Evaluation of Volatile Compounds during Ageing with Oak Chips and Oak Barrel of Muscat Ottonel Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Winemaking Process
2.2. Standard Chemical Analysis of Wine
2.3. Extraction of Volatile Compounds
2.4. GC-MS Analysis
2.5. Statistical Analyses
3. Results and Discussion
3.1. Chemical Composition of Aged Wines
3.2. Volatile Profile of Aged Wines
3.2.1. Alcohols
3.2.2. Carbonyls/Volatile Aldehydes
3.2.3. Carboxylic Acids
3.2.4. Esters
3.2.5. Lactones
3.2.6. Terpenes
3.2.7. Volatile Phenols
3.3. Multivariate Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Salanţă, L.C.; Tofană, M.; Pop, C.; Pop, A.; Coldea, T.; Mudura, E. Beverage alcohol choice among university students: Perception, consumption and preferences. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 2017, 74, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Alañón, M.E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. New strategies to improve sensorial quality of white wines by wood contact. Beverages 2018, 4, 91. [Google Scholar] [CrossRef] [Green Version]
- Higgins, L.M.; Llanos, E. A healthy indulgence? Wine consumers and the health benefits of wine. Wine Econ. Policy 2015, 4, 3–11. [Google Scholar] [CrossRef] [Green Version]
- King, E.S.; Johnson, T.E.; Bastian, S.E.P. Consumer liking of white wines: Segmentation using self-reported wine liking and wine knowledge. Int. J. Wine Bus. Res. 2012, 24, 33–46. [Google Scholar] [CrossRef]
- Culbert, J.A.; Ristic, R.; Ovington, L.A.; Saliba, A.J.; Wilkinson, K.L. Influence of production method on the sensory profile and consumer acceptance of Australian sparkling white wine styles. Aust. J. Grape Wine R. 2017, 23, 170–178. [Google Scholar] [CrossRef]
- Coldea, T.E.; Socaciu, C.; Mudura, E.; Socaci, S.A.; Ranga, F.; Pop, C.R.; Vriesekoop, F.; Pasqualone, A. Volatile and phenolic profiles of traditional Romanian apple brandy after rapid ageing with different wood chips. Food Chem. 2020, 320, 126643. [Google Scholar] [CrossRef]
- Frangipane, M.T.; De Santis, D.; Ceccarelli, A. Influence of oak woods of different geographical origins on quality of wines aged in barriques and using oak chips. Food Chem. 2007, 103, 46–54. [Google Scholar] [CrossRef]
- Ianni, F.; Segoloni, E.; Blasi, F.; Di Maria, F. Low-molecular-weight phenols recovery by eco-friendly extraction from Quercus spp. wastes: An analytical and biomass-sustainability evaluation. Processes 2020, 8, 387. [Google Scholar] [CrossRef] [Green Version]
- Fernández de Simón, B.; Martínez, J.; Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz, A.M. Polyphenolic compounds as chemical markers of wine ageing in contact with cherry, chestnut, false acacia, ash and oak wood. Food Chem. 2014, 147, 346–356. [Google Scholar] [CrossRef]
- Chinnici, F.; Natali, N.; Bellachioma, A.; Versari, A.; Riponi, C. Changes in phenolic composition of red wines aged in cherry wood. LWT-Food Sci. Technol. 2015, 60, 977–984. [Google Scholar] [CrossRef]
- Gortzi, O.; Metaxa, X.; Mantanis, G.; Lalas, S. Effect of artificial ageing using different wood chips on the antioxidant activity, resveratrol and catechin concentration, sensory properties and colour of two Greek red wines. Food Chem. 2013, 141, 2887–2895. [Google Scholar] [CrossRef] [PubMed]
- Canas, S. Phenolic composition and related properties of aged wine spirits: Influence of barrel characteristics. A review. Beverages 2017, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Caldeira, I.; Anjos, O.; Belchior, A.P.; Canas, S. Sensory impact of alternative ageing technology for the production of wine brandies. Ciência Téc. Vitiv. 2017, 32, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Vararu, F.; Moreno-García, J.; Niculaua, M.; Cotea, V.V.; Mayén, M.; Moreno, J. Fermentative volatilome modulation of Muscat Ottonel wines by using yeast starter cultures. LWT-Food Sci. Technol. 2020, 129, 109575. [Google Scholar] [CrossRef]
- Caven-Quantrill, J.; Buglass, A.J. Analysis of volatile components of varietal English wines using stir bar sorptive extraction/gas chromatography-mass spectrometry. Beverages 2017, 3, 62. [Google Scholar] [CrossRef] [Green Version]
- Aleixandre, J.L.; Padilla, A.I.; Navarro, L.L.; Suria, A.; García, M.J.; Álvarez, I. Optimization of making barrel-fermented dry Muscatel wines. J. Agric. Food Chem. 2003, 51, 1889–1893. [Google Scholar] [CrossRef]
