A Mini-Review: Needleless Electrospinning of Nanofibers for Pharmaceutical and Biomedical Applications
Abstract
:1. Introduction
1.1. Nanofibers
1.2. Classification of Nanofibers
1.3. Characterization of Nanofibers
2. Conventional Electrospinning of Nanofibers
2.1. Fundamentals and Equipment
2.2. Parameters Affecting ES Process
2.3. Challenges to Conventional ES
- i.
- ES is a very slow and time-consuming process. A standard laboratory experimental set up works at a few mL/h (usually 0.5–1 mL/h, or even higher), which means that when a solution with 8% w/v polymer is spun, at 10 working hours, the maximum amount of nanofibers that can be produced is 800 mg (assuming the 100% yield of the process). In actual laboratory conditions, the production rate of the nanofibers is extremely low, varying from 0.01 to 0.1 g/h. To tackle this issue, some modifications in the ES set-up have been suggested using multi-needle spinnerets [14,20].
- ii.
- Multi-needle spinnerets, however, also present challenges. The applied electric field at an individual needle will be affected by the electric fields and the jets of other needles which are close by. The interreference between the jets will affect the homogeneity of the final products [24].
- iii.
- The downwards spinning of the jets has the disadvantage of forming droplets at the tip of the needle, which can fall onto the collector, thus hindering the formation of a nanofiber mat [25].
- iv.
- Needle clogging may occur due to the narrow inner diameter orifice of the spinnerets, which are used to reduce the fiber’s diameter and prevent the formation of beads in the final products [26].
3. Needleless Electrospinning
3.1. Overview
3.2. Rotating Spinnerets in NLES
- i.
- The metal roller spinneret is partially immersed in the polymeric solution. As it rotates, a thin layer of solution is formed on its surface.
- ii.
- The rotation of the spinneret causes agitations of the solution layer and thus the formation of conical spikes.
- iii.
- When a high electrical field is applied, the conical spike deforms to a Taylor cone.
- iv.
- Finally, polymeric jets are stretched out of the Taylor cones’ tips and the fabricated nanofibers are collected.
3.3. Stationary Spinnerets in NLES
3.4. Ultrasound-Enhanced Electrospinning
4. Pharmaceutical and Biomedical Applications of NLES
4.1. NLES Technologies Using Rotating Spinnerets
4.2. Commercialised NLES Apparatuses Using Rotary Spinneret
4.3. NLES Technologies Using Stationary Spinnerets
4.4. Outlooks
5. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kilpakjian, S.; Schmid, S.R. Manufacturing Engineering and Technology, SI Edition, 7th ed.; Pearson: Hong Kong, China, 2013. [Google Scholar]
- Gugulothu, D.; Barhoum, A.; Nerella, R.; Ajmer, R.; Bechelany, M. Fabrication of Nanofibers: Electrospinning and Non-electrospinning Techniques. In Handbook of Nanofibers; Barhoum, A., Bechelany, M., Makhlouf, A.S.H., Eds.; Springer International Publishing: Cham, Swizerland, 2019; pp. 45–77. [Google Scholar] [CrossRef]
- Williams, G.R.; Raimi-Abraham, B.T.; Luo, C.J. Nanofibres in Drug Delivery; UCL Press: London, UK, 2018. [Google Scholar]
