Methods Used for the Compaction and Molding of Ceramic Matrix Composites Reinforced with Carbon Nanotubes
Abstract
:1. Introduction
2. General Description of Compaction Molding Methods Applicable to Ceramic Matrix Composites Reinforced with Carbon Nanotubes
3. Dry or Semidry Pressing
3.1. Static Methods of Dry Pressing
3.1.1. Uniaxial Dry Pressing in Sealed Steel Molds
3.1.2. Dry Pressing in Collector Molds
3.1.3. Cold Isostatic Pressing
3.1.4. Quasi-Isostatic Pressing
3.2. Dynamic (Pulse) Methods of Dry Pressing
3.2.1. Magnetic Pulse Compaction of Dry Nanosized Powders
3.2.2. Vibration Compaction
3.2.3. Ultrasonic Compaction
4. Plastic Molding Methods
4.1. Extrusion Molding
4.2. Stamping Molding
4.3. Injection Molding
5. Casting Methods
5.1. Casting from Aqueous Slips
5.2. Casting from Wax Slips
5.3. Tape Casting
5.4. Gel Casting
6. Mold-Free Fabrication Methods
6.1. Solid Freeform Tape Casting Fabrication
6.2. Green Ceramic Machining
7. Examples of Recent Studies Devoted to CNT-Reinforced CMC
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CAD | Computer-Aided Design |
CAM | Computer-Aided Manufacturing |
CIM | Ceramic Injection Molding |
CIMC | Colloidal Injection Molding of Ceramics |
CIP | Cold Isostatic Pressing |
CMC | Ceramic Matrix Composite |
CMNC | Ceramic Matrix NanoComposite |
CNC | Computer Numerical Control |
CNT | Carbon NanoTube |
GCM | Green Ceramic Machining |
HCBS | Highly Concentrated Binding Suspensions |
HSS | High-Speed Steel |
MAM | metacrylamide |
MBAM | methylene bisacrylamide |
MWCNT | Multi-Walled Carbon NanoTube |
μPIM | Micro Powder Injection Molding |
HIP | Hot Isostatic Pressing |
HP | Hot Pressing |
PECS | Pulse Electric Current Sintering |
PEGDMA | Polyethylene glycol dimethacrylate |
PIM | Powder Injection Molding |
PPS | Pulse Plasma Sintering |
SFF | Solid Freeform Fabrication |
SWCNT | Single-Walled Carbon NanoTube |
References
- De Voider, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon Nanotubes: Present and Future Commercial Applications. Review. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peigney, A.; Laurent, C.; Flahaut, E.; Rousset, A. Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram. Int. 2000, 26, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.; Boccaccini, A.R.; Shaffer, M.S. Ceramic matrix composites containing carbon nanotubes. J. Mater. Sci. 2009, 44, 1934–1951. [Google Scholar] [CrossRef] [Green Version]
- Rul, S.; Lefèvre-Schlick, F.; Capria, E.; Laurent, C.; Peigney, A. Percolation of single-walled carbon nanotues in ceramic matrix nanocomposites. Acta Mater. 2004, 52, 1061–1067. [Google Scholar] [CrossRef] [Green Version]
- Peigney, A.; Flahaut, E.; Laurent, C.; Chastel, F.; Rousset, A. Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion. Chem. Phys. Lett. 2002, 352, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Zapata-Solvas, E.; Gómez-García, D.; Domínguez-Rodríguez, A. Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J. Eur. Ceram. Soc. 2012, 32, 3001–3020. [Google Scholar] [CrossRef]
- Sun, J.; Gao, L. Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation. Carbon 2003, 41, 1063–1068. [Google Scholar] [CrossRef]
- Wang, J.; Kou, H.; Liu, X.; Pan, Y.; Guo, J. Reinforcement of mullite matrix with multi-walled carbon nanotubes. Ceram. Int. 2007, 33, 719–722. [Google Scholar] [CrossRef]
- Xia, Z.; Riester, L.; Curtin, W.A.; Li, H.; Sheldon, B.W.; Liang, J.; Xu, J.M. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 2004, 52, 931–944. [Google Scholar] [CrossRef]
- Evans, A.G. Perspective on the Development of High-Toughness Ceramics. J. Am. Ceram. Soc. 1990, 73, 187–206. [Google Scholar] [CrossRef]
- Chawla, K.K. Composite Materials; Springer: New York, NY, USA, 2012. [Google Scholar]
- Wu, J.; Colomban, P. Raman spectroscopic study of the stress distribution in continuous fibre-reinforced ceramic matrix composites. J. Raman Spectrosc. 1997, 28, 523–529. [Google Scholar] [CrossRef]
- Belyakov, A.V. Synergetic and quasichemical approaches in ceramic technology (a review). Glass Ceram. 2003, 60, 274–279. [Google Scholar] [CrossRef]
- Belyakov, A.V.; Bakunov, V.S. Structural evolution in ceramic technology and processing. Refract. Ind. Ceram. 2006, 47, 48–52. [Google Scholar] [CrossRef]
- Belyakov, A.V.; Bakunov, V.S. Structural evolution in ceramics technology and processing. Refract. Ind. Ceram. 2006, 47, 110–115. [Google Scholar] [CrossRef]
- Yang, S.; Fang, W.; Chi, Y.; Khan, D.F.; Zhang, R.; Qu, X. Bulk observation of aluminum green compacts by way of X-ray tomography. Nucl. Instr. Meth. Phys. Res. B 2014, 319, 146–153. [Google Scholar] [CrossRef]
- Cottrino, S.; Jorand, Y.; Maire, E.; Adrien, J. Characterization by X-ray tomography of granulated alumina powder during in situ die compaction. Mater. Charact. 2013, 81, 111–123. [Google Scholar] [CrossRef]
- Belyakov, A.V. Carbon nanotubes for the synthesis of ceramic matrix composites (cleaning; dispersion; surface modification) (review). Refract. Ind. Ceram. 2019, 60, 92–100. [Google Scholar] [CrossRef]
- Stepko, A.A.; Chainikova, A.S.; Vinokurov, E.G.; Orlova, L.A. Carbon Nanotube-Doped Composite Sol-Gel Coatings for Float Glass. Inorg. Mater. 2016, 52, 207–212. [Google Scholar] [CrossRef]
- Saifuddin, N.; Raziah, A.Z.; Junizah, A.R. Carbon nanotubes: A review on structure and their interaction with proteins. J. Chem. 2013, 18, 676815. [Google Scholar] [CrossRef]
- Nepal, D.; Kim, D.S.; Geckeler, K.E. A facile and rapid purification method for single-walled carbon nanotubes. Carbon 2005, 43, 660–662. [Google Scholar] [CrossRef]
- Jeong, T.; Kim, W.Y.; Hahn, Y.B. A new purification method of single-wall carbon nanotubes using H2S and O2 mixture gas. Chem. Phys. Lett. 2001, 344, 18–22. [Google Scholar] [CrossRef]
- Borowiak-Palen, E.; Pichler, T.; Liu, X.; Knupfer, M. Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation. Chem. Phys. Lett. 2002, 363, 567–572. [Google Scholar] [CrossRef]
- Farkas, E.; Anderson, M.E.; Chen, Z.; Rinzler, A.G. Length sorting cut single wall carbon nanotubes by high performance liquid chromatography. Chem. Phys. Lett. 2002, 363, 111–116. [Google Scholar] [CrossRef]
- Unge, E.; Graham, A.; Kreupl, F.; Liebau, M. Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification. Curr. Appl. Phys. 2002, 2, 107–111. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Terentjev, E.M. Dispersion of carbon nanotubes: Mixing; sonication; stabilization; and composite properties. Polymers 2012, 4, 275–295. [Google Scholar] [CrossRef] [Green Version]
- Carter, C.B.; Norton, M.G. Ceramic Materials: Science and Engineering; Springer: New York, NY, USA, 2013. [Google Scholar]
- Riedel, R.; Chen, W. Ceramics Science and Technology. V.3. Synthesis and Processing; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Rahaman, M.N. Ceramic Processing; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Krenkel, W. Ceramic Matrix Composites. Fiber Reinforced Ceramics and their Applications; Wiley-VCH: Darmstadt, Germany, 2008. [Google Scholar]
- Tempelman, E.; Shercliff, H.; Van Eyben, N.B. Manufacturing and Design. Understanding the Principles of How Things Are Made, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Singh, M.; Ohji, T.; Asthana, R. Green and Sustainable Manufacturing of Advanced Material; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Boch, P.; Nièpce, J.-C. (Eds.) Ceramic Materials: Processes; Properties and Applications, 1st ed.; ISTE Ltd.: London, UK, 2007. [Google Scholar]
- Reed, J.S. Principles of Ceramics Processing, 2nd ed.; John Wiley & Sons Inc.: New York, NY, USA, 1995; 688p. [Google Scholar]
