Effect of Hydraulic Retention Time on Anaerobic Baffled Reactor Operation: Enhanced Biohydrogen Production and Enrichment of Hydrogen-producing Acetogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. ABR Configuration and Setup
2.2. Inoculated Sludge and NMWW
2.3. Analytical Methods
3. Results
3.1. Biomass and Morphology of AnAS
3.2. Biogas Production Characteristics of ABR
3.2.1. Biogas Production in Compartment I
3.2.2. Biogas Production in Compartment II
3.2.3. Biogas Production in Compartment III
3.2.4. Biogas Production in Compartment IV
3.2.5. Comparison of Biogas Production Rate in Each Compartment
3.3. Characteristics of Fermentation Products of ABR
3.3.1. Fermentation Products in Compartment I
3.3.2. Fermentation Products in Compartment II
3.3.3. Fermentation Products in Compartment III
3.3.4. Fermentation Products in Compartment IV
3.3.5. Comparison of Fermentation Products in Each Compartment
3.4. Variations in pH, Alkalinity, and COD
3.4.1. Variations in pH and Alkalinity
3.4.2. Relationship between COD Removal and Biohydrogen Production Efficiency
4. Discussion
4.1. Effect of Biomass on Biohydrogen Production Efficiency
4.2. Enrichment of HPA and Biohydrogen Production Efficiency of ABR
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gokcek, O.B.; Sarioglu, M. Anaerobic treatment of the mixture of automotive industry and molasses wastewater for different organic loading rates in an upflow anaerobic sludge blanket (UASB) reactor. Desalin. Water Treat. 2018, 105, 83–91. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zheng, G.; Du, G.; Li, J. Bioaugmentation with Mixed Hydrogen-Producing Acetogen Cultures Enhances Methane Production in Molasses Wastewater Treatment. Archaea 2018, 2018, 4634898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.; Zhao, Y.; Li, T.; Huang, L.; Zhao, P.; Xu, J.; Ma, H.; Yu, X. Enhancement of lipid production and nutrient removal of Monoraphidium sp. FXY-10 by combined melatonin and molasses wastewater treatment. J. Taiwan Inst. Chem. Eng. 2019, 99, 123–131. [Google Scholar] [CrossRef]
- Ma, C.; Wen, H.; Xing, D.; Pei, X.; Zhu, J.; Ren, N.; Liu, B. Molasses wastewater treatment and lipid production at low temperature conditions by a microalgal mutant Scenedesmus sp Z-4. Biotechnol. Biofuels 2017, 10, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Yin, Y. Fermentative biohydrogen production using various biomass-based materials as feedstock. Renew. Sustain. Energy Rev. 2018, 92, 284–306. [Google Scholar] [CrossRef]
- Li, J.; Zheng, G.; He, J.; Chang, S.; Qin, Z. Biohydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor. Biotechnol. Adv. 2009, 27, 573–577. [Google Scholar] [CrossRef]
- Kurokawa, T.; Tanisho, S. Effects of formate on fermentative biohydrogen production by enterobacter aerogenes. Mar. Biotechnol. 2005, 7, 112–118. [Google Scholar] [CrossRef]
- Tsioptsias, C.; Lionta, G.; Samaras, P. Microalgae-activated sludge treatment of molasses wastewater in sequencing batch photo-bioreactor. Environ. Technol. 2017, 38, 1120–1126. [Google Scholar] [CrossRef]
- Ren, N.; Li, J.; Li, B.; Wang, Y.; Liu, S. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int. J. Hydrog. Energy 2006, 31, 2147–2157. [Google Scholar] [CrossRef]
- Grobicki, A.; Stuckey, D.C. Hydrodynamic characteristics of the anaerobic baffled reactor. Water Res. 1992, 26, 371–378. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, Y.; Huang, Q.; Ni, B. Polyethylene terephthalate microplastics affect hydrogen production from alkaline anaerobic fermentation of waste activated sludge through altering viability and activity of anaerobic microorganisms. Water Res. 2019, 163, 114881. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Li, J.; Liu, C. Fermentative Hydrogen Production from Soybean Protein Processing Wastewater in an Anaerobic Baffled Reactor (ABR) Using Anaerobic Mixed Consortia. Appl. Biochem. Biotechnol. 2012, 168, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Mahdieh, S.; Mahmood, S.K.; Reza, R.M.; Babak, G.; Hossein, S.K. Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. Int. J. Biol. Macromol. 2019, 122, 280–288. [Google Scholar]