- Wei, L.; Liu, C.; Mao, X.; Dong, J.; Fan, W.; Zhi, C.; Qin, X.; Sun, R. Multiple-Jet Needleless Electrospinning Approach via a Linear Flume Spinneret. Polymers 2019, 11, 2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Lin, T.; Wang, X. Scaling up the production rate of nanofibers by needleless electrospinning from multiple ring. Fibers Polym. 2014, 15, 961–965. [Google Scholar] [CrossRef]
- Feng, C.; Khulbe, K.C.; Matsuura, T. Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization. J. Appl. Polym. Sci. 2010, 115, 756–776. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, W.; Formo, E.; Sun, Y.; Xia, Y. Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym. Adv. Technol. 2011, 22, 326–338. [Google Scholar] [CrossRef]
- Reneker, D.H.; Yarin, A.L.; Fong, H.; Koombhongse, S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phy. 2000, 87, 4531. [Google Scholar] [CrossRef] [Green Version]
- Neves, N.M.; Campos, R.; Pedro, A.; Cunha, J.; Macedo, F.; Reis, R.L. Patterning of polymer nanofiber meshes by electrospinning for biomedical applications. Int. J. Nanomed. 2007, 2, 433–448. [Google Scholar]
- Huang, Z.-M.; Zhang, Y.-Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Chou, S.F.; Woodrow, K.A. Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J. Mech. Behav. Biomed. Mater. 2017, 65, 724–733. [Google Scholar] [CrossRef] [Green Version]
- Deitzel, J.M.; Kleinmeyer, J.; Harris, D.; Beck Tan, N.C. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001, 42, 261–272. [Google Scholar] [CrossRef]
- Richard-Lacroix, M.; Pellerin, C. Molecular orientation in electrospun fibers: From mats to single fibers. Macromolecules 2013, 46, 9473–9493. [Google Scholar] [CrossRef]
- Persano, L.; Camposeo, A.; Tekmen, C.; Pisignano, D. Industrial upscaling of electrospinning and applications of polymer nanofibers: A Review. Macromol. Mater. Eng. 2013, 298, 504–520. [Google Scholar] [CrossRef]
- Xie, J.; Jiang, J.; Davoodi, P.; Srinivasan, M.P.; Wang, C.H. Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials. Chem. Eng. Sci. 2015, 125, 32–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutledge, G.C.; Fridrikh, S.V. Formation of fibers by electrospinning. Adv. Drug Del. Rev. 2007, 59, 1384–1391. [Google Scholar] [CrossRef] [PubMed]
- Nair, L.S.; Bhattacharyya, S.; Laurencin, C.T. Development of novel tissue engineering scaffolds via electrospinning. Expert Opin. Biol. Ther. 2004, 4, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Megelski, S.; Stephens, J.S.; Chase, D.B.; Rabolt, J.F. Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules 2002, 35, 8456–8466. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef]
- SalehHudin, H.S.; Mohamad, E.N.; Mahadi, W.N.L.; Muhammad Afifi, A. Multiple-jet electrospinning methods for nanofiber processing: A review. Mater. Manuf. Process. 2018, 33, 479–498. [Google Scholar] [CrossRef]
- Andrady, A.L. Science and Technology of Polymer Nanofibers; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Kidoaki, S.; Kwon, I.K.; Matsuda, T. Structural features and mechanical properties of in situ–bonded meshes of segmented polyurethane electrospun from mixed solvents. J. Biomed. Mater. Res. Part B 2006, 76B, 219–229. [Google Scholar] [CrossRef]