- Belyakov, A.V.; Brygina, E.A. Local Compaction Areas in Sintering of Ceramics and Structural Reproducibility. Glass Ceram. 1998, 55, 307–309. [Google Scholar] [CrossRef]
- Dvilis, E.; Khasanov, O.; Sokolov, V.; Pokholkov, Y. Method for Compacting Powder Materials into Articles and a Mold for Implementing the Method. U.S. Patent 6919041, 19 July 2005. [Google Scholar]
- Khasanov, O.L.; Dvilis, E.S.; Sokolov, V.M.; Chartpuk, P. The Comparison of Model Compaction Method to Make Uniformly Dense Ceramic Bodies. In Proceedings of the 7th International Forum on Strategic Technology (IFOST2012), Tomsk, Russia, 18–21 September 2012; Volume 1, pp. 489–493. [Google Scholar]
- Dvilis, E.S.; Khasanov, O.L.; Chartpuk, P.; Sokolov, V.M. Optimal design of the spiral type of collector die for dry powder compaction. In Proceedings of the 8th International Forum on Strategic Technology (IFOST2013), Ulaanbaatar, Mongolia, 28 June–1 July 2013; Volume 1, pp. 25–28. [Google Scholar]
- Khasanov, O.L.; Dvilis, E.S.; Sokolov, V.M.; Chartpuk, P. Deformation distribution of the powder green compacts due to changing the number of slider parts in collector die of spiral type. In Abstracts of German-Russian Forum on Nanotechnology; National Research Tomsk Polytechnic University (TPU): Tomsk, Russia, 2013; p. 65. [Google Scholar]
- Dvilis, E.S.; Khasanov, O.L.; Chartpuk, P. Design of ultrasonic and collector molds for industrial technology of the uniaxial dry pressing of ceramic powders. In Proceedings of the 10th International Symposium on Ceramic Materials and Components for Energy and Environmental Applications, Dresden, Germany, 20–23 May 2012; pp. 80–81. [Google Scholar]
- Khazanov, O.L.; Dvilis, E.S.; Sokolov, V.M.; Chartpuk, P. Investigation of the characteristics of displacement isolines in the cylindrical green compact. In Abstracts of German-Russian Forum on Nanotechnology; National Research Tomsk Polytechnic University (TPU): Tomsk, Russia, 2013; p. 64. [Google Scholar]
- Turner, C.D.; Ashby, M.F. Cold isostatic pressing of composite powders—Experimental investigation. Acta Mater. 1996, 44, 4521–4530. [Google Scholar] [CrossRef]
- Yang, H.C.; Kim, J.K.; Kim, K.T. Rubber isostatic pressing and cold isostatic pressing of metal powder. Mater. Sci. Eng. A 2004, 382, 41–49. [Google Scholar] [CrossRef]
- Fu, Y.; Tao, Z.; Hou, X. Weibull distribution of the fracture strength of 99% alumina ceramic reshaped by cold isostatic pressing. Ceram. Int. 2014, 40, 7661–7667. [Google Scholar] [CrossRef]
- He, W.; Wei, Q.; Liu, K.; Shi, Y.; Liu, J. Numerical simulation of cold isostatic pressed alumina parts produced by selective laser sintering and part shape optimization. Ceram. Int. 2013, 39, 9683–9690. [Google Scholar] [CrossRef]
- Kim, H.G.; Lee, J.W.; Kim, K.T. The effect of a rubber mold on densification and deformation of a metal powder compact during cold isostatic pressing. Mater. Sci. Eng. A 2001, 318, 174–182. [Google Scholar] [CrossRef]
- Henderson, R.J.; Chandler, H.W.; Akisanya, A.R.; Barber, H.; Moriarty, B. Finite element modelling of cold isostatic pressing. J. Eur. Ceram. Soc. 2000, 20, 1121–1128. [Google Scholar] [CrossRef]
- Lee, S.C.; Kim, K.T. A densification model for powder materials under cold isostatic pressing—Effect of adhesion and friction of rubber molds. Mater. Sci. Eng. A 2008, 498, 359–368. [Google Scholar] [CrossRef]
- Lin, C.-S.; Lin, S.-T. Effects of granule size and distribution on the cold isostatic pressed alumina. J. Mater. Process. Technol. 2008, 201, 657–661. [Google Scholar] [CrossRef]
- Abe, O.; Iwai, S.; Kanzaki, S.; Masayosh, O.; Hideyo, T. Influence of size and shape on homogeneity of powder compacts formed by cold isostatic pressing (part 1): Press forming of thick cylinders. Int. J. High. Tech. Ceram. 1987, 3, 257–258. [Google Scholar] [CrossRef]
- Timokhova, M.I.; Rachkov, V.S. Quasiisostatic pressing for the production of ceramics. Glass Ceram. 1991, 48, 298–302. [Google Scholar] [CrossRef]
- Timokhova, M.I. The Main Methods for Pressure Molding of Technical Ceramic Products. Glass Ceram. 2001, 58, 349–352. [Google Scholar] [CrossRef]
- Timokhova, M.I. Certain Specifics of Quasi-Isostatic Molding (A Review). Glass Ceram. 2002, 59, 22–26. [Google Scholar] [CrossRef]
- Timokhova, M.I. Quasi-Isostatic Molding in Industrial Production of Ceramics (A Review). Glass Ceram. 2002, 59, 270–275. [Google Scholar] [CrossRef]
- Timokhova, M.I. Vibratory techniques in isostatic pressing technology. Refract. Ind. Ceram. 2006, 47, 152–154. [Google Scholar] [CrossRef]
- Timokhova, M.I. Design specifics of quasiisostatic molds. Refract. Ind. Ceram. 2006, 47, 344–347. [Google Scholar] [CrossRef]
- Timokhova, M.I. Phenomenon of an elastic after effect with quasiisostatic compaction and compact defects. Refract. Ind. Ceram. 2008, 49, 426–431. [Google Scholar] [CrossRef]
- Timokhova, M.I. Physical bases of quasiisostatic compaction of powder materials. Refract. Ind. Ceram. 2009, 50, 26–30. [Google Scholar] [CrossRef]
- Timokhova, M.I. Some properties of elastic press components in powder material quasiisostatic pressing. Refract. Ind. Ceram. 2009, 50, 189–190. [Google Scholar] [CrossRef]
- Timokhova, M.I. Production schemes for quasiisostatic compaction of ceramic objects. Refract. Ind. Ceram. 2009, 50, 262–265. [Google Scholar] [CrossRef]
- Timokhova, M.I. Development stages and introduction into series production of a quasiisostatic production method. Refract. Ind. Ceram. 2009, 50, 340–343. [Google Scholar] [CrossRef]
- Timokhova, M.I. Industrial technology for the automated production of grinding balls by quasiisostatic pressing. Refract. Ind. Ceram. 2011, 52, 389–392. [Google Scholar]
- Timokhova, M.I. Advantages of quasi-isostatic pressing for powder materials. Refract. Ind. Ceram. 2012, 53, 147–150. [Google Scholar]
- Urbanovich, V.S. Consolidation of Nanocrystalline Materials at High Pressures. Nanostructured Materials. NATO ASI Ser. 1998, 50, 405–424. [Google Scholar]
- Vogler, T.J.; Lee, M.Y.; Grady, D.E. Static and dynamic compaction of ceramic powders. Int. J. Solids Struct. 2007, 44, 636–658. [Google Scholar]
- Khoei, A.R.; Biabanaki, S.O.R.; Parvaneh, S.M. Dynamic modeling of powder compaction processes via a simple contact algorithm. Int. J. Mech. Sci. 2012, 64, 196–210. [Google Scholar] [CrossRef]
- Boltachev, G.S.; Nagayev, K.A.; Paranin, S.N.; Spirin, A.V.; Volkov, N.B. Magnetic Pulsed Compaction of Nanosized Powders: Nanotechnology Science and Technology Series; Nova Science Publishers: New York, NY, USA, 2009; p. 96. [Google Scholar]
- Ivanov, V.V.; Paranin, S.N.; Vikhrev, A.N.; Boehme, R.; Schumacher, G. Densification of Ceramic Nano-Sized Powders by Pulsed Magnetic Technique. In Proceedings of the Fourth European Ceramic Society Conference, Riccione, Italy, 2–6 October 1995; Gruppo Editoriale Faenza Editrice: Riccione, Italy; Volume 2, pp. 169–176. [Google Scholar]
- Bokov, A.A.; Boltachev, G.S.; Volkov, N.B.; Zayats, S.V.; Il’ina, A.M.; Nozdrin, A.A.; Paranin, S.N.; Olevskii, E.A. Uniaxial compaction of nanopowders on a magnetic-pulse press. Tech. Phys. 2013, 58, 1459–1468. [Google Scholar] [CrossRef]
- Ivanov, V.; Paranin, S.; Nozdrin, A. Principles of Pulsed Compaction of Ceramic Nano-sized Powders. Key Eng. Mater. 1997, 132–136, 400–403. [Google Scholar]
- Ivashutenko, A.S.; Annenkov, Y.M.; Sivkov, A.A. Double-Action Magnetic-Impulse Compaction of Oxide Nanoceramics. Sci. Sci. 2013, 2, 8. Available online: http://naukovedenie.ru/PDF/13teng213.pdf (accessed on 13 August 2020).