- Zou, R.; Zhu, G.; Kumar, J.A.; Liu, C.; Huang, X.; Liu, L. Hydrogen and methane production in a bio-electrochemical system assisted anaerobic baffled reactor. Int. J. Hydrog. Energy 2014, 39, 13498–13504. [Google Scholar]
- Li, J.; Li, B.; Zhu, G.; Ren, N.; Bo, L.; He, J. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). Int. J. Hydrog. Energy 2007, 32, 3274–3283. [Google Scholar] [CrossRef]
- Li, S.; Nan, J.; Gao, F. Hydraulic characteristics and performance modeling of a modified anaerobic baffled reactor (MABR). Chem. Eng. J. 2016, 284, 85–92. [Google Scholar] [CrossRef]
- Zheng, G.; Li, J.; Zhao, F.; Zhang, L.; Wei, L.; Ban, Q.; Zhao, Y. Effect of illumination on the hydrogen-production capability of anaerobic activated sludge. Front. Environ. Sci. Eng. 2012, 6, 125–130. [Google Scholar] [CrossRef]
- Pan, J.; Ma, J.; Zhai, L.; Luo, T.; Mei, Z.; Liu, H. Achievements of biochar application for enhanced anaerobic digestion: A review. Bioresour. Technol. 2019, 292, 122058. [Google Scholar] [CrossRef]
- Vasily, A.V.; Sergey, V.R.; Ljudmila, Y.L.; Jukka, A.R.; Gerasimos, L. Simplified hydrolysis models for the optimal design of two-stage anaerobic digestion. Water Res. 2001, 35, 4247–4251. [Google Scholar]
- Noblecourt, A.; Christophe, G.; Larroche, C.; Fontanille, P. Biohydrogen production by dark fermentation from pre-fermented depackaging food wastes. Bioresour. Technol. 2018, 247, 864–870. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- Liu, C.; Li, J.; Wang, S.; Nies, L. A syntrophic propionate-oxidizing microflora and its bioaugmentation on anaerobic wastewater treatment for enhancing methane production and COD removal. Front. Environ. Sci. Eng. 2016, 10, 13. [Google Scholar] [CrossRef]
- Öztürk, M. Conversion of acetate, propionate and butyrate to methane under thermophilic conditions in batch reactors. Water Res. 1991, 25, 1509–1513. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Uellendahl, H.; Ahring, B.K. Regulation and optimization of the biogas process: Propionate as a key parameter. Biomass Bioenergy 2007, 31, 820–830. [Google Scholar] [CrossRef] [Green Version]
- Barredo, M.S.; Evison, L.M. Effect of propionate toxicity on methanogen-enriched sludge, methanobrevibacter-smithii, and methanosprillum-hungatii at different pH values. Appl. Environ. Microbiol. 1991, 57, 1764–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaucheyras, F.; Fonty, G.; Bertin, G.; Gouet, P. In-vitro H2 Utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of saccharomyces-cerevisiae. Appl. Environ. Microbiol. 1995, 61, 3466–3467. [Google Scholar] [CrossRef] [Green Version]
- Rajhi, H.; Puyol, D.; Martinez, M.C.; Diaz, E.E.; Sanz, J.L. Vacuum promotes metabolic shifts and increases biogenic hydrogen production in dark fermentation systems. Front. Environ. Sci. Eng. 2016, 10, 513–521. [Google Scholar] [CrossRef]
Running Phase | HRT (h) | Temperature (°C) | Influent pH | Influent COD Concentration (mg/L) | Organic Loading (kgCOD·m−3·d−1) |
---|---|---|---|---|---|
First stage (1–10 d) | 24 | 35 ± 1 | 6.4–7.6 | 7730–8490 | 7.73–8.49 |
Second stage (11–70 d) | 30 | 35 ± 1 | 7.0–7.6 | 7273–8776 | 7.34–8.71 |
Third stage (71–87 d) | 40 | 35 ± 1 | 7.0–7.5 | 7309–8287 | 7.21–8.32 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, F.; Peng, Z.; Li, H.; Li, J.; Wang, S. Effect of Hydraulic Retention Time on Anaerobic Baffled Reactor Operation: Enhanced Biohydrogen Production and Enrichment of Hydrogen-producing Acetogens. Processes 2020, 8, 339. https://doi.org/10.3390/pr8030339
Jiang F, Peng Z, Li H, Li J, Wang S. Effect of Hydraulic Retention Time on Anaerobic Baffled Reactor Operation: Enhanced Biohydrogen Production and Enrichment of Hydrogen-producing Acetogens. Processes. 2020; 8(3):339. https://doi.org/10.3390/pr8030339
Chicago/Turabian StyleJiang, Fan, Zhiying Peng, Huaibo Li, Ji Li, and Shuo Wang. 2020. "Effect of Hydraulic Retention Time on Anaerobic Baffled Reactor Operation: Enhanced Biohydrogen Production and Enrichment of Hydrogen-producing Acetogens" Processes 8, no. 3: 339. https://doi.org/10.3390/pr8030339
APA StyleJiang, F., Peng, Z., Li, H., Li, J., & Wang, S. (2020). Effect of Hydraulic Retention Time on Anaerobic Baffled Reactor Operation: Enhanced Biohydrogen Production and Enrichment of Hydrogen-producing Acetogens. Processes, 8(3), 339. https://doi.org/10.3390/pr8030339