- De Vrieze, S.; Van Camp, T.; Nelvig, A.; Hagström, B.; Westbroek, P.; De Clerck, K. The effect of temperature and humidity on electrospinning. J. Mater. Sci. 2009, 44, 1357–1362. [Google Scholar] [CrossRef]
- Theron, S.A.; Yarin, A.L.; Zussman, E.; Kroll, E. Multiple jets in electrospinning: Experiment and modeling. Polymer 2005, 46, 2889–2899. [Google Scholar] [CrossRef]
- Petrík, S. Industrial Production Technology for Nanofibers. In Nanofibers-Production, Properties and Functional Applications; Lin, T., Ed.; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Nieminen, H.J.; Laidmäe, I.; Salmi, A.; Rauhala, T.; Paulin, T.; Heinämäki, J.; Hæggström, E. Ultrasound-enhanced electrospinning. Sci. Rep. 2018, 8, 4437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawłowska, S.; Rinoldi, C.; Nakielski, P.; Ziai, Y.; Urbanek, O.; Li, X.; Kowalewski, T.A.; Ding, B.; Pierini, F. Ultraviolet Light-Assisted Electrospinning of Core–Shell Fully Cross-Linked P(NIPAAm-co-NIPMAAm) Hydrogel-Based Nanofibers for Thermally Induced Drug Delivery Self-Regulation. Adv. Mater. Interfaces 2020, 2000247. [Google Scholar] [CrossRef]
- Simm, W.; Gosling, C.; Bonart, R.; Falkai, B.V. Fibre Fleece of Electrostatically Spun Fibres and Methods of Making Same. U.S. Patent 4,143,196, 6 March 1979. [Google Scholar]
- Yarin, A.L.; Zussman, E. Upward needleless electrospinning of multiple nanofibers. Polymer 2004, 45, 2977–2980. [Google Scholar] [CrossRef]
- Jirsak, O.; Sanetrnik, F.; Lukas, D.; Kotek, V.; Martinova, L.; Chaloupek, J. Method of Nanofibres Production from a Polymer Solution Using Electrostatic Spinning and a Device for Carrying out the Method. U.S. Patent 7,585,437, 8 September 2009. [Google Scholar]
- Liu, Y.; He, J.-H.; Yu, J.Y. Bubble-electrospinning: A novel method for making nanofibers. J. Phys. Conf. Ser. 2008, 96, 012001. [Google Scholar] [CrossRef]
- Wang, X.; Niu, H.; Lin, T.; Wang, X. Needleless electrospinning of nanofibers with a conical wire coil. Polym. Eng. Sci. 2009, 49, 1582–1586. [Google Scholar] [CrossRef] [Green Version]
- Thoppey, N.M.; Bochinski, J.R.; Clarke, L.I.; Gorga, R.E. Unconfined fluid electrospun into high quality nanofibers from a plate edge. Polymer 2010, 51, 4928–4936. [Google Scholar] [CrossRef]
- Tang, S.; Zeng, Y.; Wang, X. Splashing needleless electrospinning of nanofibers. Polym. Eng. Sci. 2010, 50, 2252–2257. [Google Scholar] [CrossRef]
- Wu, D.; Huang, X.; Lai, X.; Sun, D.; Lin, L. High throughput tip-less electrospinning via a circular cylindrical electrode. J. Nanosci. Nanotechnol. 2010, 10, 4221–4226. [Google Scholar] [CrossRef]
- Thoppey, N.M.; Bochinski, J.R.; Clarke, L.I.; Gorga, R.E. Edge electrospinning for high throughput production of quality nanofibers. Nanotechnology 2011, 22, 345301. [Google Scholar] [CrossRef]
- Ahmad, A.; Ali, U.; Nazir, A.; Shahzad, A.; Khaliq, Z.; Qadir, M.B.; Khan, M.A.; Ali, S.; Hassan, M.A.; Abid, S.; et al. Toothed wheel needleless electrospinning: A versatile way to fabricate uniform and finer nanomembrane. J. Mater. Sci. 2019, 54, 13834–13847. [Google Scholar] [CrossRef]
- Kara, Y.; He, H.; Molnár, K. Shear-aided high-throughput electrospinning: A needleless method with enhanced jet formation. J. Appl. Polym. Sci. 2020, 49104. [Google Scholar] [CrossRef]
