Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: Kinetic, equilibrium, and thermodynamic studies. J. Environ. Manag. 2010, 91, 1695–1706. [Google Scholar] [CrossRef]
- Gomes, S.C.; Zhou, J.L.; Li, W.; Long, G. Progress in manufacture and properties of construction materials incorporating water treatment sludge: A review. Resour. Conserv. Recycl. 2019, 145, 148–159. [Google Scholar] [CrossRef]
- Rozada, F.; Calvo, L.F.; García, A.I.; Martín-Villacorta, J.; Otero, M. Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems. Bioresour. Technol. 2003, 87, 221–230. [Google Scholar] [CrossRef]
- Gobi, K.; Mashitah, M.D.; Vadivelu, V.M. Adsorptive removal of Methylene Blue using novel adsorbent from palm oil mill effluent waste activated sludge: Equilibrium, thermodynamics and kinetic studies. Chem. Eng. J. 2011, 171, 1246–1252. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 2009, 150, 366–373. [Google Scholar] [CrossRef]
- Fan, S.; Wang, Y.; Wang, Z.; Tang, J.; Tang, J.; Li, X. Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. J. Environ. Chem. Eng. 2017, 5, 601–611. [Google Scholar] [CrossRef]
- Ribas, M.C.; Adebayo, M.A.; Prola, L.D.T.; Lima, E.C.; Cataluña, R.; Feris, L.A.; Puchana-Rosero, M.J.; Machado, F.M.; Pavan, F.A.; Calvete, T. Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions. Chem. Eng. J. 2014, 248, 315–326. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Rozada, F.; Otero, M.; García, A.I.; Morán, A. Application in fixed-bed systems of adsorbents obtained from sewage sludge and discarded tyres. Dye. Pigment. 2007, 72, 47–56. [Google Scholar] [CrossRef]
Sample | SBET (BET Surface Area) (m2 g−1) | Total Pore Volume (cm3) | Average Pore Diameter (nm) | Specific Mass (g) |
---|---|---|---|---|
AC | 101.9 | 0.108 | 3.241 | 2.5231 ± 0.0014 |
ASC | 100.3 | 0.271 | 10.81 | 2.7315 ± 0.0016 |
Models | Pseudo First Order | Pseudo Second Order | Intraparticle Diffusion | Elovich |
---|---|---|---|---|
Adsorbent—AC | ||||
Parameters | qe = 1.41 | qe = 1.56 | k = 0.15 | a = 4.607 |
k1 = 0.377 | k2 = 0.297 | C = 0.539 | b = 5.66 | |
R2 | 0.8646 | 0.9270 | 0.7307 | 0.9659 |
X2 | 0.0347 | 0.0187 | 0.0690 | 0.0087 |
ARE (%) | 11.06 | 8.10 | 10.39 | 5.56 |
102.15 | 203.19 | 43.42 | 453.11 | |
F(R,r) | 4.49 | 4.49 | 4.49 | 4.49 |
12.26 | 6.02 | 25.65 | 2.13 | |
F(faj,ep) | 3.29 | 3.29 | 3.29 | 3.29 |
Adsorbent—ASC | ||||
Parameters | qe = 1.66 | qe = 1.72 | k = 0.13 | a = 9.321 |
k1 = 0.789 | k2 = 0.923 | C = 0.865 | b = 20,282.70 | |
R2 | 0.9735 | 0.9897 | 0.5018 | 0.9935 |
X2 | 0.0082 | 0.0037 | 0.1548 | 0.0025 |
ARE (%) | 4.55 | 2.55 | 12.48 | 2.16 |
MQR/MQr | 586.77 | 1542.69 | 16.09 | 2390.51 |
F(R,r) | 4.49 | 4.49 | 4.49 | 4.49 |
MQfaj/MQep | 6.62 | 1.77 | 147.21 | 0.69 |
F(faj,ep) | 3.29 | 3.29 | 3.29 | 3.29 |
Models | Langmuir | Sips |
---|---|---|
Adsorbent—AC | ||
qmax = 6.56 | qmax = 6.30 | |
Parameters | KL = 0.4877 | KS = 0.4067 |
m = 0.4678 | ||
R2 | 0.9025 | 0.9268 |
X2 | 0.8898 | 0.7319 |
ARE (%) | 23.14 | 18.12 |
MQR/MQr | 110.64 | 69.01 |
F(R,r) | 4.75 | 3.98 |
MQfaj/MQep | 1.17 | 1.64 |
F(faj,ep) | 3.97 | 4.12 |
Adsorbent—ASC | ||
qmax = 13.79 | qmax = 18.86 | |
Parameters | KL = 0.3398 | KS = 0.2253 |
m = 1.3089 | ||
R2 | 0.9638 | 0.9775 |
X2 | 0.6052 | 0.4858 |
ARE (%) | 14.60 | 16.14 |
MQR/MQr | 373.70 | 281.76 |
F(R,r) | 4.60 | 3.80 |
MQfaj/MQep | 2.21 | 2.64 |
F(faj,ep) | 3.58 | 3.69 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valério Filho, A.; Xavaré Kulman, R.; Vaz Tholozan, L.; Felkl de Almeida, A.R.; Silveira da Rosa, G. Preparation and Characterization of Activated Carbon Obtained from Water Treatment Plant Sludge for Removal of Cationic Dye from Wastewater. Processes 2020, 8, 1549. https://doi.org/10.3390/pr8121549
Valério Filho A, Xavaré Kulman R, Vaz Tholozan L, Felkl de Almeida AR, Silveira da Rosa G. Preparation and Characterization of Activated Carbon Obtained from Water Treatment Plant Sludge for Removal of Cationic Dye from Wastewater. Processes. 2020; 8(12):1549. https://doi.org/10.3390/pr8121549
Chicago/Turabian StyleValério Filho, Alaor, Raíssa Xavaré Kulman, Luana Vaz Tholozan, André Ricardo Felkl de Almeida, and Gabriela Silveira da Rosa. 2020. "Preparation and Characterization of Activated Carbon Obtained from Water Treatment Plant Sludge for Removal of Cationic Dye from Wastewater" Processes 8, no. 12: 1549. https://doi.org/10.3390/pr8121549
APA StyleValério Filho, A., Xavaré Kulman, R., Vaz Tholozan, L., Felkl de Almeida, A. R., & Silveira da Rosa, G. (2020). Preparation and Characterization of Activated Carbon Obtained from Water Treatment Plant Sludge for Removal of Cationic Dye from Wastewater. Processes, 8(12), 1549. https://doi.org/10.3390/pr8121549