Apple Pomace as a Functional and Healthy Ingredient in Food Products: A Review
Abstract
:1. Introduction
2. Composition and Nutritional Value of Apple Pomace
3. Use of Apple Pomace as a Functional Ingredient in Food Products
3.1. Bakery Products
3.1.1. Bread
3.1.2. Sweet Bakery Products (Cakes, Including Scones and Muffins)
3.1.3. Brittle Bakery Products (Cookies and Crackers)
3.2. Extruded Food Products
3.3. Meat Products
3.4. Confectionery Products
3.5. Dairy Products
4. Apple Pomace as a Substrate for Food and Beverage Manufacturing
4.1. Using Apple Pomace in Alcoholic Beverages Production
4.2. Apple Pomace as a Substrate for Edible Mushroom Production
4.3. Miscellaneous Use and other Potential Application of Apple Pomace
5. Major Functional Ingredients and Bioactives that can be Extracted from Apple Pomace
5.1. Pectin
5.2. Phenol
5.3. Fiber
6. Health Hazards Related to Apple Pomace Consumption
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Musacchi, S.; Serra, S. Apple Fruit Quality: Overview on Pre-Harvest Factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Forsline, P.L.; Aldwinckle, H.S.; Dickson, E.E.; Luby, J.J.; Hokanson, S.C. Collection, Maintenance, Characterization, and Utilization of Wild Apples of Central Asia. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: Oxford, UK, 2010. [Google Scholar]
- FAOSTAT. Available online: http://www.fao.org/faostat/zh/#data/QC/visualize (accessed on 18 March 2019).
- Shashi, B.; Kalpana, K.; Madhu, S.; Bikram, S.; Ahuja, P.S. Processing of Apple Pomace for Bioactive Molecules. Crit. Rev. Biotechnol. 2008, 28, 285–296. [Google Scholar]
- Shalini, R.; Gupta, D.K. Utilization of Pomace from Apple Processing Industries: A Review. J. Food Sci. Technol. 2010, 47, 365–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kammerer, D.R.; Kammerer, J.; Valet, R.; Carle, R. Recovery of Polyphenols from the By-Products of Plant Food Processing and Application as Valuable Food Ingredients. Food Res. Int. 2014, 65, 2–12. [Google Scholar] [CrossRef]
- Vendruscolo, F.; Albuquerque, P.M.; Streit, F.; Esposito, E.; Ninow, J.L. Apple Pomace: A Versatile Substrate for Biotechnological Applications. Crit. Rev. Biotechnol. 2008, 28, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Perussello, C.A.; Zhang, Z.; Marzocchella, A.; Tiwari, B.K. Valorization of Apple Pomace by Extraction of Valuable Compounds. Compr. Rev. Food Sci. Food Saf. 2017, 16, 776–796. [Google Scholar] [CrossRef] [Green Version]
- Singha, P.; Muthukumarappan, K. Single Screw Extrusion of Apple Pomace-Enriched Blends: Extrudate Characteristics and Determination of Optimum Processing Conditions. Food Sci. Technol. Int. 2018, 24, 447–462. [Google Scholar] [CrossRef]
- Shah, G.H.; Masoodi, F.A. Studies on the Utilization of Wastes from Apple Processing Plants. Indian Food Pack. 1994, 48, 47. [Google Scholar]
- Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of Vegetable Waste into Value Added Products: (A) the Upgrading Concept; (B) Practical Implementations. Bioresour. Technol. 2003, 87, 167–198. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Fang, Z.; Wang, X.; Bu, H. Enhanced Bio-Hydrogen Production by Anaerobic Fermentation of Apple Pomace with Enzyme Hydrolysis. Int. J. Hydrog. Energy 2010, 35, 8303–8309. [Google Scholar] [CrossRef]
- Endreß, H.U. High Quality Resulting from Product Integrated Environment Protection-PIUS. Fruit Process. 2000, 10, 273–277. [Google Scholar]