- Bora, F.D.; Donici, A.; Oşlobanu, A.; Fițiu, A.; Babeș, A.C.; Bunea, C.I. Qualitative assessment of the white wine varieties grown in Dealu Bujorului vineyard, Romania. Not. Bot. Horti. Agrobo. 2016, 44, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Cabredo-Pinillos, S.; Cedrón-Fernández, T.; Sáenz-Barrio, C. Comparison of different extraction methods applied to volatile compounds in wine samples previous to the determination by gas chromatography. Anal. Lett. 2004, 37, 3063–3084. [Google Scholar] [CrossRef]
- Mamede, M.E.O.; Pastore, G.M. Study of methods for the extraction of volatile compounds from fermented grape must. Food Chem. 2006, 96, 586–590. [Google Scholar] [CrossRef] [Green Version]
- Andujar-Ortiz, I.; Moreno-Arribas, M.V.; Martín-Álvarez, P.J.; Pozo-Bayón, M.A. Analytical performance of three commonly used extraction methods for the gas chromatography–mass spectrometry analysis of wine volatile compounds. J. Chromatogr. A 2009, 1216, 7351–7357. [Google Scholar] [CrossRef]
- Manolache, M.; Pop, T.I.; Babeș, A.C.; Farcaș, I.A.; Muncaciu, M.L.; Gal, E.; Călugăr, A. Volatile composition of some red wines from Romania assessed by GC-MS. Studia UBB Chem. 2018, LXIII, 125–142. [Google Scholar] [CrossRef]
- Antoce, A.O.; Călugăru, L.L. Evolution of grapevine surfaces in Romania after accession to European Union period 2007–2016. In Proceedings of the BIO Web of Conferences, 40th World Congress of Vine and Wine, Sofia, Bulgaria, 29 May–2 June 2017; p. 03018. [Google Scholar]
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine aroma compounds in grapes: A critical review. J. Crit. Rev. Food Scien. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef]
- Stoica, F.; Muntean, C.; Băducă, C.; Popescu Mitroi, I. Differences in Muscat wine aroma composition depending maceration and fermentation processes. Rom. Biotech. Lett. 2015, 20, 10343–10351. [Google Scholar]
- Balcerek, M.; Pielech-Przybylska, K.; Dziekońska-Kubczak, U.; Patelski, P.; Strąk, E. Changes in the chemical composition of plum distillate during maturation with oak chips under different conditions. Food Technol. Biotechnol. 2017, 55, 333–359. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, P.; Gómez-Plaza, E. Dependence of oak-related volatile compounds on the physicochemical characteristics of barrel-aged wines. Food Technol. Biotechnol. 2012, 50, 59–65. [Google Scholar]
- Bao, J.; Zhang, Z. Volatile compounds of young wines from cabernet sauvignon, cabernet gernischet and chardonnay varieties grown in the Loess plateau region of China. Molecules 2010, 15, 9184–9196. [Google Scholar] [CrossRef] [Green Version]
- Dumitriu (Gabur), G.D.; Teodosiu, C.; Gabur, I.; Cotea, V.V.; Peinado, R.A.; López de Lerma, N. Evaluation of aroma compounds in the process of wine ageing with oak chips. Foods 2019, 8, 662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonelli, A.; Castellari, L.; Zambonelli, C.; Carnacini, A. Yeast influence on volatile composition of wines. J. Agric. Food Chem. 1999, 47, 1139–1144. [Google Scholar] [CrossRef]
- Furdíková, K.; Makyšová, K.; Špánik, I. Effect of indigenous S. cerevisiae strains on higher alcohols, volatile acids and esters in wine. Czech. J. Food Sci. 2017, 35, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Rapp, A.; Mandery, H. Wine aroma. Experientia 1986, 42, 873–884. [Google Scholar] [CrossRef]
- Darriet, P.; Pons, M.; Henry, R.; Dumont, O.; Findeling, V.; Cartolaro, P.; Calonnec, A.; Dubourdieu, D. Impact odorants contibuting to the Fungus type aroma from grape berries contaminated by powdery mildew (Uncinula necator); incidence of enzymatic activities of the yeast Saccharomyces cerevisiae. J. Agric. Food Chem. 2002, 50, 3277–3282. [Google Scholar] [CrossRef] [PubMed]
- Marcon, A.R.; Schwarz, L.V.; Dutra, S.V.; Delamare, A.P.L.; Gottardi, F.; Parpinello, G.P.; Echeverrigaray, S. Chemical composition and sensory evaluation of wines produced with different Moscato varieties. In Proceedings of the BIO Web of Conferences, 41st World Congress of Vine and Wine, Punta del Este, Uruguay, 19–23 November 2018; Volume 12, p. 02033. Available online: https://doi.org/10.1051/bioconf/20191202033 (accessed on 9 April 2020).
