Bio-Methane Production via Anaerobic Co-Digestion by Optimizing the Mixing Ratios of River Tamarind (Leucaena leucocephala) and Dolphin Fish (Coryphaena hippurus) Offal
Abstract
:1. Introduction
- (1)
- The main purpose of this study is to investigate if, by co-digestion with river tamarind, a combination can be developed that will allow the microbial consortium within the anaerobic digester to effectively utilize the fish offal. An experimental design was constructed which varied both the quantities of the substrates in combination with one another. For each combination, the combined substrate to inoculum ratio was also varied. The response for this experiment was the specific methane yield. This allowed a type of surface plot to be produced, in the form of a heat map that allows a reasonable determination of the most suitable conditions for co-digestion offish offal with river tamarind.
- (2)
- There is no readily available literature investigating the potential of these two substrates for anaerobic co-digestion, nor for the river tamarind alone, increasing the novelty of the work. Specifically, the river tamarind has potential to be grown as an energy crop and using fish offal for biogas production is an excellent way of repurposing this waste.
- (3)
- Our approach to the setup of a co-digestion biochemical methane potential test is very different from the traditional approach that is commonly used. This test uses a system which takes into account both the substrate to substrate and the combined substrate to inoculum ratios, and determines the optima for both to achieve maximal bioreactor efficiency.
2. Materials and Methods
2.1. Determination of Physico-Chemical Characteristics of Substrates
2.1.1. Dry Matter and Organic Dry Matter
2.1.2. Total Organic Carbon
2.1.3. Nitrogen Content
2.2. Anaerobic Digestion Experiments
2.2.1. Substrate Collection and Preparation
2.2.2. Experimental Design
2.3. Determination of Optimum Combination Using the Biochemical Methane Potential—BMP Test
3. Results
3.1. Determination of Optimum Substrate Combination: Analysis Methodology
3.2. Effect of Blends on Specific Gas Production
3.3. SFO/SRT: Substrate to Inoculum Ratio of Fish Offal to River Tamarind
3.4. Effect of Blends on Methane Concentration
3.5. Potential Effects of Carbon and Nitrogen Balancing on Anaerobic Digester Functionality
3.6. Comparative Studies
3.7. Potential Real-World Applications of These Findings
3.8. Practical Implications of the Study and Future Research
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
(C/N) | Carbon to nitrogen ratio |
NmL/gFM | Normalized volume of methane gas in mL per gram of fresh matter |
DM | Dry matter |
oDM | Organic dry matter |
TOC | Total organic carbon |
BMP | Test biochemical methane potential test |
SFO | Substrate fish offal |
SRT | Substrate river tamarind |
SFO/SRT | Fish offal to river tamarind substrate to substrate ratio |
SIDS | Small Island Developing States |
References
- Dechrugsa, S.; Kantachote, D.; Chaiprapat, S. Effects of inoculum to substrate ratio, substrate mix ratio and inoculum source on batch co-digestion of grass and pig manure. Bioresour. Technol. 2013, 146, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Kameswari, K.S.B.; Kalyanaraman, C.; Subramanian, P.; Thanasekaran, K. Optimization of inoculum to substrate ratio for bio-energy generation in co-digestion of tannery solid wastes. Clean Technol. Environ. Policy 2012, 14, 241–250. [Google Scholar] [CrossRef]
- Álvarez, J.A.; Otero, L.; Lema, J.M. A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour. Technol. 2010, 101, 1153–1158. [Google Scholar] [CrossRef]
- Haider, M.R.; Sheikh, Z.; Yousaf, S.; Malik, R.N.; Visvanathan, C. Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production. Bioresour. Technol. 2015, 190, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, F.J.; Wase, D.A.J.; Thayanithy, K.; Forster, C.F. An Examination of the Continuous Anaerobic Co-Digestion of Cattle Slurry and Fish Offal. Process Saf. Environ. Prot. 1998, 76, 224–228. [Google Scholar] [CrossRef]
- Miron, Y.; Zeeman, G.; van Lierm, J.B.; Lettinga, G. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Res. 2000, 34, 1705–1713. [Google Scholar] [CrossRef]
- Molinuevo-Salces, B.; García-González, M.C.; González-Fernández, C.; Cuetos, M.J.; Morán, A.; Gómez, X. Anaerobic co-digestion of livestock wastes with vegetable processing wastes: A statistical analysis. Bioresour. Technol. 2010, 101, 9479–9485. [Google Scholar] [CrossRef]
- Mshandete, A.; Kivaisi, A.; Rubindamayugi, M.; Mattiasson, B. Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresour. Technol. 2004, 95, 19–24. [Google Scholar] [CrossRef]
- United and Nations. Small Island Developing States/Small Islands Big(ger) Stakes; One United Nations Plaza, Room 1210: New York, NY, USA, 2011. [Google Scholar]
- Helffrich, D.; Oechsner, H. The Hohenheim Biogas Yield Test. Landtechnik 2003, 58, 148–149. [Google Scholar]
- VDI 4630—Fermentation of Organic Materials. Characterisation of the Substrate Sampling, Collection of Material Data, Fermentation Tests. Available online: https://standards.globalspec.com/std/10052171/VDI%204630 (accessed on 3 August 2020).