- Pirmohammadi, R.; Rouzbehan, Y.; Rezayazdi, K.; Zahedifar, M. Chemical Composition, Digestibility and in Situ Degradability of Dried and Ensiled Apple Pomace and Maize Silage. Small Rumin. Res. 2006, 66, 150–155. [Google Scholar] [CrossRef]
- Takahashi, J.; Mori, T. Hydrogen Production from Reaction of Apple Pomace with Water over Commercial Steam Reforming Ni Catalysts. J. Jpn. Pet. Inst. 2006, 49, 262–267. [Google Scholar] [CrossRef]
- Roberts, J.S.; Gentry, T.S.; Bates, A.W. Utilization of Dried Apple Pomace as a Press Aid to Improve the Quality of Strawberry, Raspberry, and Blueberry Juices. J. Food Sci. 2004, 69, 181–190. [Google Scholar] [CrossRef]
- Gómez, M.; Martinez, M.M. Fruit and Vegetable By-Products as Novel Ingredients to Improve the Nutritional Quality of Baked Goods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2119–2135. [Google Scholar] [CrossRef]
- Grigelmo-Miguel, N.; Martín-Belloso, O. Comparison of Dietary Fibre from By-Products of Processing Fruits and Greens and from Cereals. LWT-Food Sci. Technol. 1999, 32, 503–508. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. The Effect of Apple Pomace on the Texture, Rheology and Microstructure of Set Type Yogurt. Food Hydrocoll. 2019, 91, 83–91. [Google Scholar] [CrossRef]
- Jin, H.; Kim, H.S.; Kim, S.K.; Shin, M.K.; Kim, J.H.; Lee, J.W. Production of Heteropolysaccharide-7 by Beijerinckia Indica from Agro-Industrial Byproducts. Enzym. Microb. Technol. 2002, 30, 822–827. [Google Scholar] [CrossRef]
- Jannati, N.; Hojjatoleslamy, M.; Hosseini, E.; Mozafari, H.R.; Siavoshi, M. Effect of Apple Pomace Powder on Rheological Properties of Dough and Sangak Bread Texture. Carpathian J. Foof Sci. Technol. 2018, 10, 77–84. [Google Scholar]
- Ktenioudaki, A.; O’Shea, N.; Gallagher, E. Rheological Properties of Wheat Dough Supplemented with Functional By-Products of Food Processing: Brewer’s Spent Grain and Apple Pomace. J. Food Eng. 2013, 116, 362–368. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Brar, S.K. Perspective of Apple Processing Wastes as Low-Cost Substrates for Bioproduction of High Value Products: A Review. Renew. Sustain. Energy Rev. 2013, 27, 789–805. [Google Scholar] [CrossRef]
- Will, F.; Olk, M.; Hopf, I.; Dietrich, H. Characterization of Polyphenol Extracts from Apple Juice. Dtsch. Lebensm.-Rundsch. 2006, 102, 297–302. [Google Scholar]
- Lu, Y.; Foo, L.Y. Antioxidant and Radical Scavenging Activities of Polyphenols from Apple Pomace. Food Chem. 2000, 68, 81–85. [Google Scholar] [CrossRef]
- Schieber, A.; Hilt, P.; Conrad, J.; Beifuss, U.; Carle, R. Elution Order of Quercetin Glycosides from Apple Pomace Extracts on a New HPLC Stationary Phase with Hydrophilic Endcapping. J. Sep. Sci. 2002, 25, 361–364. [Google Scholar] [CrossRef]
- Masoodi, F.A.; Chauhan, G.S. Use of Apple Pomace as a Source of Dietary Fiber in Wheat Bread. J. Food Process. Preserv. 1998, 22, 255–263. [Google Scholar] [CrossRef]
- Wang, H.J.; Thomas, R.L. Direct Use of Apple Pomace in Bakery Products. J. Food Sci. 1989, 54, 618–620. [Google Scholar] [CrossRef]
- Jung, J.; Cavender, G.; Zhao, Y. Impingement Drying for Preparing Dried Apple Pomace Flour and Its Fortification in Bakery and Meat Products. J. Food Sci. Technol. 2015, 52, 5568–5578. [Google Scholar] [CrossRef] [PubMed]
- Sudha, M.L.; Baskaran, V.; Leelavathi, K. Apple Pomace as a Source of Dietary Fiber and Polyphenols and Its Effect on the Rheological Characteristics and Cake Making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Sudha, M.L.; Dharmesh, S.M.; Pynam, H.; Bhimangouder, S.V.; Eipson, S.W.; Somasundaram, R.; Nanjarajurs, S.M. Antioxidant and Cyto/DNA Protective Properties of Apple Pomace Enriched Bakery Products. J. Food Sci. Technol. 2016, 53, 1909–1918. [Google Scholar] [CrossRef] [Green Version]