- Niu, H.; Lin, T. Fiber generators in needleless electrospinning. J. Nanomater. 2012, 2012, 725950. [Google Scholar] [CrossRef]
- Niu, H.; Lin, T.; Wang, X. Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J. Appl. Polym. Sci. 2009, 114, 3524–3530. [Google Scholar] [CrossRef]
- Yener, F.; Jirsak, O. Comparision of needle and roller electrospinning sytem of polyvinylbutyral. J. Nanomater. 2012, 2012, 839317. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Niu, H.; Wu, J.; Ke, Q.; Mo, X.; Lin, T. Needleless Electrospinning of Polystyrene Fibers with an Oriented Surface Line Texture. J. Nanomater. 2012, 2012, 473872. [Google Scholar] [CrossRef] [Green Version]
- Niu, H.; Wang, X.; Lin, T. Needleless electrospinning: Influences of fibre generator geometry. J. Text. Inst. 2012, 103, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Niu, H.; Wang, X.; Lin, T. Needleless electrospinning of uniform nanofibers using spiral coil spinnerets. J. Nanomater. 2012, 2012, 785920. [Google Scholar] [CrossRef]
- Hakkarainen, E.; Korkjas, A.; Laidmae, I.; Lust, A.; Semjonov, K.; Kogermann, K.; Nieminen, H.J.; Salmi, A.; Korhonen, O.; Haeggstrom, E.; et al. Comparison of traditional and ultrasound-enhanced electrospinning in fabricating nanofibrous drug delivery systems. Pharmaceutics 2019, 11, 495. [Google Scholar] [CrossRef] [Green Version]
- Laidmäe, I.; Nieminen, H.; Salmi, A.; Paulin, T.; Rauhala, T.; Falck, K.; Yliruusi, J.; Heinämäki, J.; Haeggström, E.; Veski, P. Device and Method to Produce Nanofibers and Constructs Thereof. U.S. Patent 15/561,058, 15 March 2018. [Google Scholar]
- Sirc, J.; Kubinova, S.; Hobzova, R.; Stranska, D.; Kozlik, P.; Bosakova, Z.; Marekova, D.; Holan, V.; Sykova, E.; Michalek, J. Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses. Int. J. Nanomed. 2012, 7, 5315–5325. [Google Scholar] [CrossRef] [Green Version]
- Ai-Tang, R.; Utarak, H.; Yoovidhya, T.; Intasanta, V.; Wongsasulak, S. Fabrication and antifungal activity of cellulose acetate-based fibers encapsulating natural neem seed oil. Adv. Mater. Res. 2013, 747, 166–169. [Google Scholar] [CrossRef]
- Huang, C.; Niu, H.; Wu, C.; Ke, Q.; Mo, X.; Lin, T. Disc-electrospun cellulose acetate butyrate nanofibers show enhanced cellular growth performances. J. Biomed. Mater. Res. A 2013, 101, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wu, T.; He, N.; Wang, J.; Chen, W.; He, L.; Huang, C.; Ei-Hamshary, H.A.; Al-Deyab, S.S.; Ke, Q.; et al. Three-dimensional polycaprolactone scaffold via needleless electrospinning promotes cell proliferation and infiltration. Colloids Surf. B 2014, 121, 432–443. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chen, W.; Sun, B.; Li, H.; Wu, T.; Ke, Q.; Huang, C.; Ei-Hamshary, H.; Al-Deyab, S.S.; Mo, X. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Colloids Surf. B 2016, 146, 632–641. [Google Scholar] [CrossRef]
- Syrová, Z.; Mazel, T.; Chudoba, J.; Rysová, M.; Poláková, D.; Pytlík, R. Study of silica-based electrospun nanofibers as a scaffold for human bone marrow mesenchymal stem cells. In Proceedings of the NANOCON 2015-7th International Conference on Nanomaterials-Research and Application, 14–16 October 2015, Brno, Czech Republic; pp. 419–423.