- Romano, P.; Suzzi, G. Origin and production of acetoin during wine yeast fermentation. Appl. Environ. Microbiol. 1996, 62, 309–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, F.H.; Wainwright, T. Analysis of diacetyl and related compounds in fermentations. J. Inst. Brew. 1975, 81, 37–45. [Google Scholar] [CrossRef]
- Rocha, M.S.; Rodrigues, F.; Coutinho, P.; Delgadillo, I.; Coimbra, A.M. Volatile composition of Baga red wine: Assessment of the identification of the would-be impact odourants. Anal. Chim. Acta 2004, 51, 257–262. [Google Scholar] [CrossRef]
- Etiévant, P.X. Wine. In Volatile Compounds in Foods and Beverages, 1st ed.; Maarse, H., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 1991; Volume 14, pp. 483–546. [Google Scholar]
- Louw, L.; Tredoux, A.G.J.; Van Rensburg, P.; Kidd, M.; Naes, T.; Nieuwoudt, H.H. Fermentation-derived aroma compounds in varietal young wines from South Africa. S. Afr. J. EnoL Vitic. 2010, 31, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Dubois, P. Les arômes des vins et leurs defauts (cont). Revue Française d’Œnologie. Dugelay 1994, 145, 27–40. [Google Scholar]
- Xu, M.L.; Yu, Y.; Ramaswamy, H.S.; Zhu, S.M. Characterization of Chinese liquor aroma components during aging process and liquor age discrimination using gas chromatography combined with multivariable statistics. Sci. Rep. 2017, 7, 39671. [Google Scholar] [CrossRef] [PubMed]
- Nikolantonaki, M.; Julien, P.; Coelho, C.; Roullier-Gall, C.; Ballester, J.; Schmitt-Kopplin, P.; Gougeon, R.D. Impact of glutathione on wines oxidative stability: A combined sensory and metabolomic study. Front. Chem. 2018, 6, 182. [Google Scholar] [CrossRef] [PubMed]
- Garde-Cerdan, T.; Ancín-Azpilicueta, C. Review of quality factors on wine ageing in oak barrels. Trends Food Sci. Technol. 2006, 17, 438–447. [Google Scholar] [CrossRef]
- Sumby, K.M.; Grbin, P.R.; Jiranek, V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem. 2010, 121, 1–16. [Google Scholar] [CrossRef]
- Diaz-Maroto, M.C.; Schneider, R.; Baumes, R. Formation pathways of ethyl esters of branched short-chain fatty acids during wine aging. J. Agric. Food Chem. 2005, 53, 3503–3509. [Google Scholar] [CrossRef]
- Pérez-Coello, M.S.; Sánchez, M.A.; García, E.; González-Viñas, M.A.; Sanz, J.; Cabezudo, M.D. Fermentation of white wines in the presence of wood chips of American and French oak. J. Agric. Food Chem. 2000, 48, 885–889. [Google Scholar] [CrossRef]
- Herrera, P.; Durán-Guerrero, E.; Sánchez-Guillén, M.M.; García-Moreno, M.V.; Guillén, D.A.; Barroso, C.G.; Castro, R. Effect of the type of wood used for ageing on the volatile composition of Pedro Ximénez sweet wine. J. Sci. Food. Agric. 2020, 100, 2512–2521. [Google Scholar] [CrossRef] [PubMed]
- Dumitriu, G.D.; Lopez de Lerma, N.; Zamfir, C.I.; Cotea, V.V.; Peinado, R.A. Volatile and phenolic composition of red wines subjected to aging in oak cask of different toast degree during two periods of time. LWT-Food Sci. Technol. 2017, 86, 643–651. [Google Scholar] [CrossRef]
- Jiménez-Moreno, N.; Ancín-Azpilicueta, C. The development of esters in filtered and unfiltered wines that have been aged in oak barrels. Int. J. Food Sci. Technol. 2006, 41, 155–161. [Google Scholar] [CrossRef]