- Heanes, D.L. Determination of total organic-C in soils by an improved chromic acid digestion and spectrophotometric procedure. Commun. Soil Sci. Plant Anal. 1984, 15, 10–11. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Mæhre, H.K.; Dalheim, L.; Edvinsen, G.K.; Elvevoll, E.O.; Jensen, I.-J. Protein Determination—Method Matters. Foods 2018, 7, 2–11. [Google Scholar]
- Holder, N.; Mota-Meira, M.; Born, J.; Sutrina, S.L. New Small Scale Bioreactor System for the Determination of the Biochemical Methane Potential. Waste Biomass Valorization 2017, 10, 1083–1090. [Google Scholar] [CrossRef]
- Parkin, G.F.; Owen, W.F. Fundamental sofan aerobic digestion of waste water sludges. J. Environ. Eng. 1986, 112, 867–868. [Google Scholar] [CrossRef]
- Berg, J.M.; Tymoczko, J.L.; Stryer, L. Biochemistry, 5th ed.; W. H. Freeman and Company: New York, NY, USA, 2001. [Google Scholar]
- Zupančič, G.D.; Grilc, V. Anaerobic treatment and biogas production from organic waste. In Management of Organic Waste; W. H. Freeman and Company: New York, NY, USA, 2002. [Google Scholar]
- Biarnes, M. Biomass to Biogas—Anaerobig Digestion. 2013. Available online: https://www.e-inst.com/training/biomass-to-biogas/ (accessed on 30 October 2018).
- Eiroa, M.; Costa, J.C.; Alves, M.M.; Kennes, C.; Veiga, M.C. Evaluation of the biomethane potential of solid fish waste. Waste Manag. 2012, 32, 1347–1352. [Google Scholar] [CrossRef] [Green Version]
- Kafle, G.K.; Kim, S.H.; Sung, K.I. Ensiling of fish industry waste for biogas production: A lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresour. Technol. 2013, 127, 326–336. [Google Scholar] [CrossRef]
- Yenigün, O.; Demirel, B. Ammonia inhibition in anaerobic digestion: A review. Process Biochem. 2013, 48, 901–911. [Google Scholar] [CrossRef]
- Kayhanian, M. Ammonia Inhibition in High-Solids Biogasification: An Overview and Practical Solution. Environ. Technol. 2010, 20, 355–365. [Google Scholar] [CrossRef]
- Webb, A.R.; Hawkes, F.R. The anaerobic digestion of poultry manure: Variation ofgas yield with influent concentration and ammonium-nitrogen levels. Agric. Wastes 1985, 14, 135–156. [Google Scholar] [CrossRef]
- Wang, X.; Lu, X.; Li, F.; Yang, G. Effects of Temperature and Carbon-Nitrogen (C/N) Ratio on the Performance of Anaerobic Co-Digestion of Dairy Manure, Chicken Manure and Rice Straw: Focusing on Ammonia Inhibition. PLoS ONE 2014, 9, e97265. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2007, 99, 4044–4046. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Mustafa, A.M.; Sheng, K. Effects of inoculum to substrate and co-digestion with bagasse on biogas production of fish waste. Environ. Technol. 2016, 38, 2517–2522. [Google Scholar] [CrossRef] [PubMed]
- Research & Planning Unit. Barbados Economic and Social Report; Ministry of Finance, Economic Affairs and Investment (MFEI): St. Michael, Barbados, 2016.