- Kaygorodov, A.S.; Ivanov, V.V.; Khrustov, V.R.; Kotov, Y.A.; Medvedev, A.I.; Osipov, V.V.; Ivanov, M.G.; Orlov, A.N.; Murzakaev, A.M. Fabrication of Nd:Y2O3 transparent ceramics by pulsed compaction and sintering of weakly agglomerated nanopowders. J. Eur. Ceram. Soc. 2007, 27, 1165–1169. [Google Scholar] [CrossRef]
- Sandstrom, D.J. Consolidating metal powders magnetically. Met. Prog. 1964, 86, 215–221. [Google Scholar]
- Boltachev, G.S.; Volkov, N.B.; Chingina, E.A. Nanopowders in dynamic magnetic pulse compaction processes. Nanotechnol. Russ. 2014, 9, 650–659. [Google Scholar]
- Ivanov, V.V.; Ivin, S.Y.; Khrustov, V.R.; Kotov, Y.A.; Murzakaev, A.M.; Paranin, S.N.; Spirin, A.V.; Nikonov, A.V. Fabrication of nanoceramic thin wall tubes by magnetic pulsed compaction and thermal sintering. Sci. Sinter. 2005, 37, 55–60. [Google Scholar] [CrossRef]
- Regis, B.; Rene, D.; Claude, P. Procede Et Dispositif De Compactege D’une Poudre Parimpulsion Electromagnetique Et Materiau Composite Obtenu. France Patent 2597016, 20 October 1989. [Google Scholar]
- Ivanov, V.V.; Shkerin, S.N.; Rempel, A.A.; Khrustov, V.R.; Lipilin, A.S.; Nikonov, A.V. Electrical Conductivity of Zirconia-Based Solid Electrolyte with Submicron Grain Size. Dokl. Phys. Chem. 2010, 433, 125–127. [Google Scholar] [CrossRef]
- Ivanov, V.V.; Kelder, E.M.; Schoonman, J.; Pivkin, N.M.; Kaigorodov, A.S.; Nikonov, A.V.; Ivanova, O.F.; Medvedev, A.I. Influence of Dynamic Compaction on Structure and Mechanical Strength of Composite Spinel-based (LiMn2O4; Li4Ti5O12) Foil Electrodes. Mater. Sci. Forum 2005, 492–493, 129–134. [Google Scholar] [CrossRef]
- Dobrov, S.V.; Ivanov, V.V. Simulation of pulsed magnetic molding of long powdered products. Tech. Phys. 2004, 49, 413–419. [Google Scholar] [CrossRef]
- Ivanov, V.; Dobrov, S.; Paranin, S.; Khrustov, V.; Nikonov, A. Compression of Shells by Pulsed Power Current for Compaction of Thin-Wall Tubes from Nanosized Ceramic Powders. In Proceedings of the 9-th International Conference on Megagauss Magnetic Field Generation and Related Topics, Moscow-St.-Petersburg, Russia, 7–14 July 2002; pp. 132–136. [Google Scholar]
- Chuharev, V.F.; Ustjugov, A.V.; Ivanov, V.V.; Kоtоv, Y.A.; Paranin, S.N. Development of construction technology for solid oxide fuel cell by using tube-like electrolyte of YSZ nanopowder. In Proceedings of the Fifth ISTC Scientific Advisory Committee Seminar “Nanotechnologies in the Area of Physics; Chemistry and Biotechnology”, St Petersburg, Russia, 27–29 May 2002; pp. 72–76. [Google Scholar]
- Bell, W.C.; Dillender, R.D.; Lominac, H.R.; Manning, E.G. Vibratory Compacting of Metal and Ceramic Powders. J. Am. Ceram. Soc. 1955, 38, 396–403. [Google Scholar] [CrossRef]
- Krivda, L.T.; Golubev, T.M. Characteristics of powder displacement during vibratory compaction. Sov. Powder Metall. Met. Ceram. 1966, 5, 857–859. [Google Scholar] [CrossRef]
- Gray, W.A.; Rhodes, G.T. Energy transfer during vibratory compaction of powders. Powder Technol. 1972, 6, 271–281. [Google Scholar] [CrossRef]
- Generalov, M.B. Dynamic Compaction of Powder Materials by Percussive and Percussive-Vibratory Devices. Chem. Petrol. Eng. 2000, 36, 701–708. [Google Scholar] [CrossRef]
- Khasanov, O.L.; Pokholkov, Y.P.; Sokolov, V.M.; Dvilis, E.S.; Bikbaeva, Z.G.; Polisadova, V.V. Particularities of Powerful Ultrasound Action on Nanostructured Powders. MRS Online Proc. Libr. Arch. 1998, 520, 77–82. [Google Scholar] [CrossRef]
- Karban, O.V.; Kanunnikova, O.M.; Khazanov, E.N.; Salamatov, E.I.; Khasanov, O.L.; Taranov, A.V. Effect of ultrasonic vibration on the structure and composition of the interface regions in Ва–W–Ti–O ceramics. Ceram. Int. 2013, 39, 497–502. [Google Scholar] [CrossRef]
- Khasanov, O.L.; Dvilis, E.S.; Sokolov, V.M. Compressibility of the structural and functional ceramic nanopowders. J. Eur. Ceram. Soc. 2007, 27, 749–752. [Google Scholar] [CrossRef]
- Khasanov, O.L.; Pokholkov, Y.P.; Sokolov, V.M.; Dvilis, E.S.; Slosman, A.I.; Matrenin, S.V. Ultrasonic compacting of zirconium ceramics from ultradispersed powders. Glass Ceram. 1995, 52, 177–180. [Google Scholar] [CrossRef]
- Khasanov, O.L.; Dvilis, E.S.; Sokolov, V.M.; Poholkov, Y.P. Ceramic Powders Dry Compaction under Ultrasound Action. Key Eng. Mater. 2004, 264–268, 241–244. [Google Scholar]
- Osipov, V.V.; Khasanov, O.L.; Shitov, V.A.; Dvilis, E.S.; Ivanov, M.G.; Orlov, A.N.; Platonov, V.V.; Vyukhina, I.V.; Kachaev, A.A.; Sokolov, V.M. Optical Nd3+: Y2O3 ceramics of nanopowders compacted by static pressure using the ultrasonic method. Nanotechnol. Russ. 2008, 3, 474–480. [Google Scholar]
- Bagayev, S.N.; Osipov, V.V.; Shitov, V.A.; Pestryakov, E.V.; Kijko, V.S.; Maksimov, R.N.; Lukyashin, K.E.; Orlov, A.N.; Polyakov, K.V.; Petrov, V.V. Fabrication and optical properties of Y2O3-based ceramics with broad emission bandwidth. J. Eur. Ceram. Soc. 2012, 32, 4257–4262. [Google Scholar] [CrossRef]
- Osipov, V.V.; Khasanov, O.L.; Solomonov, V.I.; Shitov, V.A.; Orlov, A.N.; Platonov, V.V.; Spirina, A.V.; Luk’yashin, K.E.; Dvilis, E.S. Highly transparent ceramics with disordered crystal structure. Russ. Phys. J. 2010, 53, 263–269. [Google Scholar] [CrossRef]
- Pivinskii, Y.E. Rheology in ceramic and refractory technology. Principal concepts and rheological models. Refractories 1994, 35, 87–96. [Google Scholar] [CrossRef]
- Pivinskii, Y.E. Rheology in the technology of ceramics and refractories. 2. Dispersed systems; methods of their investigation and evaluation of rheological properties. Refractories 1995, 36, 390–398. [Google Scholar] [CrossRef]
- Pivinskii, Y.E. Rheology in the technology of ceramics and refractories. 3. Thixotropy and a classification of thixotropic systems. Refract. Ind. Ceram. 1996, 37, 15–20. [Google Scholar] [CrossRef]
- Pivinskii, Y.E. Rheology in the technology of ceramics and refractories. 4. Thixotropic systems and factors determining their properties. Refract. Ind. Ceram. 1996, 37, 341–347. [Google Scholar] [CrossRef]
- Pivinskii, Y.E. Rheology in the technology of ceramics and refractories. Part 5. Dilatancy: Classification and types of dilatant systems. Refract. Ind. Ceram. 1997, 38, 54–61. [Google Scholar] [CrossRef]