- Pérez-Olivero, S.J.; Pérez-Pont, M.L.; Conde, J.E.; Pérez-Trujillo, J.P. Determination of lactones in wines by headspace solid-phase microextraction and gas chromatography coupled with mass spectrometry. J. Anal. Methods Chem. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bueno, J.E.; Peinado, R.; Moreno, J.; Medina, M.; Moyano, L.; Zea, L. Selection of volatile aroma compounds by statistical and enological criteria for analytical differentiation of musts and wines of two grape varieties. J. Food Sci. 2003, 68, 158–163. [Google Scholar] [CrossRef]
- Hernández-Orte, P.; Franco, E.; González Huerta, C.; Martínez García, J.; Cabellos, M.; Suberviola, J.; Orriols, I.; Cacho, J. Criteria to discriminate between wines aged in oak barrels and macerated with oak fragments. Food Res. Int. 2014, 57, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Giménez-Martínez, R.; López-García de la Serrana, H.; Villalón-Mir, M.; Quesada-Granados, J.; López-Martínez, M.C. Influence of wood heat treatment, temperature and maceration time on vanillin, syringaldehyde, and gallic acid contents in oak word and wine spirit mixtures. Am. J. Enol. Viticult. 1996, 47, 441–446. [Google Scholar]
- Perestrelo, R.; Fernandes, A.; Albuquerque, F.; Marques, J.C.; Câmara, J. Analytical characterization of the aroma of Tinta Negra Mole red wine: Identification of the main odorants compounds. Anal. Chim. Acta 2006, 563, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Varietal aroma. In Handbook of Enology Volume 2—The Chemistry of Wine and Stabilization and Treatments, 2nd ed.; Ribéreau-Gayon, P., Glories, Y., Maujean, A., Dubourdieu, D., Eds.; John Wiley and Sons Ltd.: Chichester, UK, 2000; pp. 187–206. [Google Scholar]
- Del Caro, A.; Piombino, P.; Genovese, A.; Moio, L.; Fanara, C.; Piga, A. Effect of bottle storage on colour, phenolics and volatile composition of Malvasia and Moscato white wines. S. Afr. J. Enol. Vitic. 2014, 35, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Gallage, N.J.; Hansen, E.H.; Kannangara, R.; Olsen, C.E.; Motawia, M.S.; Jørgensen, K.; Holme, I.; Hebelstrup, K.; Grisoni, M.; Møller, B.L. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Nat. Commun. 2014, 5, 4037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, R.R.; Wellinger, M.; Gloess, A.N.; Nichols, D.S.; Breadmore, M.C.; Shellie, R.A.; Yeretzian, C. Real-time mass spectrometry monitoring of oak wood toasting: Elucidating aroma development relevant to oak-aged wine quality. Sci. Rep. 2015, 5, 17334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pengtao, Z.; Gao, J.; Qian, M.; Li, H. Characterization of the key aroma compounds in Chinese Syrah wine by gas chromatography-olfactometry-mass spectrometry and aroma reconstitution studies. Molecules 2017, 22, 1045. [Google Scholar] [CrossRef]
- Rodríguez-Bencomo, J.J.; Schneider, R.; Lepoutre, J.P.; Rigou, P. Improved method to quantitatively determine powerful odorant volatile thiols in wine by headspace solid-phase microextraction after derivatization. J. Chromatogr. A 2009, 1216, 5640–5646. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Rodríguez-Mozaz, S.; Ancín-Azpilicueta, C. Volatile composition of aged wine in used barrels of French oak and of American oak. Food Res. Int. 2002, 35, 603–610. [Google Scholar] [CrossRef]