- Lu, W.; Xu, H.; Zhang, B.; Ma, M.; Guo, Y. The Preparation of Chitosan Oligosaccharide/Alginate Sodium/Gelatin Nanofibers by Spiral-Electrospinning. J. Nanosci. Nanotechnol. 2016, 16, 2360–2364. [Google Scholar] [CrossRef] [PubMed]
- Sasithorn, N.; Martinová, L.; Horakova, J.; Mongkholrattanasit, R. Fabrication of silk fibroin nanofibres by needleless electrospinning. In Electrospinning-Material, Techniques, and Biomedical Applications; Intech: London, UK, 2016; pp. 95–113. [Google Scholar] [CrossRef] [Green Version]
- Li, T.-T.; Yan, M.; Zhong, Y.; Ren, H.-T.; Lou, C.-W.; Huang, S.-Y.; Lin, J.-H. Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol(PVA)/Chitosan(CS)/Graphene(Gr) nanofibrous membranes. J. Mater. Res. Technol. 2019, 8, 5124–5132. [Google Scholar] [CrossRef]
- Li, T.-T.; Zhong, Y.; Yan, M.; Zhou, W.; Xu, W.; Huang, S.-Y.; Sun, F.; Lou, C.-W.; Lin, J.-H. Synergistic effect and characterization of graphene/carbon nanotubes/polyvinyl alcohol/sodium alginate nanofibrous membranes formed using continuous needleless dynamic linear electrospinning. Nanomaterials 2019, 9, 714. [Google Scholar] [CrossRef] [Green Version]
- Lukasova, V.; Buzgo, M.; Vocetkova, K.; Sovkova, V.; Doupnik, M.; Himawan, E.; Staffa, A.; Sedlacek, R.; Chlup, H.; Rustichelli, F.; et al. Needleless electrospun and centrifugal spun poly-epsilon-caprolactone scaffolds as a carrier for platelets in tissue engineering applications: A comparative study with hMSCs. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 567–575. [Google Scholar] [CrossRef]
- Sirc, J.; Hampejsova, Z.; Trnovska, J.; Kozlik, P.; Hrib, J.; Hobzova, R.; Zajicova, A.; Holan, V.; Bosakova, Z. Cyclosporine A loaded electrospun poly(d,l-lactic acid)/poly(ethylene glycol) nanofibers: Drug carriers utilizable in local immunosuppression. Pharm. Res. 2017, 34, 1391–1401. [Google Scholar] [CrossRef]
- Böttjer, R.; Grothe, T.; Ehrmann, A. Functional nanofiber mats for medical and biotechnological applications. In Narrow and Smart Textiles; Springer: Cham, Swizerland, 2018; pp. 203–214. [Google Scholar] [CrossRef]
- Kurečič, M.; Maver, T.; Virant, N.; Ojstršek, A.; Gradišnik, L.; Hribernik, S.; Kolar, M.; Maver, U.; Kleinschek, K.S. A multifunctional electrospun and dual nano-carrier biobased system for simultaneous detection of pH in the wound bed and controlled release of benzocaine. Cellulose 2018, 25, 7277–7297. [Google Scholar] [CrossRef]
- Petrova, V.A.; Chernyakov, D.D.; Poshina, D.N.; Gofman, I.V.; Romanov, D.P.; Mishanin, A.I.; Golovkin, A.S.; Skorik, Y.A. Electrospun bilayer chitosan/hyaluronan material and its compatibility with mesenchymal stem cells. Materials 2019, 12, 2016. [Google Scholar] [CrossRef] [Green Version]
- Klicova, M.; Klapstova, A.; Chvojka, J.; Koprivova, B.; Jencova, V.; Horakova, J. Novel double-layered planar scaffold combining electrospun PCL fibers and PVA hydrogels with high shape integrity and water stability. Mater. Lett. 2020, 263, 127281. [Google Scholar] [CrossRef]
- Cengiz-Çallıoğlu, F. Dextran nanofiber production by needleless electrospinning process. e-Polymers 2014, 14, 5–13. [Google Scholar] [CrossRef]
- Holopainen, J.; Penttinen, T.; Santala, E.; Ritala, M. Needleless electrospinning with twisted wire spinneret. Nanotechnology 2015, 26, 025301. [Google Scholar] [CrossRef] [PubMed]
