An Overview of Household Energy Consumption and Carbon Dioxide Emissions in Iran
Abstract
:1. Introduction
2. The Role of Energy in Economic Growth
2.1. Energy Challenges in an Urbanizing World
2.2. Sustainable Consumption
3. Energy Demand and Consumption in Iran
4. Household Energy Consumption and CO2 Emission
Rebound Effects
5. Influential Perspectives on Household Energy Consumption
5.1. Production-Side View
5.2. Household-Side Analysis
5.3. Used Methods to Analyze Household Energy Consumption
5.3.1. Energy Ladder
5.3.2. Energy Services
5.3.3. Energy Mix Model
5.4. Critique of the Energy Ladder Model
6. Influential Factors on Household Energy Consumption and CO2 Emissions
7. Household Energy Consumption Pattern in Iran
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shittu, O. Emerging sustainability concerns and policy implications of urban household consumption: A systematic literature review. J. Clean. Prod. 2020, 246, 119034. [Google Scholar] [CrossRef]
- Rezaei, R.; Ghofranfarid, M. Rural households’ renewable energy usage intention in Iran: Extending the unified theory of acceptance and use of technology. Renew. Energy 2018, 122, 382–391. [Google Scholar] [CrossRef]
- Perry, K.K. For politics, people, or the planet? The political economy of fossil fuel reform, energy dependence and climate policy in Haiti. Energy Res. Soc. Sci. 2020, 63, 101397. [Google Scholar] [CrossRef]
- Yazdanpanah, M.; Komendantova, N.; Ardestani, R.S. Governance of energy transition in Iran: Investigating public acceptance and willingness to use renewable energy sources through socio-psychological model. Renew. Sustain. Energy Rev. 2015, 45, 565–573. [Google Scholar] [CrossRef]
- Woldeyohannes, A.D.; Woldemichael, D.E.; Baheta, A.T. Sustainable renewable energy resources utilization in rural areas. Renew. Sustain. Energy Rev. 2016, 66, 1–9. [Google Scholar] [CrossRef]
- Aryanpur, V.; Atabaki, M.S.; Marzband, M.; Siano, P.; Ghayoumi, K. An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector. Renew. Sustain. Energy Rev. 2019, 112, 58–74. [Google Scholar] [CrossRef]
- Papadis, E.; Tsatsaronis, G. Challenges in the decarbonization of the energy sector. Energy 2020, 205, 118025. [Google Scholar] [CrossRef]
- Druckman, A.; Jackson, T. Understanding Households as Drivers of Carbon Emissions. In Taking Stock of Industrial Ecology; Clift, R., Druckman, A., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Streimikiene, D.; Volochovic, A. The impact of household behavioral changes on GHG emission reduction in Lithuania. Renew. Sustain. Energy Rev. 2011, 15, 4118–4124. [Google Scholar] [CrossRef]
- Perera, F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. Int. J. Environ. Res. Public Health 2018, 15, 16. [Google Scholar] [CrossRef] [Green Version]
- Oladokun, M.G.; Odesola, I.A. Household energy consumption and carbon emissions for sustainable cities–A critical review of modelling approaches. Int. J. Sustain. Built Environ. 2015, 4, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Levine, M.; Ürge-Vorsatz, D.; Blok, K.; Geng, L.; Harvey, D.; Lang, S.; Levermore, G.; Mongameli Mehlwana, A.; Mirasgedis, S.; Novikova, A.; et al. Residential and commercial buildings. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A., Eds.; Cambridge University Press: Cambridge, UK, 2007; Chapter 6; pp. 387–446. ISBN 9780521880091. [Google Scholar]
- Statistical Center of Iran (SCI). Selected Findings of the 2016 National Population and Housing Census. 2018. Available online: https://www.amar.org.ir/english/Population-and-Housing-Censuses (accessed on 10 January 2019).
- The World Bank. Iran’s Economic Outlook. 2018. Available online: http://www.worldbank.org/en/country/iran/publication/economic-outlook-october-2018 (accessed on 10 January 2019).
- The World Bank. 2019. Available online: https://data.worldbank.org/indicator/EN.ATM.CO2E.PC (accessed on 12 June 2020).