- Pivinskii, Y.E. Rheology in the technology of ceramics and refractories. Part 6. Dilatant systems and factors determining their properties. Refract. Ind. Ceram. 1997, 38, 131–142. [Google Scholar] [CrossRef]
- Pivinskii, Y.E.; Doroganov, E.A. Rheology in manufacturing ceramics and refractories. 7. Polydispersity and dilatancy of HCBS of a mixed composition. Refract. Ind. Ceram. 1998, 39, 415–418. [Google Scholar] [CrossRef]
- Pivinskii, Y.E. Rheology in the technology of ceramics and refractories. 8. Disperse systems with composite flow. Refract. Ind. Ceram. 1998, 39, 433–439. [Google Scholar] [CrossRef]
- Pivinskii, Y.E.; Doroganov, E.A. Rheology in the technology of ceramics and refractories. 9. Rheotechnological properties of plasticized HCBS with a siliceous composition. Refract. Ind. Ceram. 1999, 40, 199–202. [Google Scholar] [CrossRef]
- Doroganov, E.A.; Pivinskii, Y.E. Rheology in the Technology of Ceramics and Refractories. 9. Choice of Equation Describing the Flow of HCBS of a Mixed Composition. Refract. Ind. Ceram. 2001, 42, 64–70. [Google Scholar] [CrossRef]
- Mosin, Y.M.; Krivoshchepov, A.F.; Shikhieva, G.G.; Bulynko, A.V. Formation of the interface between an oxide and a high-polymer solution. Glass Ceram. 1997, 54, 294–297. [Google Scholar] [CrossRef]
- Efremova, S.S.; Mosin, Y.M.; Shatalova, M.V. Binders based on aqueous dispersions of polymers for plastic shaping of ceramic products. Glass Ceram. 1998, 55, 116–118. [Google Scholar] [CrossRef]
- Mosin, Y.M.; Leonov, V.G. Some properties of thermoplastic mixtures for forming ceramics by extrusion. Glass Ceram. 1995, 52, 91–93. [Google Scholar] [CrossRef]
- Mosin, Y.M.; Mamedova, A.Y. Temporary industrial binders for molding of industrial ceramics (Review). Glass Ceram. 1994, 51, 249–254. [Google Scholar] [CrossRef]
- Mamedova, A.Y.; Mosin, Y.M. Effect of the physicochemical properties of the components of temporary technological binders on the deformation behavior of corundum plastic mixtures. Glass Ceram. 1996, 53, 207–210. [Google Scholar] [CrossRef]
- Mosin, Y.M.; Shikhieva, G.G. Effect of the boundary-layer parameters on technological properties of various oxide mixtures and semiproducts obtained by plastic molding. Refract. Ind. Ceram. 1999, 40, 341–346. [Google Scholar] [CrossRef]
- Mosin, Y.M.; Kuleshova, A.V.; Charikova, O.G. Effect of die material in molding equipment on deformation of plastic ceramic mixtures. Glass Ceram. 1995, 52, 153–157. [Google Scholar] [CrossRef]
- Rice, R.W. Comparison of physical property-porosity behaviour with minimum solid area models. J. Mater. Sci. 1996, 31, 1509–1528. [Google Scholar] [CrossRef]
- Muscat, D.; Pugh, M.D.; Drew, R.A.L.; Pickup, H.; Steele, D. Microstructure of an extruded β -silicon nitride whisker-reinforced silicon nitride composite. J. Am. Ceram. Soc. 1992, 75, 2713–2718. [Google Scholar] [CrossRef]
- Mutsuddy, B.C.; Ford, R.G. Ceramic Injection Molding; Chapman & Hall: London, UK, 1995. [Google Scholar]
- Jian, W. (Ed.) Some Critical Issues for Injection Molding; IntechOpen: London, UK, 2012. [Google Scholar]
- Attia, U.M.; Alcock, J.R. A review of micro-powder injection moulding as a microfabrication technique. J. Micromech. Microeng. 2011, 21, 043001. [Google Scholar] [CrossRef]
- Moritz, T.; Lenk, R. Ceramic injection moulding: A review of developments in production technology; materials and applications. Powder Inject. Mould. Int. 2009, 3, 23–34. [Google Scholar]
- Yin, H.; Jia, C.; Qu, X. Micro powder injection molding—Large scale production technology for micro-sized components. Sci. China Ser. E Technol. Sci. 2008, 51, 121–126. [Google Scholar] [CrossRef]
- German, R.M. Medical and dental applications for microminiature powder injection moulding (microPIM) —A roadmap for growth. PIM Int. 2009, 3, 21–29. [Google Scholar]
- Ruprecht, R.; Gietzelt, T.; Miiller, K.; Piotter, V.; Haußelt, J. Injection molding of microstructured components from plastics; metals and ceramics. Microsyst. Technol. 2002, 8, 351–358. [Google Scholar] [CrossRef]
- Baek, E.R.; Supriadi, S.; Choi, C.-J.; Lee, B.-T.; Lee, J.-W. Effect of particle size in feedstock properties in micro powder injection molding. Mater. Sci. Forum. 2007, 534–536, 349–352. [Google Scholar] [CrossRef]
- Baltes, H.; Brand, O.; Fedder, G.K.; Hierold, C.; Korvink, J.; Tabata, O. (Eds.) Advanced Micro and Nanosystems Vol. 3. Microengineering of Metals and Ceramics; WILEY-VCH: Weinheim, Germany, 2005. [Google Scholar]
- Rak, Z.S. New trends in powder injection moulding. Powder Metall. Met. Ceram. 1999, 38, 126–132. [Google Scholar] [CrossRef]
- Checot-Moinard, D.; Rigollet, C.; Lourdin, P. Powder injection moulding PIM of feedstock based on hydrosoluble binder and submicronic powder to manufacture parts having micro-details. Powder Technol. 2010, 12, 941–946. [Google Scholar] [CrossRef]
- Bhargava, A.; Mackinnon, I.D.R.; Yamashita, T.; Alarco, J. Shape-Formed Ceramic Superconductors by Slip-Casting. J. Electron. Mater. 1995, 24, 1851–1854. [Google Scholar] [CrossRef]
- Olhero, S.M.; Miranzo, P.; Ferreira, J.M.F. AlN ceramics processed by aqueous slip casting. J. Mater. Res. 2006, 21, 2460–2469. [Google Scholar] [CrossRef] [Green Version]
- Žmak, I.; Ćorić, D.; Mandić, V.; Ćurković, L. Hardness and Indentation Fracture Toughness of Slip Cast Alumina and Alumina-Zirconia Ceramics. Materials 2020, 13, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramesh, S.; Siah, L.F.; Nor Azmah, A.K. Sintering behaviour of slip-cast Al2O3-Y-TZP composites. J. Mater. Sci. 2000, 35, 5509–5515. [Google Scholar] [CrossRef]
- Tallon, C.; Limacher, M.; Franks, G.V. Effect of particle size on the shaping of ceramics by slip casting. J. Eur. Ceram. Soc. 2010, 30, 2819–2826. [Google Scholar] [CrossRef]
- Khan, A.U.; Haq, A.U.; Mahmood, N.; Ali, Z. Rheological studies of aqueous stabilised nano-zirconia particle suspensions. Mater. Res. 2012, 15, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Shojai, F.; Pettersson, A.B.A.; Mäntylä, T.; Rosenholm, J.B. Electrostatic and electrosteric stabilization of aqueous slips of 3Y–ZrO2 powder. J. Eur. Ceram. Soc. 2000, 20, 277–283. [Google Scholar] [CrossRef]