- Dankova, J.; Buzgo, M.; Vejpravova, J.; Kubickova, S.; Sovkova, V.; Vyslouzilova, L.; Mantlikova, A.; Necas, A.; Amler, E. Highly efficient mesenchymal stem cell proliferation on poly-epsilon-caprolactone nanofibers with embedded magnetic nanoparticles. Int. J. Nanomed. 2015, 10, 7307–7317. [Google Scholar] [CrossRef] [Green Version]
- Lawson, C.; Sivan, M.; Pokorny, P.; Stanishevsky, A.; Lukáš, D. Poly(ε-Caprolactone) Nanofibers for Biomedical Scaffolds by High-Rate Alternating Current Electrospinning. MRS Adv. 2016, 1, 1289–1294. [Google Scholar] [CrossRef]
- Hampejsova, Z.; Batek, J.; Sirc, J.; Hobzova, R.; Bosakova, Z. Polylactide/polyethylene glycol fibrous mats for local paclitaxel delivery: Comparison of drug release into liquid medium and to HEMA-based hydrogel model. Mon. Für Chem.-Chem. Mon. 2019, 150, 1691–1696. [Google Scholar] [CrossRef]
- Hobzova, R.; Hampejsova, Z.; Cerna, T.; Hrabeta, J.; Venclikova, K.; Jedelska, J.; Bakowsky, U.; Bosakova, Z.; Lhotka, M.; Vaculin, S.; et al. Poly(d,l-lactide)/polyethylene glycol micro/nanofiber mats as paclitaxel-eluting carriers: Preparation and characterization of fibers, in vitro drug release, antiangiogenic activity and tumor recurrence prevention. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 982–993. [Google Scholar] [CrossRef]
- Kurečič, M.; Mohan, T.; Virant, N.; Maver, U.; Stergar, J.; Gradišnik, L.; Kleinschek, K.S.; Hribernik, S. A green approach to obtain stable and hydrophilic cellulose-based electrospun nanofibrous substrates for sustained release of therapeutic molecules. RSC Adv. 2019, 9, 21288–21301. [Google Scholar] [CrossRef] [Green Version]
- Manikandan, S.; Divyabharathi, M.; Tomas, K.; Pavel, P.; David, L. Production of poly (ε-caprolactone) antimicrobial nanofibers by needleless alternating current electrospinning. Mater. Today Proc. 2019, 17, 1100–1104. [Google Scholar] [CrossRef]
- Ramakrishnan, R.; Gimbun, J.; Ramakrishnan, P.; Ranganathan, B.; Reddy, S.M.M.; Shanmugam, G. Effect of solution properties and operating parameters on needleless electrospinning of poly(ethylene oxide) nanofibers loaded with bovine serum albumin. Curr. Drug Deliv. 2019, 16, 913–922. [Google Scholar] [CrossRef]
- Pokorny, P.; Kostakova, E.; Sanetrnik, F.; Mikes, P.; Chvojka, J.; Kalous, T.; Bilek, M.; Pejchar, K.; Valtera, J.; Lukas, D. Effective AC needleless and collectorless electrospinning for yarn production. Phys. Chem. Chem. Phys. 2014, 16, 26816–26822. [Google Scholar] [CrossRef] [PubMed]
- Molnar, K.; Meszaros, L. The role of electrospun nanofibers in the fight against the COVID-19. Express Polym. Let. 2020, 14, 605. [Google Scholar] [CrossRef]
- Li, Y.; Yin, X.; Yu, J.; Ding, B. Electrospun nanofibers for high-performance air filtration. Compos. Commun. 2019, 15, 6–19. [Google Scholar] [CrossRef]
- Zeytuncu, B.; Ürper, M.; Koyuncu, İ.; Tarabara, V.V. Photo-crosslinked PVA/PEI electrospun nanofiber membranes: Preparation and preliminary evaluation in virus clearance tests. Sep. Purif. Technol. 2018, 197, 432–438. [Google Scholar] [CrossRef]
Study | Polymer 1 | Drug/API 2 | Spinneret | Direction | Technology | Presentation | Evaluation 3 | Application | Reference |
---|---|---|---|---|---|---|---|---|---|