- Mohammadnejad, M.; Ghazvini, M.; Mahlia, T.M.I.; Andriyana, A. A review on energy scenario and sustainable energy in Iran. Renew. Sustain. Energy Rev. 2011, 15, 4652–4658. [Google Scholar] [CrossRef]
- Lotfalipour, M.R.; Falahi, M.A.; Ashena, M. Economic growth, CO2 emissions, and fossil fuels consumption in Iran. Energy 2010, 35, 5115–5120. [Google Scholar] [CrossRef]
- Afsharzade, N.; Papzan, A.; Ashjaee, M.; Delangizan, S.; Van Passel, S.; Azadi, H. Renewable energy development in rural areas of Iran. Renew. Sustain. Energy Rev. 2016, 65, 743–755. [Google Scholar] [CrossRef] [Green Version]
- Soltani, M.; Rahmani, O.; Pour, A.B.; Ghaderpour, Y.; Ngah, I.; Misnan, S.H. Determinants of variation in household energy choice and consumption: Case from Mahabad City, Iran. Sustainability 2019, 11, 4775. [Google Scholar] [CrossRef] [Green Version]
- The World Bank. United Nations Population Division. World Urbanization Prospects: 2018 Revision. Available online: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS?locations=IR (accessed on 10 January 2019).
- Barkhordari, S.; Fattahi, M. Reform of energy prices, energy intensity and technology: A case study of Iran (ARDL approach). Energy Strateg. Rev. 2017, 18, 18–23. [Google Scholar] [CrossRef]
- World Economic Forum. 2019. Available online: https://www.weforum.org/agenda/2019/06/chart-of-the-day-these-countries-create-most-of-the-world-s-co2-emissions (accessed on 12 June 2020).
- Fadai, D.; Esfandabadi, Z.S.; Abbasi, A. Analyzing the causes of non-development of renewable energy-related industries in Iran. Renew. Sustain. Energy Rev. 2011, 15, 2690–2695. [Google Scholar] [CrossRef]
- Alam, S.S.; Nik Hashim, N.H.; Rashid, M.; Omar, N.A.; Ahsan, N.; Ismail, M.D. Small-scale households renewable energy usage intention: Theoretical development and empirical settings. Renew. Energy 2014, 68, 255–263. [Google Scholar] [CrossRef]
- Bahrami, M.; Abbaszadeh, P. Development a scenario-based model for Iran’s energy future. Renew. Sustain. Energy Rev. 2016, 62, 963–970. [Google Scholar] [CrossRef]
- Fazelpour, F.; Markarian, E.; Soltani, N. Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran. Renew. Energy 2017, 109, 646–667. [Google Scholar] [CrossRef]
- Farajzadeh, Z.; Nematollahi, M.A. Energy intensity and its components in Iran: Determinants and trends. Energy Econ. 2018, 73, 161–177. [Google Scholar] [CrossRef]
- Soltani, M.; Rahmani, O.; Ghasimi, D.S.M.; Ghaderpour, Y.; Pour, A.B.; Misnan, S.H.; Ngah, I. Impact of household demographic characteristics on energy conservation and carbon dioxide emission: Case from Mahabad city, Iran. Energy 2020, 194, 116916. [Google Scholar] [CrossRef]
- Swan, L.G.; Ugursal, V.I. Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renew. Sustain. Energy Rev. 2009, 13, 1819–1835. [Google Scholar] [CrossRef]
- Abrahamse, W.; Steg, L. Factors Related to Household Energy Use and Intention to Reduce It: The Role of Psychological and Socio-Demographic Variables. Hum. Ecol. Rev. 2011, 18, 30–40. [Google Scholar]
- Esen, Ö.; Bayrak, M. Does more energy consumption support economic growth in net energy-importing countries? J. Econ. Financ. Adm. Sci. 2017, 22, 75–98. [Google Scholar] [CrossRef]
- Zhao, R. Technology and economic growth: From Robert Solow to Paul Romer. Hum. Behav. Emerg. Technol. 2019, 1, 62–65. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Baumgartner, J.; de Foy, B.; Schauer, J.J. A global perspective on national climate mitigation priorities in the context of air pollution and sustainable development. City Environ. Interact. 2019, 1, 100003. [Google Scholar] [CrossRef]
- Batur, I.; Bayram, I.S.; Koc, M. Impact assessment of supply-side and demand-side policies on energy consumption and CO2 emissions from urban passenger transportation: The case of Istanbul. J. Clean. Prod. 2019, 219, 391–410. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, M.; Pansera, M.; Lorenzo, P.C. Do indicators have politics? A review of the use of energy and carbon intensity indicators in public debates. J. Clean. Prod. 2020, 243, 118602. [Google Scholar] [CrossRef]
- Moshiri, S. The effects of the energy price reform on households consumption in Iran. Energy Policy 2015, 79, 177–188. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Saifoddin, A.; Shirmohammadi, R.; Aslani, A. Forecasting of CO2 emissions in Iran based on time series and regression analysis. Energy Rep. 2019, 5, 619–631. [Google Scholar] [CrossRef]
- UN-HABITAT. State of the world’s cities 2012/2013. Prosperity of Cities. United Nations Human Settlements Programme. 2012. Available online: www.unhabitat.org (accessed on 12 June 2020).