- Sever, I.; Žmak, I.; Ćurković, L.; Švagelj, Z. Stabilization of Highly Concentrated Alumina Suspensions by Different Dispersants. Trans. FAMENA 2018, 42, 61–70. [Google Scholar] [CrossRef]
- King, A.G. Ceramic Technology and Processing: A Practical Working Guide. (Materials and Processing Technology), 1st ed.; Willian Andrew: Norwich, NY, USA, 2003. [Google Scholar]
- Pivinskii, Y.E. Nanodisperse silica and some aspects of nanotechnologies in the field of silicate materials science. Part 1. Refract. Ind. Ceram. 2007, 48, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Pivinskii, Y.E. Nanodisperse silica and some aspects of nanotechnologies in the field of silicate materials science. Part 2. Refract. Ind. Ceram. 2007, 48, 435–443. [Google Scholar] [CrossRef]
- Pivinskii, Y.E. Nanodispersed silica and some aspects of nanotechnology in the field of silicate materials science. Part 3. Refract. Ind. Ceram. 2008, 49, 38–47. [Google Scholar] [CrossRef]
- Pivinskii, Y.E. Nanodispersed silica and some aspects of nanotechnology in the field of silicate materials science. Part 4. Refract. Ind. Ceram. 2008, 49, 67–74. [Google Scholar] [CrossRef]
- German, R.M.; Bose, A. Injection Molding of Metals and Ceramics; Metal Powder Ind. Fed: Princeton, NJ, USA, 1997. [Google Scholar]
- German, R.M. Theory of thermal debinding. Int. J. Powder Metall. 1987, 23, 237–245. [Google Scholar]
- Frolova, M.G.; Leonov, A.V.; Kargin, Y.F.; Lysenkov, A.S.; Titov, D.D.; Petrakova, N.V.; Perevislov, S.N.; Konovalov, A.A.; Sevostyanov, M.A.; Melnikova, I.S. Molding Features of Silicon Carbide Products by the Method of Hot Slip Casting. Inorg. Mater. Appl. Res. 2018, 9, 675–678. [Google Scholar] [CrossRef]
- Krindges, I.; Andreola, R.; Perottoni, C.A.; Zorzi, J.E. Low-pressure injection molding of ceramic springs. Int. J. Appl. Ceram. Technol. 2008, 5, 243–248. [Google Scholar] [CrossRef]
- Peltsman, M.; Medvedovski, E. Low pressure moulding mass production technology of complex shape advanced ceramic components. Adv. Appl. Ceram. 2012, 111, 333–344. [Google Scholar]
- Zorzi, J.E.; Perottoni, C.A.; Da Jornada, J.A.H. Wax-based binder for low-pressure injection molding and the robust production of ceramic parts. Ind. Ceram. 2003, 23, 47–49. [Google Scholar]
- Knitter, R.; Haußelt, J.; Loebbecke, B. Rheological properties of alumina feedstocks for the low-pressure injection moulding process. J. Eur. Ceram. Soc. 2009, 29, 1595–1602. [Google Scholar]
- Barbieri, R.A.; Perottoni, C.A.; Zorzi, J.E. Influence of sintering temperature on the mechanical properties of alumina springs. Int. J. Appl. Ceram. Technol. 2012, 9, 599–605. [Google Scholar] [CrossRef]
- Costa, C.A.; Michels, A.F.; Kiper, M.E. Welding lines formation in holes obtained by low pressure injection molding of ceramic parts. Ceramica 2018, 64, 97–103. [Google Scholar] [CrossRef]
- Lenk, R.; Krivoshchepov, A.P. Effect of surface active substances on the rheological properties of silicon carbide suspensions in paraffin. J. Am. Ceram. Soc. 2000, 83, 273–276. [Google Scholar] [CrossRef]
- Jabbari, M.; Bulatova, R.; Tok, A.; Bahl, C.; Mitsoulis, E.; Hattel, J.H. Ceramic tape casting: A review of current methods and trends with emphasis on rheological behaviour and flow analysis. Mater. Sci. Eng. B. 2016, 212, 39–61. [Google Scholar] [CrossRef]
- Mistler, R.E. Tape casting: The basic process for meeting the needs of the electronics industry. Am. Ceram. Soc. Bull. 1990, 69, 1022–1026. [Google Scholar]
- Hotza, D.; Greil, P. Review: Aqueous tape casting of ceramic powders. Mater. Sci. Eng. A. 1995, 202, 206–217. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, D.; Lin, Q.; Huang, Z. Preparation of TiC ceramics through aqueous tape casting. Ceram. Int. 2005, 31, 475–480. [Google Scholar] [CrossRef]
- Liu, S.; Chen, P.; Li, Y.; Li, W.; Gao, S.; Ye, F. Effect of stacking pressure on the properties of Si3N4 ceramics fabricated by aqueous tape casting. Ceram. Int. 2016, 42, 16281–16286. [Google Scholar] [CrossRef]
- Liu, S.; Ye, F.; Liu, L.; Liu, Q.; Li, J. Preparation of aluminum nitride ceramics by aqueous tape casting. Mater. Manufact. Proc. 2015, 30, 605–610. [Google Scholar] [CrossRef]
- Michálek, M.; Blugan, G.; Graule, T.; Kuebler, J. Comparison of aqueous and non-aqueous tape casting of fully stabilized ZrO2 suspensions. Powder Technol. 2015, 274, 276–283. [Google Scholar] [CrossRef]
- Qiao, Y.J.; Liu, Y.Y.; Liu, A.D.; Wang, Y. Boron carbide green sheet processed by environmental friendly non-aqueous tape casting. Ceram. Int. 2012, 38, 2319–2324. [Google Scholar] [CrossRef]
- Ding, M.; Shi, Y.; Xie, J.; Zhou, D.; Wang, Y.; Lei, F.; Zhang, L. Optimization of non-aqueous tape casting of high solid loading slurry for aluminum nitride ceramic substrates. Int. J. Appl. Ceram. Technol. 2020, 17, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Nahass, P.; Rhine, W.E.; Pober, R.L.; Bowen, H.K.; Robbins, W.L. A comparison of aqueous and non-aqueous slurries for tape-casting; and dimensional stability in green tapes. In Materials and Processes in Microelectronic Systems; Ceramic Transactions 15; Nair, K.M., Pohanka, R., Buchanan, R.C., Eds.; The American Ceramic Society: Westerville, OH, USA, 1990; pp. 355–364. [Google Scholar]
- Lewis, J.; Blackman, K.A.; Ogden, A.L.; Payne, J.A.; Francis, L. Rheological property and stress development during drying of tape-cast ceramic layers. J. Am. Ceram. Soc. 2005, 79, 3225–3234. [Google Scholar] [CrossRef]
- Hotza, D.; Nishihora, R.K.; Machado, R.A.F.; Geffroy, P.-M.; Chartier, T.; Bernard, S. Tape casting of preceramic polymers toward advanced ceramics: A review. Int. J. Ceram. Eng. Sci. 2019, 1, 21–41. [Google Scholar] [CrossRef]
- Tan, Q.; Zhang, Z.; Tang, Z.; Luo, S.; Fang, K. Influence of polyelectrolyte dispersant on slip preparation of nano-sized tetragonal polycrystals zirconia for aqueous-gel-tape-casting process. Mater. Chem. Phys. 2003, 80, 615–619. [Google Scholar] [CrossRef]