- Martins, Z.E.; Pinho, O.; Ferreira, I.M.P.L.V.O. Food Industry By-Products Used as Functional Ingredients of Bakery Products. Trends Food Sci. Technol. 2017, 67, 106–128. [Google Scholar] [CrossRef]
- Masoodi, F.A.; Sharma, B.; Chauhan, G.S. Use of Apple Pomace as a Source of Dietary Fiber in Cakes. Plant Foods Hum. Nutr. 2002, No. 57, 121–128. [Google Scholar] [CrossRef]
- Reis, S.F.; Rai, D.K.; Abu-Ghannam, N. Apple Pomace as a Potential Ingredient for the Development of New Functional Foods. Int. J. Food Sci. Technol. 2014, 49, 1743–1750. [Google Scholar] [CrossRef]
- Lauková, M.; Kohajdová, Z.; Karovičová, J. Effect of Hydrated Apple Powder on Dough Rheology and Cookies Quality. Potravinarstvo 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Kohajdová, Z.; Karovičová, J.; Magala, M.; Kuchtová, V. Effect of Apple Pomace Powder Addition on Farinographic Properties of Wheat Dough and Biscuits Quality. Chem. Pap. 2014, 68, 1059–1065. [Google Scholar] [CrossRef]
- De Toledo, N.M.V.; Nunes, L.P.; da Silva, P.P.M.; Spoto, M.H.F.; Canniatti-Brazaca, S.G. Influence of Pineapple, Apple and Melon By-Products on Cookies: Physicochemical and Sensory Aspects. Int. J. Food Sci. Technol. 2017, 52, 1185–1192. [Google Scholar] [CrossRef]
- Alongi, M.; Melchior, S.; Anese, M. Reducing the Glycemic Index of Short Dough Biscuits by Using Apple Pomace as a Functional Ingredient. LWT-Food Sci. Technol. 2019, 100, 300–305. [Google Scholar] [CrossRef]
- Mir, S.A.; Bosco, S.J.D.; Shah, M.A.; Santhalakshmy, S.; Mir, M.M. Effect of Apple Pomace on Quality Characteristics of Brown Rice Based Cracker. J. Saudi Soc. Agric. Sci. 2017, 16, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Stojceska, V.; Ainsworth, P.; Plunkett, A.; İbanoğlu, Ş. The Advantage of Using Extrusion Processing for Increasing Dietary Fibre Level in Gluten-Free Products. Food Chem. 2010, 121, 156–164. [Google Scholar] [CrossRef]
- Karkle, E.L.; Alavi, S.; Dogan, H. Cellular Architecture and Its Relationship with Mechanical Properties in Expanded Extrudates Containing Apple Pomace. Food Res. Int. 2012, 46, 10–21. [Google Scholar] [CrossRef]
- O’Shea, N.; Arendt, E.; Gallagher, E. Enhancing an Extruded Puffed Snack by Optimising Die Head Temperature, Screw Speed and Apple Pomace Inclusion. Food Bioprocess Technol. 2014, 7, 1767–1782. [Google Scholar] [CrossRef]
- Masli, M.D.P.; Gu, B.J.; Rasco, B.A.; Ganjyal, G.M. Fiber-Rich Food Processing Byproducts Enhance the Expansion of Cornstarch Extrudates. J. Food Sci. 2018, 83, 2500–2510. [Google Scholar] [CrossRef] [PubMed]
- Ačkar, Đ.; Jozinović, A.; Babić, J.; Miličević, B.; Panak Balentić, J.; Šubarić, D. Resolving the Problem of Poor Expansion in Corn Extrudates Enriched with Food Industry By-Products. Innov. Food Sci. Emerg. Technol. 2018, 47, 517–524. [Google Scholar] [CrossRef]
- Lohani, U.C.; Muthukumarappan, K. Process Optimization for Antioxidant Enriched Sorghum Flour and Apple Pomace Based Extrudates Using Liquid CO 2 Assisted Extrusion. LWT-Food Sci. Technol. 2017, 86, 544–554. [Google Scholar] [CrossRef]
- Huda, A.B.; Parveen, S.; Rather, S.A.; Akthter, R.; Hassan, M. Effect of Incorporation of Apple Pomace on the Physico-Chemical, Sensory and Textural Properties of Mutton Nuggets. Int. J. Adv. Res. 2014, 2, 11. [Google Scholar]