- Ghorani-Azam, A.; Riahi-Zanjani, B.; Balali-Mood, M. Effects of air pollution on human health and practical measures for prevention in Iran. J. Res. Med. Sci. 2016, 21. [Google Scholar] [CrossRef]
- World Population Review. 2020. Available online: https://worldpopulationreview.com/countries/cities/iran (accessed on 26 June 2020).
- Pazhuhan, M.; Shahraki, S.Z.; Kaveerad, N.; Cividino, S.; Clemente, M.; Salvati, L. Factors underlying life quality in urban contexts: Evidence from an industrial city (arak, iran). Sustainability 2020, 12, 2274. [Google Scholar] [CrossRef] [Green Version]
- Satterthwaite, D. The implications of population growth and urbanization for climate change. Environ. Urban. 2009, 21, 545–567. [Google Scholar] [CrossRef] [Green Version]
- UN Commission on Sustainable Development (UNCSD). Symposium on Sustainable Consumption; UNCSD: Oslo, Norway, 1994. [Google Scholar]
- Goggins, G.; Fahy, F.; Jensen, C.L. Sustainable transitions in residential energy use: Characteristics and governance of urban-based initiatives across Europe. J. Clean. Prod. 2019, 237, 117776. [Google Scholar] [CrossRef]
- Morone, P.; Falcone, P.M.; Lopolito, A. How to promote a new and sustainable food consumption model: A fuzzy cognitive map study. J. Clean. Prod. 2019, 208, 563–574. [Google Scholar] [CrossRef]
- Wolf, M.A.; Chomkhamsri, K. From Sustainable Production to Sustainable Consumption. In Life Cycle Management. LCA Compendium–The Complete World of Life Cycle Assessment; Sonnemann, G., Margni, M., Eds.; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef] [Green Version]
- Piligrimiene, Ž.; Žukauskaite, A.; Korzilius, H.; Banyte, J.; Dovaliene, A. Internal and external determinants of consumer engagement in sustainable consumption. Sustainability 2020, 12, 1349. [Google Scholar] [CrossRef] [Green Version]
- Moisander, J. Motivational complexity of green consumerism. Int. J. Consum. Stud. 2007, 31, 404–409. [Google Scholar] [CrossRef]
- Zukin, S.; Maguire, J.S. Consumers and Consumption. Annu. Rev. Sociol. 2004, 30, 173–197. [Google Scholar] [CrossRef] [Green Version]
- Warde, A. After taste: Culture, consumption and theories of practice. J. Consum. Cult. 2014, 14, 279–303. [Google Scholar] [CrossRef] [Green Version]
- Lorek, S.; Spangenberg, J.H. Environmentally Sustainable Houshold Consumption: From Aggregate Environmental Pressures to Indicators for Priority Fields of Action, Wuppertal Papers, No. 117, Wuppertal Institut für Klima, Umwelt, Energie, Wuppertal. 2001. Available online: http://nbn-resolving.de/urn:nbn:de:bsz:wup4-opus-13092 (accessed on 26 June 2020).