- Holder, N.; Persaud, A.; Mota-Meira, M.; Born, J.; Sutrina, S.L. The Influence of Physico-Chemical Parameters, Substrate Concentration & Species Variations on the Biochemical Methane Production Rates of Ten Tropical/Subtropical Grasses. Biofuels Bioprod. Biorefin. 2018. [Google Scholar] [CrossRef]
Substrate | Dry Matter (DM) g/gFM | Organic Dry Matter (oDM) g/gFM | Ash Content g/gFM | Total Organic Carbon (mgTOC/ gFM) | Nitrogen Content (g/gFM) | TOC/oDM Ratio |
---|---|---|---|---|---|---|
River Tamarind (Leucaena leucocephala) | 0.473 ± 0.008 | 0.437 ± 0.006 | 0.035 ± 0.002 | 81.1 ± 6.16 | 6.71 ± 2.94 | 0.186 |
Dolphin (Coryphaena hippurus) | 0.216 ± 0.005 | 0.199 ± 0.006 | 0.017 ± 0.002 | 3.94 ± 0.28 | 28.01 ± 8.07 | 0.019 |
SFO/SRT | Row Label | ||||||
---|---|---|---|---|---|---|---|
(A) 0.00/1.00 (C/N 12.09) | (B) 0.25/0.75 (C/N 5.14) | (C) 0.50/0.50 (C/N 2.45) | (D) 0.75/0.25 (C/N 1.02) | (E) 1.00/0.00 (C/N 0.14) | |||
Substrate to Inoculum Ratio | (1) 0.03 | 0.00 0.75 0.75 | 0.19 0.56 0.75 | 0.38 0.38 0.75 | 0.56 0.19 0.75 | 0.75 0.00 0.75 | FO RT Combined |
(2) 0.05 | 0.00 1.25 1.25 | 0.31 0.94 1.25 | 0.63 0.63 1.25 | 0.94 0.31 1.25 | 1.25 0.00 1.25 | FO RT Combined | |
(3) 0.11 | 0.00 2.50 2.50 | 0.63 1.88 2.50 | 1.25 1.25 2.50 | 1.88 0.63 2.50 | 2.50 0.00 2.50 | FO RT Combined | |
(4) 0.18 | 0.00 3.75 3.75 | 0.94 2.81 3.75 | 1.88 1.88 3.75 | 2.81 0.94 3.75 | 3.75 0.00 3.75 | FO RT Combined | |
(5) 0.25 | 0.00 5.00 5.00 | 1.25 3.75 5.00 | 2.50 2.50 5.00 | 3.75 1.25 5.00 | 5.00 0.00 5.00 | FO RT Combined |
SFO/SRT | ||||||
---|---|---|---|---|---|---|
(A) 0.00/1.00 (C/N 12.09) | (B) 0.25/0.75 (C/N 5.14) | (C) 0.50/0.50 (C/N 2.45) | (D) 0.75/0.25 (C/N 1.02) | (E) 1.00/0.00 (C/N 0.14) | ||
Substrate to Inoculum Ratio | (1) 0.03 | 155 ± 2 | 137 ± 13 | 144 ± 6 | 117 ± 7 | 63 ± 4 |
(2) 0.05 | 107 ± 1 | 120 ± 5 | 111 ± 2 | 137 ± 2 | 41 ± 6 | |
(3) 0.11 | 25 ± 8 | 9 ± 1 | 61 ± 3 | 81 ± 1 | 15 ± 5 | |
(4) 0.18 | 12 ± 3 | 6 ± 1 | 7 ± 0.3 | 33 ± 4 | 9 ± 1 | |
(5) 0.25 | 17 ± 1 | 6 ± 1 | 4 ± 1 | 18 ± 5 | 8 ± 1 |
SFO/SRT | ||||||
---|---|---|---|---|---|---|
(A) 0.00/1.00 (C/N 12.09) | (B) 0.25/0.75 (C/N 5.14) | (C) 0.50/0.50 (C/N 2.45) | (D) 0.75/0.25 (C/N 1.02) | (E) 1.00/0.00 (C/N 0.14) | ||