- Ilc, T.; Werck-Reichhart, D.; Navrot, N. Meta-analysis of the core aroma components of grape and wine aroma. Front. Plant. Sci. 2016, 7, 1472. [Google Scholar] [CrossRef] [Green Version]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Dharmalingam, R.; Nazni, P. Phytochemical evaluation of Coriandrum L. flowers. Int. J. Food Nutr. Sci. 2013, 2, 34–39. [Google Scholar]
Parameters | Initial Wine | Untoasted Oak Chips | Light Toasted Chips | Untoasted Barrel | MANOVA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Days | 30 | 60 | 90 | 30 | 60 | 90 | 30 | 60 | 90 | Time | Chips Type | Ageing Method | |
Ethanol (% ABV) | 12.49 ± 0.17 a | 12.50 ± 0.36 a | 12.25 ± 0.2 b | 12.14 ± 0.05 c | 12.51 ± 0.35 a | 12.25 ± 0.2 b | 12.14 ± 0.05 c | 12.32 ± 0.12 ab | 12.17 ± 0.07 c | 12.10 ± 0.05 c | *** | ns | ** |
Volatile acidity (g/L acetic acid) | 0.21 ± 0.01 d | 0.21 ± 0.01 d | 0.29 ± 0.01 c | 0.31 ± 0.01 bc | 0.21 ± 0.02 d | 0.28 ± 0.01 c | 0.31 ± 0.01 bc | 0.29 ± 0.02 c | 0.34 ± 0.02 b | 0.39 ± 0.02 a | *** | *** | ** |
Total acidity (g/L tartaric acid) | 4.67 ± 0.03 a | 4.62 ± 0.03 ab | 4.55 ± 0.06 ab | 4.52 ± 0.05 b | 4.63 ± 0.02 ab | 4.55 ± 0.06 ab | 4.52 ± 0.05 b | 4.63 ± 0.02 ab | 4.55 ± 0.06 ab | 4.52 ± 0.05 b | ** | ns | ns |
Dry extract (g/L) | 21.47 ± 0.5 a | 21.39 ± 0.4 a | 21.39 ± 0.4 a | 21.36 ± 0.35 a | 21.39 ± 0.4 a | 21.39 ± 0.4 a | 21.36 ± 0.35 a | 21.38 ± 0.38 a | 21.4 ± 0.39 a | 21.35 ± 0.34 a | ns | ns | ns |
Non-reducing dry extract (g/L) | 20.07 ± 0.06 a | 20.06 ± 0.05 a | 20.05 ± 0.05 a | 20.02 ± 0.03 a | 20.06 ± 0.05 a | 20.05 ± 0.03 a | 20.02 ± 0.03 a | 20.06 ± 0.05 a | 20.05 ± 0.5 a | 20.01 ± 0.01 a | ns | ns | ns |
Free SO2 (mg/L) | 20.33 ± 0.58 a | 19.00 ± 1.0 b | 18.17 ± 1.26 ab | 17.33 ± 1.53 ab | 19.00 ± 1.00 a | 18.19 ± 1.25 ab | 17.37 ± 1.48 ab | 18.33 ± 0.58 ab | 17.00 ± 1.00 ab | 15.33 ± 1.53 b | * | ** | ** |
Total SO2 (mg/L) | 129 ± 1.53 cd | 132 ± 1.73 bc | 136 ± 2.00 ab | 139 ± 1.00 a | 136 ± 3.00 bc | 135 ± 1.00 ab | 139 ± 1.00 a | 125 ± 1.00 de | 122 ± 2.00 ef | 119 ± 1.00 f | *** | *** | *** |
pH | 3.50 ± 0.02 a | 3.50 ± 0.01 a | 3.50 ± 0.03 a | 3.51 ± 0.02 a | 3.51 ± 0.02 a | 3.52 ± 0.01 a | 3.51 ± 0.02 a | 3.52 ± 0.01 a | 3.52 ± 0.02 a | 3.53 ± 0.03 a | ns | ns | ns |
Compounds | Initial Wine | Untoasted Oak Chips | Light Toasted Chips | Untoasted Barrel | MANOVA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Duration of Ageing (Days) | 30 | 60 | 90 | 30 | 60 | 90 | 30 | 60 | 90 | Time | Chips Type | Ageing Method | |
Alcohols | |||||||||||||
Major alcohols (mg/L) | |||||||||||||
Isobutanol | 48 ± 0.5 a | 39 ± 1.9 de | 41 ± 0.5 cde | 42 ± 0.6 bcd | 40 ± 1.3 cde | 43 ± 1.2 bc | 44 ± 1.6 ab | 39 ± 1.7 de | 40 ± 1.0 cde | 42 ± 1.2 bcd | * | * | ns |
Isoamyl alcohol | 55 ± 0.1 ab | 55 ± 0.8 ab | 53 ± 0.9 ab | 55 ± 0.8 ab | 53 ± 2.7 ab | 54 ± 1.8 ab | 55 ± 1.7 ab | 49 ± 2.7 b | 52 ± 2.4 ab | 53 ± 3.0 ab | ns | ns | ns |
2-phenylethanol | 22 ± 1.3 a | 20 ± 0.9 a | 19 ± 0.9 a | 19 ± 0.9 a | 19 ± 0.9 a | 19 ± 0.9 a | 19 ± 1.8 a | 19 ± 1.8 a | 20 ± 1.1 a | 19 ± 1.0 a | ns | ns | ns |