- Wiecinska, P.; Graule, T.; Bachonko, M. Organic additives in gel-tape casting of ceramic powders—A novel approach to the problem of elasticity and cracking of thin tapes. J. Eur. Ceram. Soc. 2015, 35, 3949–3957. [Google Scholar] [CrossRef]
- Rahman, M.A.; Walls, C.A.; Omatete, O.O.; Ogle, R.B.; Kirby, G.H.; McMillan, A.D. Gelcasting. In The Handbook of Ceramic Engineering; Rahman, M.N., Ed.; Marcel Dekker: New York, NY, USA, 1998; pp. 1–15. [Google Scholar]
- Young, A.C.; Omatete, O.O.; Janney, M.A.; Menchhofer, P.A. Gelcasting of Alumina. J. Am. Ceram. Soc. 1991, 74, 612–618. [Google Scholar] [CrossRef]
- Omatete, O.O.; Janney, M.A.; Nunn, S.D. Gelcasting: From Laboratory Development Toward Industrial Production. J. Eur. Ceram. Soc. 1997, 17, 407–413. [Google Scholar] [CrossRef] [Green Version]
- Tari, G. Gelcasting Ceramics: A Review. Am. Ceram. Soc. Bull. 2003, 82, 43–47. [Google Scholar]
- Yang, J.; Yu, J.; Huang, Y. Recent developments in gelcasting of ceramics. J. Eur. Ceram. Soc. 2011, 31, 2569–2591. [Google Scholar] [CrossRef]
- Colomban, P. Gel technology in ceramics, glass-ceramics and ceramic-ceramic composites. Ceram. Int. 1989, 15, 23–50. [Google Scholar] [CrossRef]
- Krause, C. ORNL’s gelcasting: Molding the future of ceramic forming? In Oak Ridge National Laboratory Review; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1995; Volume 28, pp. 25–37. Available online: https://www.ornl.gov/sites/default/files/ORNL%20Review%20v28n4%201995_0.pdf (accessed on 13 August 2020).
- Jamalabad, V.R.; Whalen, P.J.; Pollinger, J.; Agarwala, M.K.; Danforth, S.C. Gelcast Molding with Rapid Prototyped Fugitive Molds. In Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, USA, 12–14 August 1996; pp. 71–78. [Google Scholar]
- Bocanegra-Bernal, M.H.; Matovic, B. Dense and near-net-shape fabrication of Si3N4 ceramics. Mater. Sci. Eng. A 2009, 500, 130–149. [Google Scholar] [CrossRef]
- Janssen, R.; Scheppokat, S.; Claussen, N. Tailor-made ceramic-based components—Advantages by reactive processing and advanced shaping techniques. J. Eur. Ceram. Soc. 2008, 28, 1369–1379. [Google Scholar] [CrossRef]
- Santacruz, I.; Baudin, C.; Moreno, R.; Nieto, M.I. Improved green strength of ceramics through aqueous gelcasting. Adv. Eng. Mater. 2004, 6, 672–676. [Google Scholar] [CrossRef]
- Ha, J.S. Effect of atmosphere type on gelcasting behavior of Al2O3 and evaluation of green strength. Ceram. Int. 2000, 26, 251–254. [Google Scholar] [CrossRef]
- Janney, M.A.; Omatete, O.O.; Walls, C.A.; Nunn, S.D.; Ogle, R.J.; Kirby, G.H. Westmoreland Development of Low-Toxicity Gelcasting Systems. J. Am. Ceram. Soc. 1998, 81, 581–591. [Google Scholar] [CrossRef]
- Huha, M.A.; Lewis, J.A. Polymer effects on the chemorheological and drying behavior of alumina-poly(vinyl alcohol) gelcasting suspensions. J. Am. Ceram. Soc. 2000, 83, 1957–1963. [Google Scholar] [CrossRef]
- Morissette, S.L.; Lewis, J.A.; Cesarano, J.; Dimos, D.B.; Baer, T.Y. Solid Freeform fabrication of aqueous alumina-poly(vinyl alcohol) gelcasting suspensions. J. Am. Ceram. Soc. 2000, 83, 2409–2416. [Google Scholar] [CrossRef]
- Zhao, H.; Ye, C.; Fan, Z. A simple and effective method for gel casting of zirconia green bodies using phenolic resin as a binder. J. Eur. Ceram. Soc. 2014, 34, 1457–1463. [Google Scholar] [CrossRef]
- Liu, G.; Attallah, M.M.; Loretto, M.; Herny, E.; Jiang, Y.; Button, T.W. Gel casting of sialon ceramics based on water soluble epoxy resin. Ceram. Int. 2015, 41, 11534–11538. [Google Scholar] [CrossRef]
- Zhuang, M.; Wang, M.; Zhao, Y.; Zheng, B.; Guo, A.; Liu, J. Fabrication and high-temperature properties of Y-TZP ceramic helical springs by a gel-casting process. Ceram. Int. 2015, 41, 5421–5428. [Google Scholar] [CrossRef]
- He, X.; Su, B.; Zhou, X.; Yang, J.; Zhao, B.; Wang, X.; Yang, G.; Tang, Z.; Qiu, H. Gelcasting of alumina ceramics using an egg white protein binder system. Ceramics-Silikáty 2011, 55, 1–7. [Google Scholar]
- Dhara, S.; Bhargava, P. Egg white as an environmentally friendly low-cost binder for gelcasting of ceramics. J. Am. Ceram. Soc. 2001, 84, 3048–3050. [Google Scholar] [CrossRef]
- Millan, A.J.; Moreno, R.; Nieto, M.I. Near-net shaping of aqueous alumina slurries using carrageenan. J. Eur. Ceram. Soc. 2002, 22, 297–303. [Google Scholar] [CrossRef]
- Lyckfeldt, O.; Brandt, J.; Lesca, S. Protein forming—A novel shaping technique for ceramics. J. Eur. Ceram. Soc. 2000, 20, 2551–2559. [Google Scholar] [CrossRef]
- Adolfsson, E. Gelcasting of Zirconia Using Agarose. J. Am. Ceram. Soc. 2006, 89, 1897–1902. [Google Scholar] [CrossRef]
- Christian, J.A.; Kenis, P.J.A. Fabrication of Ceramic Microscale Structures. J. Am. Ceram. Soc. 2007, 90, 2779–2783. [Google Scholar]
- Liu, D.M. Control of yield stress in low-pressure ceramic injection moldings. Ceram. Int. 1999, 25, 587–592. [Google Scholar] [CrossRef]
- Yang, J.L.; Su, L.; Ma, L.G. Colloidal injection moulding of ceramics. Am. Ceram. Soc. Bull. 2002, 224–226, 667–672. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, L.G.; Le, H.R. Improving the homogeneity and reliability of ceramic parts with complex shapes by pressure-assisted gel-casting. Mater. Lett. 2004, 58, 3893–3997. [Google Scholar] [CrossRef]
- Cawley, J.D. Solid freeform fabrication of ceramics. Curr. Opin. Solid State Mater. Sci. 1999, 4, 483–489. [Google Scholar] [CrossRef]
- Vaezi, M.; Seitz, H.; Yang, S. A review on 3D micro-additive manufacturing technologies. Int. J. Adv. Manuf. Technol. 2013, 67, 1721–1754. [Google Scholar] [CrossRef]
- Sun, W.; Dcosta, D.J.; Lin, F.; El-Raghy, T. Freeform fabrication of Ti3SiC2 powder-based structures: Part I: Integrated fabrication process. J. Mater. Proc. Technol. 2002, 127, 343–351. [Google Scholar] [CrossRef]
- Dcosta, D.J.; Sun, W.; Lin, F.; EI-Raghy, T. Freeform fabrication of Ti3SiC2 powder-based structures: Part II: Characterization and microstructure evaluation. J. Mater. Proc. Technol. 2002, 127, 352–360. [Google Scholar] [CrossRef]
- Moon, J.; Grau, J.E.; Knezevic, V.; Cima, M.J.; Sachs, E.M. Ink-jet printing of binders for ceramic components. J. Am. Ceram. Soc. 2002, 85, 755–762. [Google Scholar] [CrossRef]