Substrate to Inoculum Ratio | (1) 0.03 | 84 ± 2 | 73 ± 5 | 76 ± 4 | 77 ± 2 | 76 ± 1 |
(2) 0.05 | 87 ± 0.5 | 69 ± 9 | 72 ± 5 | 81 ± 3 | 75 ± 5 | |
(3) 0.11 | 59 ± 19 | 42 ± 5 | 62 ± 1 | 73 ± 4 | 62 ± 9 | |
(4) 0.18 | 48 ± 8 | 39 ± 5 | 48 ± 3 | 58 ± 5 | 56 ± 3 | |
(5) 0.25 | 48 ± 3 | 36 ± 0.5 | 31 ± 4 | 50 ± 10 | 55 ± 8 |
SFO/SRT | ||||||
---|---|---|---|---|---|---|
(A) 0.00/1.00 (C/N 12.09) | (B) 0.25/0.75 (C/N 5.14) | (C) 0.50/0.50 (C/N 2.45) | (D) 0.75/0.25 (C/N 1.02) | (E) 1.00/0.00 (C/N 0.14) | ||
Substrate to Inoculum Ratio | (1) 0.03 | 7.27 ± 0.38 | 7.33 ± 0.05 | 7.14 ± 0.03 | 7.34 ± 0.03 | 7.42 ± 0.07 |
(2) 0.05 | 7.13 ± 0.01 | 7.59 ± 0.26 | 7.38 ± 0.02 | 7.35 ± 0.02 | 7.64 ± 0.03 | |
(3) 0.11 | 5.08 ± 0.10 | 5.22 ± 0.3 | 7.39 ± 0.01 | 7.65 ± 0.11 | 7.68 ± 0.13 | |
(4) 0.18 | 5.01 ± 0.02 | 4.9 ± 0.03 | 5.74 ± 0.35 | 7.79 ± 0.02 | 7.66 ± 0.24 | |
(5) 0.25 | 5.05 ± 0.03 | 4.96 ± 0.04 | 5.12 ± 0.05 | 7.18 ± 0.11 | 7.35 ± 0.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holder, N.; Mota-Meira, M.; Born, J.; Sutrina, S.L. Bio-Methane Production via Anaerobic Co-Digestion by Optimizing the Mixing Ratios of River Tamarind (Leucaena leucocephala) and Dolphin Fish (Coryphaena hippurus) Offal. Processes 2020, 8, 934. https://doi.org/10.3390/pr8080934
Holder N, Mota-Meira M, Born J, Sutrina SL. Bio-Methane Production via Anaerobic Co-Digestion by Optimizing the Mixing Ratios of River Tamarind (Leucaena leucocephala) and Dolphin Fish (Coryphaena hippurus) Offal. Processes. 2020; 8(8):934. https://doi.org/10.3390/pr8080934
Chicago/Turabian StyleHolder, Nikolai, Marilaine Mota-Meira, Jens Born, and Sarah L. Sutrina. 2020. "Bio-Methane Production via Anaerobic Co-Digestion by Optimizing the Mixing Ratios of River Tamarind (Leucaena leucocephala) and Dolphin Fish (Coryphaena hippurus) Offal" Processes 8, no. 8: 934. https://doi.org/10.3390/pr8080934
APA StyleHolder, N., Mota-Meira, M., Born, J., & Sutrina, S. L. (2020). Bio-Methane Production via Anaerobic Co-Digestion by Optimizing the Mixing Ratios of River Tamarind (Leucaena leucocephala) and Dolphin Fish (Coryphaena hippurus) Offal. Processes, 8(8), 934. https://doi.org/10.3390/pr8080934