- Rather, S.A.; Akhter, R.; Masoodi, F.A.; Gani, A.; Wani, S.M. Utilization of Apple Pomace Powder as a Fat Replacer in Goshtaba: A Traditional Meat Product of Jammu and Kashmir, India. J. Food Meas. Charact. 2015, 9, 389–399. [Google Scholar] [CrossRef]
- Yadav, S.; Malik, A.; Sharma, D.; Islam, R.U.; Pathera, A. Development of Dietary Fibre Enriched Chicken Sausages by Incorporating Corn Bran, Dried Apple Pomace and Dried Tomato Pomace. Nutr. Food Sci. 2016, 46, 16–29. [Google Scholar] [CrossRef]
- Verma, A.K.; Sharma, B.D.; Banerjee, R. Effect of Sodium Chloride Replacement and Apple Pulp Inclusion on the Physico-Chemical, Textural and Sensory Properties of Low Fat Chicken Nuggets. LWT Food Sci. Technol. 2010, 43, 715–719. [Google Scholar] [CrossRef]
- Younis, K.; Ahmad, S. Quality Evaluation of Buffalo Meat Patties Incorporated with Apple Pomace Powder. Buffalo Bull. 2018, 37, 389–401. [Google Scholar]
- Younis, K.; Ahmad, S. Waste Utilization of Apple Pomace as a Source of Functional Ingredient in Buffalo Meat Sausage. Cogent Food Agric. 2015, 1, 1119397. [Google Scholar] [CrossRef]
- Royer, G.; Madieta, E.; Symoneaux, R.; Jourjon, F. Preliminary Study of the Production of Apple Pomace and Quince Jelly. LWT Food Sci. Technol. 2006, 39, 1022–1025. [Google Scholar] [CrossRef]
- Hussein, A.M.S.; Kamil, M.M.; Hegazy, N.A.; Mahmoud, K.F.; Ibrahim, M.A. Utilization of Some Fruits and Vegetables By-Products to Produce High Dietary Fiber Jam. Food Sci. Qual. Manag. 2015, 37, 39–45. [Google Scholar]
- Wang, X. Exploring the Potential of Apple Pomace as a Functional Ingredient in Yogurt. Master’s Thesis, The University of Guelph, Guelph, ON, Canada, 2018. [Google Scholar]
- Hang, Y.D.; Lee, C.Y.; Woodams, E.E.; Cooley, H.J. Production of Alcohol from Apple Pomace. Appl. Environ. Microbiol. 1981, 42, 1128–1129. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, A.; Santos, L.D.; Paganini, C.; Wosiacki, G. Evaluation of the Alcoholic Fermentation of Aqueous Extract of the Apple Pomace. Semin. Ciênc. Agrár. 2005, 26, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Hang, Y.D.; Lee, C.Y.; Woodams, E.E. A Solid State Fermentation System for Production of Ethanol from Apple Pomace. J. Food Sci. 1982, 47, 1851–1852. [Google Scholar] [CrossRef]
- Ngadi, M.O.; Correia, L.R. Kinetics of Solid-State Ethanol Fermentation from Apple Pomace. J. Food Eng. 1992, 17, 97–116. [Google Scholar] [CrossRef]
- Kaur, M. Microbial Transformation of Apple Pomace to Recover Industrial Products. Masters’ Thesis, Punjab University, Lahore, Pakistan, 1989. [Google Scholar]
- Magyar, M.; da Costa Sousa, L.; Jin, M.; Sarks, C.; Balan, B. Conversion of Apple Pomace Waste to Ethanol at Industrial Relevant Conditions. Appl. Microbiol. Biotechnol. 2016, 100, 7349–7358. [Google Scholar] [CrossRef]
- Li, S.; Nie, Y.; Ding, Y.; Zhao, J.; Tang, X. Effects of Pure and Mixed Koji Cultures with Saccharomyces Cerevisiae on Apple Homogenate Cider Fermentation. J. Food Process. Preserv. 2015, 39, 2421–2430. [Google Scholar] [CrossRef]
- Madrera, R.R.; Bedriñana, R.P.; Hevia, A.G.; Arce, M.B.; Valles, B.S. Production of Spirits from Dry Apple Pomace and Selected Yeasts. Food Bioprod. Process. Trans. Inst. Chem. Eng. Part C 2013, 91, 623–631. [Google Scholar] [CrossRef]
- Worrall, J.J.; Yang, C.S. Shiitake and Oyster Mushroom Production on Apple Pomace and Sawdust. HortScience 1992, 27, 1131–1133. [Google Scholar] [CrossRef]
- Park, Y.J.; Park, H.R.; Kim, S.R.; Yoon, D.E.; Son, E.S.; Kwon, O.C.; Han, W.; Lee, C.S. Apple Pomace Increases Mycelial Growth of Pleurotus Ostreatus. Afr. J. Microbiol. Res. 2012, 6, 1075–1078. [Google Scholar]