1 | PVA and PUR | Gentamicin | Rotary | Upwards | Nanospider® (Elmarco Co) | Multi-layered nanofibrous mat | Antimicrobial activity, in vitro drug release | Controlled release of gentamicin | Sirc et al., 2012 [47] |
2 | CA and PEO | Neem seed oil | Rotary | Upwards | Nanospider® (Elmarco Co) | Ultrafine nanofibrous mat | Antifungal activity | Antifungal films | Ai-Tang et al., 2013 [48] |
3 | CAB | N/A | Rotary | Upwards | Disc spinneret partially immersed in polymeric solution | Nanofibrous mat | Cell attachment, viability and cell morphology | Enhancement of cell growth | Huang et al., 2013 [49] |
4 | SiO2 | N/A | Rotary | Upwards | Rod spinneret partially immersed in polymeric solution | Nanofibrous mat | ICC, in vitro adhesion test, MTT assay | Adhesion of human bone marrow mesenchymal stem cells | Syrová et al., 2015 [52] |
5 | DEX | N/A | Stationary | Upwards | Steel rod with a droplet of the polymeric solution on its top | Nanofibrous layer | Morphology and size distribution by SEM | Drug delivery/scaffold | Cengiz-Çallıoğlu, 2014 [63] |
Rotary | Upwards | Nanospider® (Elmarco Co) | |||||||
6 | PVP, HAP and bioglass | N/A | Stationary | Rotary | Vertical twisted wire fed by the polymeric solution from its top. | Nanofibrous mat | Morphology and size distribution by FESEM | Increase production rate | Holopainen et al., 2014 [64] |
7 | PCL | N/A | Rotary | Upwards | Disc spinneret partially immersed in the polymeric solution | 3D porous nanofibrous mat | Protein adsorption, cell attachment and proliferation studies | Cell proliferation and infiltration | Li et al., 2014 [50] |
8 | PCL and MNPs | N/A | Stationary | Upwards | Rod-like Teflon electrode fed by the polymeric solution | Nanofibrous mats | In vitro cell proliferation, cell metabolic analysis, ALP activity assay | Regeneration of hard tissues | Daňková et al., 2015 [65] |
9 | PCL | N/A | Stationary | Upwards | Metallic rod with a droplet of the polymeric solution on its concave top | Microfibrous and nanofibrous mats | Morphology and size distribution by SEM | Drug delivery and scaffolds | Lawson et al., 2016 [66] |
10 | PCL and GT | N/A | Rotary | Upwards | Disc spinneret partially immersed in the polymeric solution | 3D scaffold of multiscale structure | In vitro cell biocompatibility and proliferation | Tissue engineering | Li et al., 2016 [51] |
11 | GT, CSO and AS | N/A | Rotary | Upwards | Helix slice spinneret partially immersed in polymeric solution | Nanofibrous mat | Morphological characterisation | Biomedical field | Lu et al., 2016 [53] |
12 | SFP | Silk fibroin protein | Rotary | Upwards | Wire electrode spinneret fed by the solution | Nanofibrous sheet | In vitro cell biocompatibility, adhesion and proliferation | Bone tissue engineering | Sasithorn et al., 2016 [54] |
13 | PLA and PEG | Cyclosporine A | Rotary | Upwards | Nanospider® (Elmarco Co) | Nanofibrous mats | In vitro drug release, Inhibition test of IL-2 | Local immunosuppression | Sirc et al., 2017 [58] |
14 | PEG and PAN | Keratin, collagen, dextran and poloxamer | Rotary | Upwards | Nanospider® (Elmarco Co) | Nanofibrous mats | Morphology by CLSM | Increase water stability for biotechnological applications | Böttjer et al., 2018 [59] |
15 | CA | Benzocaine and bromocresol green | Rotary | Upwards | Nanospider® (Elmarco Co) | Nanofibrous mats | In vitro drug release, halochromic behaviour, biocompatibility tests | Wound treatment | Kurečič et al., 2018 [60] |