Minor alcohols (µg/L) | |||||||||||||
Hexanol | 2570 ± 19 c | 2014 ± 11 e | 2745 ± 20 b | 3109 ± 8.7 a | 2348 ± 49 d | 2565 ± 60 c | 2535 ± 60 c | 2382 ± 26 d | 2613 ± 43 c | 3123 ± 26 a | *** | ** | ** |
4-methyl-1-pentanol | 32 ± 1.7 c | 44 ± 2.3 ab | 41 ± 0.0 b | 31 ± 0.6 c | 30 ± 1.4 cd | 48 ± 4.3 a | 21 ± 1.5 e | 42 ± 2.3 ab | 28 ± 3.9 cd | 24 ± 1.6 e | ** | ** | ** |
E-3-hexenol | 17 ± 1.3 bcd | 16 ± 2.7 cd | 19 ± 2.3 abcd | 14 ± 1.9 d | 15 ± 1.2 d | 22 ± 1.9 abc | 22 ± 1.4 abc | 17 ± 2.2 bcd | 14 ± 1.9 d | 23 ± 0.9 a | * | * | * |
Z-3-hexenol | 148 ± 4.8 c | 188 ± 8.3 ab | 181 ± 9.0 b | 130 ± 10.0 c | 127 ± 4.8 c | 205 ± 6.3 a | 139 ± 4.0 c | 182 ± 10.7 ab | 137 ± 10.5 c | 132 ± 10.2 c | * | * | * |
2-nonanol | 87 ± 3.9 b | 77 ± 6.3 bc | 79 ± 5.4 bc | 46 ± 4.3 e | 76 ± 1.2 c | 61 ± 0.3 d | 55 ± 1.7 de | 92 ± 1.8 a | 64 ± 1.9 d | 49 ± 4.6 e | ** | ** | ** |
1-heptanol | 175 ± 4.2 a | 159 ± 8.4 b | 172 ± 1.4 ab | 171 ± 85 ab | 163 ± 3.1 ab | 176 ± 3.1 a | 168 ± 3.5 ab | 165 ± 4.75 ab | 162 ± 2.8 b | 170 ± 3.0 ab | * | ns | ns |
2,3-butanediol | 622 ± 10 f | 625 ± 19 f | 1510 ± 17 b | 1395 ± 30 c | 514 ± 13 g | 1544 ± 40 b | 1886 ± 40 a | 646 ± 10 f | 926 ± 13 e | 1291 ± 18 d | *** | *** | *** |
3-methylthio-1-propanol | 836 ± 6 a | 689 ± 8.8 c | 780 ± 19 b | 515 ± 14 e | 478 ± 19 f | 654 ± 3.9 d | 363 ± 3.0 g | 471 ± 9.4 f | 647 ± 15 d | 483 ± 6.5 ef | ** | ** | ** |
Glycerol | 20 ± 0.9 f | 114 ± 10 e | 184 ± 12 c | 280 ± 9.8 b | 106 ± 5.8 e | 125 ± 2.0 e | 303 ± 10 b | 157 ± 6.8 d | 179 ± 4.1 cd | 315 ± 8.0 a | *** | ** | ** |
Benzyl alcohol | 48 ± 1.7 a | 41 ± 2.2 bc | 31 ± 1.7 d | 37 ± 1.9 bcd | 42 ± 2 ab | 34 ± 3 cd | 37 ± 4.4 bcd | 43 ± 0.9 ab | 35 ± 2.7 cd | 37 ± 0.6 bcd | * | * | * |
Terpenes (µg/L) | |||||||||||||
Linalool | 1027 ± 19 b | 1053 ± 20 b | 913 ± 10 d | 725 ± 20 g | 792 ± 9.5 f | 674 ± 17 h | 491 ± 10 i | 1084 ± 21 a | 974 ± 10 c | 846 ± 12 e | *** | *** | *** |
Terpineol | 1180 ± 13 a | 1090 ± 7.1 b | 975 ± 6.8 c | 915 ± 7.0 d | 979 ± 34 c | 919 ± 15 d | 905 ± 9.7 d | 971 ± 9.9 c | 980 ± 9.5 c | 949 ± 4.4 cd | ** | * | * |
Trans-geraniol | 700 ± 19 a | 680 ± 20 a | 590 ± 9.6 c | 470 ± 10 e | 480 ± 9.8 de | 510 ± 10 d | 315 ± 4.8 g | 630 ± 5.0 b | 390 ± 9.8 f | 234 ± 2.4 h | *** | *** | *** |
Major carbonyls (mg/L) | |||||||||||||
Acetoin | 72 ± 2 g | 91 ± 2.2 def | 106 ± 5.4 d | 151 ± 10 b | 87 ± 4.2 efg | 102 ± 2.0 de | 130 ± 9.9 c | 84 ± 1.9 fg | 127 ± 9.9 c | 197 ± 2.84 a | *** | ** | ** |
Carboxylic acids (µg/L) | |||||||||||||
Butanoic acid | 23 ± 2.1 e | 65 ± 3.8 b | 88 ± 5 a | 41 ± 0.9 d | 51 ± 1.6 c | 91 ± 5.6 a | 47 ± 2 d | 67 ± 2.4 b | 72 ± 1.3 b | 42 ± 2.9 d | *** | ** | ** |
Hexanoic acid | 12 ± 1.2 f | 28 ± 0.2 e | 38 ± 0.6 d | 47 ± 0.9 c | 37 ± 1.3 d | 57 ± 0.4 b | 66 ± 0.1 a | 29 ± 0.8 e | 37 ± 1.0 d | 47 ± 1 c | *** | ** | ** |
Isovaleric acid | 68 ± 8.8 e | 150 ± 9.16 bc | 175 ± 7.9 a | 140 ± 2.2 cd | 124 ± 0.9 d | 163 ± 9.25 ab | 142 ± 1.2 cd | 156 ± 9.5 abc | 166 ± 1.4 ab | 140 ± 2.2 cd | *** | ** | * |
Lactic acid | 130 ± 2.8 f | 155 ± 4 e | 162 ± 2 e | 376 ± 3.0 b | 165 ± 3.3 e | 193 ± 2.9 d | 349 ± 4.7 c | 161 ± 8.3 e | 375 ± 7.3 b | 548 ± 8.7 a | *** | ** | * |