- Park, Y.J.; Yoon, D.E.; Kim, H.ll; Kwon, O.C.; Yoo, Y.B.; Kong, W.S.; Lee, C.S. Overproduction of Laccase by the White-Rot Fungus Pleurotus Ostreatus Using Apple Pomace as Inducer. Mycobiology 2014, 42, 193–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrera, R.R.; Bedriñana, R.P.; Valles, B.S. Production and Characterization of Aroma Compounds from Apple Pomace by Solid-State Fermentation with Selected Yeasts. LWT Food Sci. Technol. 2015, 64, 1342–1353. [Google Scholar] [CrossRef]
- Huc-Mathis, D.; Journet, C.; Fayolle, N.; Bosc, V. Emulsifying Properties of Food By-Products: Valorizing Apple Pomace and Oat Bran. Colloids Surf. Physicochem. Eng. Asp. 2019, 568, 84–91. [Google Scholar] [CrossRef]
- Bartkiene, E.; Vizbickiene, D.; Bartkevics, V.; Pugajeva, I.; Krungleviciute, V.; Zadeike, D.; Zavistanaviciute, P.; Juodeikiene, G. Application of Pediococcus Acidilactici LUHS29 Immobilized in Apple Pomace Matrix for High Value Wheat-Barley Sourdough Bread. LWT Food Sci. Technol. 2017, 83, 157–164. [Google Scholar] [CrossRef]
- Min, B.; Bae, I.Y.; Lee, H.G.; Yoo, S.H.; Lee, S. Utilization of Pectin-Enriched Materials from Apple Pomace as a Fat Replacer in a Model Food System. Bioresour. Technol. 2010, 101, 5414–5418. [Google Scholar] [CrossRef] [PubMed]
- Benvenutti, L.; Bortolini, D.G.; Nogueira, A.; Zielinski, A.A.F.; Alberti, A. Effect of Addition of Phenolic Compounds Recovered from Apple Pomace on Cider Quality. LWT Food Sci. Technol. 2019, 100, 348–354. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, Y.B.; Hwang, K.E.; Song, D.H.; Ham, Y.K.; Kim, H.W.; Sung, J.M.; Kim, C.J. Effect of Apple Pomace Fiber and Pork Fat Levels on Quality Characteristics of Uncured, Reduced-Fat Chicken Sausages. Poult. Sci. 2016, 95, 1465–1471. [Google Scholar] [CrossRef]
- Barreira, J.C.; Arraibi, A.A.; Ferreira, I.C. Bioactive and Functional Compounds in Apple Pomace from Juice and Cider Manufacturing: Potential Use in Dermal Formulations. Trends Food Sci. Technol. 2019, 90, 76–87. [Google Scholar] [CrossRef]
- Othman, S.B.; Jõudu, I.; Bhat, R. Bioactives From Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef] [Green Version]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-Products of Plant Food Processing as a Source of Functional Compounds—Recent Developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Willats, W.G.; Knox, J.P.; Mikkelsen, J.D. Pectin: New Insights into an Old Polymer Are Starting to Gel. Trends Food Sci. Technol. 2006, 17, 97–104. [Google Scholar] [CrossRef]
- Wikiera, A.; Mika, M.; Starzyńska-Janiszewska, A.; Stodolak, B. Development of Complete Hydrolysis of Pectins from Apple Pomace. Food Chem. 2015, 172, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Wikiera, A.; Mika, M.; Starzyńska-Janiszewska, A.; Stodolak, B. Endo-Xylanase and Endo-Cellulase-Assisted Extraction of Pectin from Apple Pomace. Carbohydr. Polym. 2016, 142, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Adetunji, L.R.; Adekunle, A.; Orsat, V.; Raghavan, V. Advances in the Pectin Production Process Using Novel Extraction Techniques: A Review. Food Hydrocoll. 2017, 62, 239–250. [Google Scholar] [CrossRef]
- Orzua, M.C.; Mussatto, S.I.; Contreras-Esquivel, J.C.; Rodriguez, R.; de la Garza, H.; Teixeira, J.A.; Aguilar, C.N. Exploitation of Agro Industrial Wastes as Immobilization Carrier for Solid-State Fermentation. Ind. Crops Prod. 2009, 30, 24–27. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, Q.; Lü, X. Pectin Extracted from Apple Pomace and Citrus Peel by Subcritical Water. Food Hydrocoll. 2014, 38, 129–137. [Google Scholar] [CrossRef]