- Brady, G.A.; Halloran, J.W. Stereolithography of ceramic suspensions. Rapid Prototyp. J. 1997, 3, 61–65. [Google Scholar] [CrossRef]
- Manjooran, N.J.; Kumar, A.; Sigmund, W.M. Development of a liquid toner for electro-photographic solid free form fabrication. J. Eur. Ceram. Soc. 2006, 26, 2459–2465. [Google Scholar] [CrossRef]
- Smay, J.E.; Ratson, G.; Shepard, R.F.; Cesarano, J., III; Lewis, J.A. Directed colloidal assembly of 3D periodic structures. Adv. Mater. 2002, 14, 1279–1283. [Google Scholar] [CrossRef]
- Zhao, X.; Evans, J.R.G.; Edirishinghe, M.J. Direct ink-jet printing of vertical walls. J. Am. Ceram. Soc. 2002, 85, 2113–2115. [Google Scholar] [CrossRef]
- Allahverdi, M.; Danforth, S.C.; Jafari, M.; Safari, A. Processing of advanced electroceramic components by fused deposition technique. J. Eur. Ceram. Soc. 2001, 21, 1485–1490. [Google Scholar] [CrossRef]
- Su, B.; Dhara, S.; Wang, L. Green ceramic machining: A top-down approach for the rapid fabrication of complex-shaped ceramics. Int. J. Eur. Ceram. Soc. 2008, 28, 2109–2115. [Google Scholar] [CrossRef]
- Halloran, J.W. Freeform fabrication of ceramics. Br. Ceram. Proc. 1999, 59, 17–28. [Google Scholar] [CrossRef]
- Kumar, D.B.R.; Reddy, M.R.; Mulay, V.N.; Krishnamurti, N. Acrylic co-polymer emulsion binders for green machining of ceramics. Eur. Polym. J. 2000, 36, 1503–1510. [Google Scholar] [CrossRef]
- Mohanty, S.; Rameshbabu, A.P.; Manda, S.; Su, B.; Dhara, S. Critical issues in near net shape forming via green machining of ceramics: A case study of alumina dental crown. J. Asian Ceram. Soc. 2013, 1, 274–281. [Google Scholar] [CrossRef]
- Mohanty, S.; Rameshbabu, A.P.; Dhara, S. Net shape forming of green alumina via CNC machining using diamond embedded tool. Ceram. Int. 2013, 39, 8985–8993. [Google Scholar] [CrossRef]
- Strakna, T.J.; Jahanmir, S.; Allor, R.L.; Kumar, K.V. Influence of grinding direction on fracture strength of silicon nitride. J. Eng. Mater. Technol. 1996, 118, 335–342. [Google Scholar] [CrossRef]
- Li, J.-Z.; Wu, T.; Yu, Z.-Y.; Zhang, L.; Chen, G.-Q.; Guo, D.-M. Micro machining of pre-sintered ceramic green body. J. Mater. Proc. Techn. 2012, 212, 571–579. [Google Scholar] [CrossRef]
- Margarido, A.; Purquerio, B.M.; Foschini, C.R.; Fortulan, C.A. Influence of the green-machining parameters on the mechanical properties of alumina rods. Int. J. Adv. Manufac. Technol. 2017, 88, 3475–3484. [Google Scholar] [CrossRef] [Green Version]
- Kamboj, R.K.; Dhara, S.; Bhargava, P. Machining behaviour of green gelcast ceramics. J. Eur. Ceram. Soc. 2003, 23, 1005–1011. [Google Scholar] [CrossRef]
- Nunn, S.D.; Kirby, G.H. Green machining of gelcast ceramic materials. Ceram. Eng. Sci. Proc. 1996, 17, 209–213. [Google Scholar]
- Desfontaines, M.; Jorand, Y.; Gonon, M.; Fantozzi, G. Characterisation of the green machinability of AlN powder compacts. J. Eur. Ceram. Soc. 2004, 25, 781–791. [Google Scholar] [CrossRef]
- Bukvic, G.; Sanchez, L.E.A.; Fortulan, C.A.; Fortulan, A.A.; Marinescu, I.D. Green machining oriented to diminish density gradient for minimization of distortion in advanced ceramics. Mach. Sci. Technol. Int. J. 2012, 16, 228–246. [Google Scholar] [CrossRef]
- Ng, S.H.; Hull, J.B.; Henshall, J.L. Machining of novel alumina/cyanoacrylate green ceramic compacts. J. Mater. Proc. Technol. 2006, 175, 299–305. [Google Scholar] [CrossRef]
- Dadhich, P.; Srivas, P.K.; Mohanty, S.; Dhara, S. Microfabrication of green ceramics: Contact vs. non-contact machining. J. Eur. Ceram. Soc. 2015, 35, 3909–3916. [Google Scholar] [CrossRef]
- Yang, J.; Yu, J.; Cui, Y.; Huang, Y. New laser machining technology of Al2O3 ceramic with complex shape. Ceram. Int. 2012, 38, 3643–3648. [Google Scholar] [CrossRef]
- Yapryntsev, A.D.; Baranchikov, A.E.; Ivanov, V.K. Layered rare-earth hydroxides: A new family of anion-exchangeable layered inorganic materials. Russ. Chem. Rev. 2020, 89, 629–666. [Google Scholar] [CrossRef]
- Kasyanova, A.V.; Tarutina, L.R.; Rudenko, A.O.; Lyagaeva, J.G.; Medvedev, D.A. Ba(Ce; Zr)O3-based electrodes for protonic ceramic electrochemical cells: Towards highly comible functionality and triple-conducting behavior. Russ. Chem. Rev. 2020, 89, 667–692. [Google Scholar] [CrossRef]
- Zak, P.P.; Lapina, V.A.; Pavich, T.A.; Trofimov, A.V.; Trofimova, N.N.; Tsaplev, Y.B. Luminescent materials for modern light sources. Russ. Chem. Rev. 2017, 86, 831–844. [Google Scholar] [CrossRef]
- Belousov, V.V. Innovative oxide materials for electrochemical energy conversion and oxygen separation. Russ. Chem. Rev. 2017, 86, 934–950. [Google Scholar] [CrossRef]
- Semenov, K.N.; Charykov, N.A.; Postnov, V.N.; Sharoyko, V.V.; Murin, I.V. Phase equilibria in fullerene-containing systems as a basis for development of manufacture and application processes for nanocarbon materials. Russ. Chem. Rev. 2016, 85, 38–59. [Google Scholar] [CrossRef]
- Yaroslavtsev, A.B. Solid electrolytes: Main prospects of research and development. Russ. Chem. Rev. 2016, 85, 1255–1276. [Google Scholar] [CrossRef]
- Szyniszewski, S.; Vogel, R.; Bittner, F.; Jakubczyk, E.; Anderson, M.; Pelacci, M.; Chinedu, A.; Endres, H.-J.; Hipke, T. Non-cuttable material created through local resonance and strain rate effects. Sci. Rep. 2020, 10, 11539. [Google Scholar] [CrossRef]
- Leonov, A.A.; Khasanov, A.O.; Danchenko, V.A.; Khasanov, O.L. Spark plasma sintering of ceramic matrix composite based on alumina, reinforced by carbon nanotubes. IOP Conf. Ser. Mater. Sci. Eng. 2017, 286, 012034. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, J.; Wang, L.; Peng, F.; Liu, H.; Zhang, J.; Guo, Z. In-situ pyrolyzed polymethylsilsesquioxane multi-walled carbon nanotubes derived ceramic nanocomposites for electromagnetic wave absorption. Ceram. Int. 2019, 45, 11756–11764. [Google Scholar] [CrossRef]
- Mei, H.; Xu, Y.; Sun, Y.; Bai, Q.; Cheng, L. Carbon nanotube buckypaper-reinforced SiCN ceramic matrix composites of superior electrical conductivity. J. Eur. Ceram. Soc. 2016, 36, 1893–1898. [Google Scholar] [CrossRef]