Octanoic acid | 3267 ± 12 f | 3270 ± 12 f | 3469 ± 36 d | 3406 ± 15 e | 3525 ± 21 c | 3408 ± 17 e | 3518 ± 15 c | 3566 ± 14 c | 3979 ± 16 a | 3626 ± 19 b | *** | ** | ** |
Decanoic acid | 1588 ± 17 a | 978 ± 22 b | 574 ± 23 de | 608 ± 7.5 d | 587 ± 20 de | 518 ± 8.9 f | 460 ± 9.7 g | 690 ± 95 c | 589 ± 8.9 de | 562 ± 3.0 e | *** | ** | ** |
E-2-hexenoic acid | 10 ± 0.8 e | 49 ± 3.2 a | 33 ± 4.7 c | 34 ± 2.1 c | 15 ± 1.7 de | 16 ± 0.2 de | 16 ± 0.8 de | 43 ± 0.4 ab | 38 ± 0.8 b | 21 ± 0.4 d | ** | ** | ** |
Hexadecanoic acid | 97 ± 1.5 a | 22 ± 2.4 e | 33 ± 0.8 d | 41 ± 0.8 b | 9.8 ± 2.1 f | 23 ± 0.8 e | 32 ± 1.7 d | 12 ± 1.3 f | 36 ± 2.3 cd | 41 ± 1.2 b | *** | *** | ** |
Pydolic acid | 93 ± 2.3 a | 68 ± 0.9 bc | 63 ± 0.9 cd | 59 ± 1.7 d | 72 ± 3.4 b | 59 ± 3.8 d | 49 ± 2.6 e | 66 ± 4 bcd | 66 ± 1.1 bcd | 59 ± 3.8 d | ** | * | * |
2-oxoapidic | 7 ± 0.4 d | 20 ± 1.9 b | 21 ± 1.4 ab | 15 ± 1.7 c | 21 ± 1.1 ab | 25 ± 1.4 a | 25 ± 0.9 a | 22 ± 0.9 ab | 21 ± 0.6 ab | 21 ± 0.5 ab | * | ns | ns |
Esters (µg/L) | |||||||||||||
Isoamyl acetate | 1218 ± 3.4 d | 1968 ± 28 c | 2235 ± 62 b | 2497 ± 79 a | 1990 ± 17 c | 2308 ± 79 b | 2512 ± 87 a | 1955 ± 9.8 c | 1975 ± 8.8 c | 2183 ± 4.6 b | *** | ** | ** |
Hexyl acetate | 112 ± 1 b | 92 ± 3.7 c | 75 ± 1.4 de | 66 ± 1.3 f | 122 ± 0.5 a | 107 ± 4.5 b | 88 ± 1.0 c | 96 ± 3.5 c | 77 ± 5.9 d | 68 ± 0.8 ef | *** | ** | ** |
Ethyl hexanoate | 191 ± 4.0 bc | 210 ± 10 ab | 190 ± 4.0 bc | 175 ± 11.4 c | 148 ± 6.5 d | 216 ± 6.7 a | 113 ± 2.4 e | 195 ± 9.8 abc | 128 ± 2.7 de | 114 ± 34 e | ** | * | * |
Ethyl lactate | 588 ± 12 g | 1664 ± 57 d | 2178 ± 96 a | 1918 ± 91 c | 1229 ± 73 f | 2104 ± 89 b | 1352 ± 46 f | 1387 ± 44 f | 1506 ± 94 e | 1897 ± 48 c | *** | *** | ** |
Ethyl octanoate | 313 ± 24 h | 365 ± 36 fgh | 485 ± 10 fg | 560 ± 35 ab | 385 ± 14 fg | 412 ± 9.8 ef | 588 ± 13 a | 354 ± 16 gh | 461 ± 9 de | 520 ± 3.2 bc | *** | ** | ** |
Ethyl 3-hydroxybutanoate | 74 ± 4.1 e | 428 ± 27 ab | 476 ± 4.5 a | 452 ± 3.3 a | 252 ± 7.1 d | 367 ± 3.9 c | 456 ± 9.6 a | 393 ± 41 bc | 467 ± 14 a | 432 ± 10 a | * | ** | ** |
Ethyl decanoate | 205 ± 7 f | 384 ± 8.9 d | 447 ± 3.0 c | 652 ± 6.5 a | 348 ± 2.1 e | 442 ± 2.6 c | 534 ± 0.3 b | 344 ± 17 e | 433 ± 19 c | 523 ± 19 b | *** | * | ** |
Monoethyl succinate | 2048 ± 52 c | 2274 ± 24 b | 2486 ± 52 a | 2229 ± 20 c | 1707 ± 90 f | 1846 ± 69 f | 1907 ± 99 e | 1874 ± 50def | 1488 ± 94 g | 1401 ± 22 g | *** | *** | *** |
Phenethyl acetate | 288 ± 3 f | 304 ± 0.5 f | 539 ± 2.7 c | 730 ± 3.0 a | 394 ± 17 e | 333 ± 55 ef | 402 ± 21 d | 305 ± 25 f | 526 ± 22 c | 623 ± 19 b | *** | *** | ** |
Diethyl malate | 33 ± 2 f | 62 ± 8 bcd | 53 ± 3.2 cde | 64 ± 5.6 abc | 51 ± 5 de | 43 ± 2.7 ef | 66 ± 4.0 ab | 62 ± 3.3 bcd | 76 ± 3.2 a | 74 ± 1.9 ab | ** | ** | ** |
Diethyl succinate | 116 ± 12 g | 239 ± 8 cd | 226 ± 5 cd | 323 ± 9.2 a | 179 ± 14 ef | 225 ± 13 cd | 151 ± 15 fg | 201 ± 19 de | 282 ± 14 b | 242 ± 16 c | ** | ** | ** |
Diethyl 2-hydroxy-3-methylsuccinate | 35 ± 0.6 f | 42 ± 3.7 ef | 43 ± 3.4 ef | 57 ± 1.8 c | 56 ± 7.0 c | 89 ± 3.9 b | 135 ± 11 a | 46 ± 3.72 cde | 48 ± 1.1 cde | 55 ± 1.6 cd | ** | * | * |
Trimethylene acetate | 486 ± 14 a | 361 ± 39 bc | 381 ± 23 b | 274 ± 18 de | 238 ± 15 e | 307 ± 10 cd | 130 ± 8.7 f | 340 ± 15 bc | 283 ± 17 de | 236 ± 15 de | ** | ** | ** |