- Lohani, U.C.; Muthukumarappan, K. Application of the Pulsed Electric Field to Release Bound Phenolics in Sorghum Flour and Apple Pomace. Innov. Food Sci. Emerg. Technol. 2016, 35, 29–35. [Google Scholar] [CrossRef]
- Schieber, A.; Hilt, P.; Streker, P.; Endreß, H.U.; Rentschler, C.; Carle, R. A New Process for the Combined Recovery of Pectin and Phenolic Compounds from Apple Pomace. Innov. Food Sci. Emerg. Technol. 2003, 4, 99–107. [Google Scholar] [CrossRef]
- Rana, S.; Gupta, S.; Rana, A.; Bhushan, S. Functional Properties, Phenolic Constituents and Antioxidant Potential of Industrial Apple Pomace for Utilization as Active Food Ingredient. Food Sci. Hum. Wellness 2015, 4, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Alberti, A.; Zielinski, A.A.F.; Zardo, D.M.; Demiate, I.M.; Nogueira, A.; Mafra, L.I. Optimisation of the Extraction of Phenolic Compounds from Apples Using Response Surface Methodology. Food Chem. 2014, 149, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Wijngaard, H.H.; Brunton, N. The Optimisation of Solid–Liquid Extraction of Antioxidants from Apple Pomace by Response Surface Methodology. J. Food Eng. 2010, 96, 134–140. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A.; Kolniak, J. Effect of Pectinase Treatment on Extraction of Antioxidant Phenols from Pomace, for the Production of Puree-Enriched Cloudy Apple Juices. Food Chem. 2011, 127, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Valéro, J.R. Solid-State Fermentation of Apple Pomace Using Phanerocheate Chrysosporium–Liberation and Extraction of Phenolic Antioxidants. Food Chem. 2011, 126, 1071–1080. [Google Scholar] [CrossRef]
- Bai, X.; Yue, T.; Yuan, Y.; Zhang, H. Optimization of Microwave-Assisted Extraction of Polyphenols from Apple Pomace Using Response Surface Methodology and HPLC Analysis. J. Sep. Sci. 2010, 33, 3751–3758. [Google Scholar] [CrossRef]
- Issar, K.; Sharma, P.C.; Gupta, A. Utilization of Apple Pomace in the Preparation of Fiber-Enriched Acidophilus Yoghurt. J. Food Process. Preserv. 2017, 41, e13098. [Google Scholar] [CrossRef]
- Choi, Y.S.; Choi, J.H.; Han, D.J.; Kim, H.Y.; Lee, M.A.; Kim, H.W.; Jeong, J.Y.; Kim, C.J. Characteristics of Low-Fat Meat Emulsion Systems with Pork Fat Replaced by Vegetable Oils and Rice Bran Fiber. Meat Sci. 2009, 82, 266–271. [Google Scholar] [CrossRef]
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.-M.; Tou, J.C. A Comprehensive Analysis of the Composition, Health Benefits, and Safety of Apple Pomace. Nutr. Rev. 2018, 76, 893–909. [Google Scholar] [CrossRef]
- Opyd, P.M.; Jurgoński, A.; Juśkiewicz, J.; Milala, J.; Zduńczyk, Z.; Król, B. Nutritional and Health-Related Effects of a Diet Containing Apple Seed Meal in Rats: The Case of Amygdalin. Nutrients 2017, 9, 1091. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Tao, L.; McLean, J.; Lu, C. Quantitative Analysis of Neonicotinoid Insecticide Residues in Foods: Implication for Dietary Exposures. J. Agric. Food Chem. 2014, 62, 6082–6090. [Google Scholar] [CrossRef]
- Liu, S.; Che, Z.; Chen, G. Multiple-Fungicide Resistance to Carbendazim, Diethofencarb, Procymidone, and Pyrimethanil in Field Isolates of Botrytis Cinerea from Tomato in Henan Province, China. Crop Prot. 2016, 84, 56–61. [Google Scholar] [CrossRef]
- Environmental Protection Agency. US EPA—Pesticides—Fact Sheet for Thiophanate-methyl. Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-102001_1-Nov-04.pdf (accessed on 29 February 2020).