16 | PLA and PEG | Paclitaxel | Rotary | Upwards | Nanospider® (Elmarco Co) | Nanofibrous mats | In vitro drug release, swelling studies | Localised chemotherapy | Hampejsova et al., 2019 [67] |
17 | PLA and PEG | Paclitaxel | Rotary | Upwards | Nanospider® (Elmarco Co) | Micro-/nanofibrous mats | In vitro drug release, cytotoxicity, CAM assay, In vivo model of local tumour recurrence | Localised chemotherapy | Hobzova et al., 2019 [68] |
18 | CMC and PEG | Diclofenac sodium | Rotary | Upwards | Nanospider® (Elmarco Co) | Nanofibrous mats | In vitro drug release, swelling studies | Sustained release | Kurečič et al., 2019 [69] |
19 | PVA, CS and Gr | N/A | Rotary | Upwards | Rotary linear weir electrode partially immersed in polymeric solution | Nanofibrous membranes | Spectroscopic and thermal characterisation | Tissue engineering | Li et al., 2019a [55] |
20 | PVA, AS, Gr and CNTs | N/A | Rotary | Upwards | Rotary linear weir electrode partially immersed in polymeric solution | Nanofibrous membranes | Spectroscopic and thermal characterisation | Tissue engineering | Li et al., 2019b [56] |
21 | PCL | Platelets | Rotary | Upwards | Nanospider® (Elmarco Co) | 2D nanofibrous scaffolds | MTS assay, in vitro proliferation and APL activity assay | Bone tissue engineering | Lukášová et al., 2019 [57] |
Rotary | Sideward | Centrifugal spinneret with a reservoir filled with polymeric solution | 3D porous nanofibrous scaffolds | ||||||
22 | PCL | Chlorhexidine acetate | Stationary | Upwards | Metallic rod with a droplet of the polymeric solution on its concave top | Nanofibrous mats | Morphology and size distribution by SEM | Antimicrobial | Manikandan et al., 2019 [70] |
23 | PEO, CS and HA | N/A | Rotary | Upwards | Nanospider® (Elmarco Co) | Bilayer nanofibrous films | In vitro biocompatibility test | Tissue engineering | Petrova et al., 2019 [61] |
24 | PEO and BSA | N/A | Rotary | Upwards | Nanospider® (Elmarco Co) | Nanofibrous mats | Morphology and size distribution by SEM | Drug delivery systems | Ramakrishnan et al., 2019 [71] |
25 | PCL and PVA | N/A | Rotary | Upwards | Nanospider® (Elmarco Co) | Double-layered planar nanofibrous scaffolds | In vitro adhesion and proliferation test | Wound dressing/abdominal adhesion prevention | Klicova et al., 2020 [62] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Partheniadis, I.; Nikolakakis, I.; Laidmäe, I.; Heinämäki, J. A Mini-Review: Needleless Electrospinning of Nanofibers for Pharmaceutical and Biomedical Applications. Processes 2020, 8, 673. https://doi.org/10.3390/pr8060673
Partheniadis I, Nikolakakis I, Laidmäe I, Heinämäki J. A Mini-Review: Needleless Electrospinning of Nanofibers for Pharmaceutical and Biomedical Applications. Processes. 2020; 8(6):673. https://doi.org/10.3390/pr8060673
Chicago/Turabian StylePartheniadis, Ioannis, Ioannis Nikolakakis, Ivo Laidmäe, and Jyrki Heinämäki. 2020. "A Mini-Review: Needleless Electrospinning of Nanofibers for Pharmaceutical and Biomedical Applications" Processes 8, no. 6: 673. https://doi.org/10.3390/pr8060673
APA StylePartheniadis, I., Nikolakakis, I., Laidmäe, I., & Heinämäki, J. (2020). A Mini-Review: Needleless Electrospinning of Nanofibers for Pharmaceutical and Biomedical Applications. Processes, 8(6), 673. https://doi.org/10.3390/pr8060673