Ethyl glycinate | 30 ± 1.9 a | 19 ± 0.5 c | 20 ± 1.5 bc | 23 ± 0.4 bc | 12 ± 0.2 de | 13 ± 0.5 de | 16 ± 0.6 d | 24 ± 2.5 b | 11 ± 1.9 e | 15 ± 1.4 d | ** | ** | ** |
Citronellol acetate | 36 ± 6.9 abc | 29 ± 4.9 cd | 43 ± 0.9 ab | 21 ± 1.7 de | 44 ± 2.8 a | 22 ± 1 de | 23 ± 0.7 de | 34 ± 3.7 bc | 24 ± 3.5 de | 19 ± 1.3 e | *** | ** | ** |
Ethyl-4-hydroxybutanoate | 401 ± 9.7 a | 201 ± 11 c | 278 ± 8.9 b | 130 ± 10 e | 155 ± 12 de | 189 ± 10 c | 181 ± 8.2 cd | 271 ± 8.5 b | 201 ± 12 c | 126 ± 5.2 e | *** | ** | ** |
Lactones (µg/L) | |||||||||||||
Butyrolactone | 82 ± 2.6 g | 285 ± 10 c | 310 ± 5.2 b | 320 ± 5.8 b | 185 ± 2.5 f | 198 ± 4.0 f | 217 ± 3.9 e | 253 ± 5.3 d | 287 ± 3.4 c | 349 ± 3.2 a | *** | *** | *** |
Pantolactone | 19 ± 0.9 cd | 18 ± 0.9 cd | 20 ± 0.9 bc | 19 ± 0.3 cd | 29 ± 1.1 a | 22 ± 1.2 b | 19 ± 0.3 cd | 20 ± 0.8 bc | 19 ± 0.2 cd | 19 ± 0.5 cd | *** | * | ns |
3,4-dimethyl-2(5)-furanone | 116 ± 1.1 a | 98 ± 2.2 c | 103 ± 2.2 b | 63 ± 0.6 e | 63 ± 2.1 e | 105 ± 4.5 b | 94 ± 5.1 c | 103 ± 3.3 b | 76 ± 3.0 d | 76 ± 1.0 d | *** | ** | ** |
Volatile phenols (µg/L) | |||||||||||||
p-vinyl guaiacol | 25 ± 0.8 h | 65 ± 2.8 g | 89 ± 2.0 e | 105 ± 3.0 d | 126 ± 5.1 c | 144 ± 3.6 b | 156 ± 2.5 a | 65 ± 2.1 g | 79 ± 3.6 f | 87 ± 1.0 ef | *** | *** | *** |
Methyl-hydroxycinnamate | 73 ± 1.0 a | 23 ± 0.9 e | 53 ± 1.1 bc | 13 ± 1.1 g | 50 ± 9.3 c | 58 ± 4.9 b | 22 ± 0.9 ef | 30 ± 0.9 d | 15 ± 0.9 fg | 12 ± 0.4 g | *** | *** | ** |
Acetovanillone | 47 ± 1.1 h | 181 ± 0.9 b | 164 ± 4.8 c | 137 ± 0.4 de | 190 ± 1.6 a | 142 ± 1.8 d | 131 ± 1.8 f | 132 ± 1.9 ef | 126 ± 1.7 fg | 122 ± 1 g | *** | *** | ** |
2,3-hydroxybenzofurane | 411 ± 10 a | 235 ± 9.1 c | 148 ± 7.1 de | 156 ± 5.4 d | 148 ± 3.4 de | 122 ± 1.1 fg | 115 ± 2.2 g | 263 ± 2.6 b | 142 ± 1.7 de | 135 ± 1.9 ef | *** | *** | ** |
Vanillin | 20 ± 0.6 c | 124 ± 0.6 a | 123 ± 0.3 ab | 122 ± 0.3 b | 124 ± 0.9 a | 124 ± 0.2 a | 123 ± 0.5 ab | 123 ± 0.4 ab | 123 ± 0.8 ab | 122 ± 1 b | ** | ns | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Călugăr, A.; Coldea, T.E.; Pop, C.R.; Pop, T.I.; Babeș, A.C.; Bunea, C.I.; Manolache, M.; Gal, E. Evaluation of Volatile Compounds during Ageing with Oak Chips and Oak Barrel of Muscat Ottonel Wine. Processes 2020, 8, 1000. https://doi.org/10.3390/pr8081000
Călugăr A, Coldea TE, Pop CR, Pop TI, Babeș AC, Bunea CI, Manolache M, Gal E. Evaluation of Volatile Compounds during Ageing with Oak Chips and Oak Barrel of Muscat Ottonel Wine. Processes. 2020; 8(8):1000. https://doi.org/10.3390/pr8081000
Chicago/Turabian StyleCălugăr, Anamaria, Teodora Emilia Coldea, Carmen Rodica Pop, Tiberia Ioana Pop, Anca Cristina Babeș, Claudiu Ioan Bunea, Mihail Manolache, and Emese Gal. 2020. "Evaluation of Volatile Compounds during Ageing with Oak Chips and Oak Barrel of Muscat Ottonel Wine" Processes 8, no. 8: 1000. https://doi.org/10.3390/pr8081000
APA StyleCălugăr, A., Coldea, T. E., Pop, C. R., Pop, T. I., Babeș, A. C., Bunea, C. I., Manolache, M., & Gal, E. (2020). Evaluation of Volatile Compounds during Ageing with Oak Chips and Oak Barrel of Muscat Ottonel Wine. Processes, 8(8), 1000. https://doi.org/10.3390/pr8081000