- Maiti, B.; Desai, S.R.; Krishnamoorthy, T.S. Determination of Naphthaleneacetic Acid Residue in Apples by High-Performance Liquid Chromatography. Analyst 1988, 113, 667–668. [Google Scholar] [CrossRef] [PubMed]
- Lozowicka, B. Health Risk for Children and Adults Consuming Apples with Pesticide Residue. Sci. Total Environ. 2015, 502, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency. Reregistration Eligibility Decision (RED): Naphthaleneacetic Acid, Its Salts, Ester, and Acetamide. Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/red_G-91_26-May-04.pdf (accessed on 29 February 2020).
- Environmental Protection Agency. US EPA—Pesticides—Fact Sheet for Diphenylamine. Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-038501_10-Apr-98.pdf (accessed on 29 February 2020).
Country | Quantity (Metric Tons) | Ref. |
---|---|---|
Brazil | 800,000 | [7] |
China | 1,000,000 | [12] |
Germany | 250,000 | [13] |
India | 1,000,000 | [5] |
Iran | 97,000 | [14] |
Japan | 160,000 | [15] |
United States | 27,000 | [16] |
Composition (%) 1 | Wang et al. (2019) [19] | Jin et al. (2002) [20] | Jannati et al. (2018) [21] | Ktenioudaki et al. (2013) [22] |
---|---|---|---|---|
Moisture | 4.4 | 5.8 | 10.5 | 7.1 |
Protein | 3.8 | 4.7 | 1.2 | 2.4 |
Lipids | 3.8 | 4.2 | 0.6 | 2.7 |
Total Dietary Fiber | 26.5 | NR 2 | 14.5 | 42.5 |
Ash | 1.8 | 1.5 | 2.5 | 1.7 |
Carbohydrates | 45.1 | 83.8 | NR 2 | NR 2 |
Class | Concentration (mg/kg dry weight basis) | Major Compounds | Bioactivity and Therapeutic Potential |
---|---|---|---|
Carbohydrates | Data not available | Pectin and pectin oligosaccharides | Soluble viscous fermentable fiber/dietary fiber, potential prebiotic properties and hypo-cholesterolemic effects |
Phenolic acids | 523–1542 | Chlorogenic acid, caffeic acid, ferulic acid, p-coumaric acid sinapic acid, p-coumaroyl-quinic acid | Antioxidant, antimicrobial, anti- inflammatory, anticancer and cardio-protective effects |
Flavonoids | 2153–3734 | Isorhamnetin, kaempferol, guercetin, rhamnetin, glycoconjugates, procyanidinB2, epicatechin | |
Anthocyanins | 50–130 | Cyanidin-3-O-galactoside | |
Dihydrochalcones | 688–2535 | Phlorizin, phloretein | Antidiabetic, potential in treating obesity, promoting bone-forming, blastogenesis |
Triterpenoids | Data not available | Ursolic acid, oleanolic acid | Antimicrobial and anti- inflammatory effects |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple Pomace as a Functional and Healthy Ingredient in Food Products: A Review. Processes 2020, 8, 319. https://doi.org/10.3390/pr8030319
Lyu F, Luiz SF, Azeredo DRP, Cruz AG, Ajlouni S, Ranadheera CS. Apple Pomace as a Functional and Healthy Ingredient in Food Products: A Review. Processes. 2020; 8(3):319. https://doi.org/10.3390/pr8030319
Chicago/Turabian StyleLyu, Fengzhi, Selma F. Luiz, Denise Rosane Perdomo Azeredo, Adriano G. Cruz, Said Ajlouni, and Chaminda Senaka Ranadheera. 2020. "Apple Pomace as a Functional and Healthy Ingredient in Food Products: A Review" Processes 8, no. 3: 319. https://doi.org/10.3390/pr8030319