- Asl, M.S.; Farahbakhsh, I.; Nayebi, B. Characteristics of multi-walled carbon nanotube toughened ZrB2–SiC ceramic composite prepared by hot pressing. Ceram. Int. 2016, 42, 1950–1958. [Google Scholar]
- Franchin, G.; Wahl, L.; Colombo, P. Direct ink writing of ceramic matrix composite structures. J. Am. Ceram. Soc. 2017, 100, 4397–4401. [Google Scholar] [CrossRef]
- Moni, P.; Wilhelm, M.; Rezwan, K. The influence of carbon nanotubes and graphene oxide sheets on the morphology, porosity, surface characteristics and thermal and electrical properties of polysiloxane derived ceramics. RSC Adv. 2017, 7, 37559–37567. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Sprengard, J.; Ju, L.; Hao, A.; Saei, M.; Liang, R.; Xu, C. Three-dimensional-linked carbon fiber-carbon nanotube hybrid structure for enhancing thermal conductivity of silicon carbonitride matrix composites. Carbon 2016, 108, 38–46. [Google Scholar] [CrossRef]
- Rivero-Antúnez, P.; Cano-Crespo, R.; Esquivias, L.; De la Rosa-Fox, N.; Zamora-Ledezma, C.; Domínguez-Rodríguez, A.; Morales-Flórez, V. Mechanical characterization of sol-gel alumina-based ceramics with intragranular reinforcement of multiwalled carbon nanotubes. Ceram. Int. 2020, 46, 19723–19730. [Google Scholar] [CrossRef]
- Shutilov, R.A.; Kuznetsov, V.L.; Moseenkov, S.I.; Karagedov, G.R.; Krasnov, A.A.; Logachev, P.V. Vacuum-tight ceramic composite materials based on alumina modified with multi-walled carbon nanotubes. Mater. Sci. Eng. B 2020, 254, 114508. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, Y.; Wang, Y.; Mo, F.; Qian, G.; Yu, D.; Zhang, X. Well-dispersed carbon nanotubes for greatly enhanced mechanical properties of alumina-based composites. Refract. Ind. Ceram. 2017, 58, 188–193. [Google Scholar] [CrossRef]
- Yang, J.; Downes, R.; Yu, Z.; Park, J.G.; Liang, R.; Xu, C. Strong and ultra-flexible polymer-derived silicon carbonitride nanocomposites by aligned carbon nanotubes. Ceram. Int. 2016, 42, 13359–13367. [Google Scholar] [CrossRef]
- Reyes-Rojas, A.; Dominguez-Rios, C.; Garcia-Reyes, A.; Aguilar-Elguezabal, A.; Bocanegra-Bernal, M.H. Sintering of carbon nanotube-reinforced zirconia-toughened alumina composites prepared by uniaxial pressing and cold isostatic pressing. Mater. Res. Expr. 2018, 5, 105602. [Google Scholar] [CrossRef]
- Ge, P.; Sun, K.; Li, A.; Pingji, G. Improving the electrical and microwave absorbing properties of Si3N4 ceramics with carbon nanotube fibers. Ceram. Int. 2018, 44, 2727–2731. [Google Scholar] [CrossRef]
- Dillon, F.C.; Moghal, J.; Koós, A.; Lozano, J.G.; Miranda, L.; Porwal, H.; Grobert, N. Ceramic composites from mesoporous silica coated multi-wall carbon nanotubes. Microporous Mesoporous Mater. 2015, 217, 159–166. [Google Scholar] [CrossRef]
- Aguilar-Elguézabal, A.; Bocanegra-Bernal, M.H. Fracture behaviour of α-Al2O3 ceramics reinforced with a mixture of single-wall and multi-wall carbon nanotubes. Compos. B Eng. 2014, 60, 463–470. [Google Scholar] [CrossRef]
# | Matrix | CNT Type | CNT Content | Molding Method | Property Being Optimized | Application | Ref. |
---|---|---|---|---|---|---|---|
1 | α-Al2O3 | MWCNT | 3 vol% | Dry pressing | Hardness and toughness | Biomedicine, aerospace and automobile industries | [220] |
2 | SiC | MWCNT | 0–9 mas% | Cold isostatic pressing | Microwave absorption, reflection loss | Weather radars, Doppler and telephone microwave relay systems, stealth technologies | [221] |
3 | SiCN | MWCNT buckypaper | 50 mas% | Gel casting | Electrical conductivity | High-temperature electrical devices | [222] |
4 | ZrB2-SiC | MWCNT | 10 vol% | Hot pressing | Fracture toughness | Thermal protection systems of hypersonic reentry aerospace vehicles | [223] |
5 | SiOC | Short carbon fibers | 15–30 vol% | Extrusion molding (direct ink writing) | Porosity, compressive strength | N/A | [224] |
6 | SiOC | MWCNT + graphene oxide | 1–10 mas% | Gel casting | Electrical conductivity | Hight-temperature fuel cells | [225] |
7 | SiCN | Carbon fibers + short CNT or long CNT | 45–55 vol% | Gel casting | Thermal conductivity, porosity | High-temperature structural applications | [226] |
8 | α-Al2O3 | MWCNT | 5 mas% | Gel casting | Indentation fracture resistance | N/A | [227] |
9 | α-Al2O3 | MWCNT | 0.35 mas% | Cold isostatic pressing | Electric conductivity, vacuum tightness | Vacuum electrophysical installations | [228] |
10 | α-Al2O3 | MWCNT | 1.5 mas% | Hot pressing | Flexure strength, fracture toughness | Biomedicine, aerospace and automobile industries | [229] |
11 | SiCN | Aligned carbon nanotubes | 60 vol% | Gel casting | Flexibility | Thermal protection system and battery materials | [230] |
12 | α-Al2O3-ZrO2 zirconia toughened alumina (ZTA) | SWCNT, MWCNT | 0.1 mas% | Cold isostatic pressing | Fracture toughness, microhardness | Pump pistons, wear sleeves, spraying nozzles, steering nozzles, valve control discs, and as biomaterials for hip arthroplasty. | [231] |
13 | Si3N4 | Continuous multilayered carbon nanotube fibers | 7 mas% | Cold isostatic pressing | Oxidation resistance, conductivity, microwave absorption | Multifunctional structural composite materials | [232] |
14 | Mesoporous SiO2 | MWCNT, including N- and B-doped | 2.5 mas% | Hot pressing | Hardness | Structural materials | [233] |
15 | α-Al2O3 | SWCNT, MWCNT | 0.05 mas% | Cold isostatic pressing | Hardness, fracture toughness. | Structural materials | [234] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meshalkin, V.P.; Belyakov, A.V. Methods Used for the Compaction and Molding of Ceramic Matrix Composites Reinforced with Carbon Nanotubes. Processes 2020, 8, 1004. https://doi.org/10.3390/pr8081004
Meshalkin VP, Belyakov AV. Methods Used for the Compaction and Molding of Ceramic Matrix Composites Reinforced with Carbon Nanotubes. Processes. 2020; 8(8):1004. https://doi.org/10.3390/pr8081004
Chicago/Turabian StyleMeshalkin, Valerii P., and Alexey V. Belyakov. 2020. "Methods Used for the Compaction and Molding of Ceramic Matrix Composites Reinforced with Carbon Nanotubes" Processes 8, no. 8: 1004. https://doi.org/10.3390/pr8081004