- Wiggins, J. Motivation, Ability and Opportunity to Participate: A Reconceptualization of the RAND Model of Audience Development. Int. J. Arts Manag. 2004, 7, 22–33. [Google Scholar]
- Hung, K.; Sirakaya-Turk, E.; Ingram, L.J. Testing the Efficacy of an Integrative Model for Community Participation. J. Travel Res. 2011, 50, 276–288. [Google Scholar] [CrossRef]
- Gatersleben, B.; Vlek, C.A.J. Household consumption, quality of life and environmental impacts: A psychological perspective and empirical study. In Green Households: Domestic Consumers, the Environment and Sustainability; Noorman, K.J., Schoot-Uiterkamp, A.J.M., Eds.; Earthscan Publications: London, UK, 1998; pp. 141–183. [Google Scholar]
- Wu, C.; Zhou, X.; Song, M. Sustainable consumer behavior in China: An empirical analysis from the Midwest regions. J. Clean. Prod. 2016, 134, 147–165. [Google Scholar] [CrossRef]
- Zhu, Q.; Guo, Y. Statistical analysis on influencing factors and behavior of sustainable consumption. China Popul. Resour. Environ. 2011, 21, 459–463. (In Chinese) [Google Scholar]
- Burger, P.; Bezençon, V.; Bornemann, B.; Brosch, T.; Carabias-Hütter, V.; Farsi, M.; Hille, S.L.; Moser, C.; Ramseier, C.; Samuel, R.; et al. Advances in understanding energy consumption behavior and the governance of its change-Outline of an integrated framework. Front. Energy Res. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Lipschutz, R. Practicing Energy, or Energy Consumption as Social Practice. In Proceedings of the Behavior, Energy and Climate Change Conference, Berkeley, CA, USA, 18–21 October 2015; Available online: https://escholarship.org/uc/item/1vs503px (accessed on 12 June 2020).
- Kenny, T.; Gray, N.F. A preliminary survey of household and personal carbon dioxide emissions in Ireland. Environ. Int. 2009, 35, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Sepehr, M.; Eghtedaei, R.; Toolabimoghadam, A.; Noorollahi, Y.; Mohammadi, M. Modeling the electrical energy consumption profile for residential buildings in Iran. Sustain. Cities Soc. 2018, 41, 481–489. [Google Scholar] [CrossRef]
- Khalili Araghi, M.; Barkhordari, S. An evaluation of the welfare effects of reducing energy subsides in Iran. Energy Policy 2012, 47, 398–404. [Google Scholar] [CrossRef]
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Muhd, M.Z. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- World Data Atlas, Iran. 2019. Available online: https://knoema.com/atlas/Iran/CO2-emissions (accessed on 26 June 2020).
- Hafeznia, H.; Pourfayaz, F.; Maleki, A. An assessment of Iran’s natural gas potential for transition toward low-carbon economy. Renew. Sustain. Energy Rev. 2017, 79, 71–81. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). 2020. Available online: https://www.iea.org/articles/global-co2-emissions-in-2019 (accessed on 12 June 2020).
- Chavez, A.; Ramaswami, A. Progress toward low carbon cities: Approaches for transboundary GHG emissions’ footprinting. Carbon Manag. 2011, 2, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Kawakubo, S.; Murakami, S.; Ikaga, T.; Asami, Y. Sustainability assessment of cities: SDGs and GHG emissions. Build. Res. Inf. 2018, 46, 528–539. [Google Scholar] [CrossRef]
- Song, M.; Zhao, X.; Shang, Y. The impact of low-carbon city construction on ecological efficiency: Empirical evidence from quasi-natural experiments. Resour. Conserv. Recycl. 2020, 157, 104777. [Google Scholar] [CrossRef]
- Hoornweg, D.; Sugar, L.; Gómez, C.L.T. Cities and greenhouse gas emissions: Moving forward. Environ. Urban. 2011, 23, 207–227. [Google Scholar] [CrossRef]
- Mondani, F.; Aleagha, S.; Khoramivafa, M.; Ghobadi, R. Evaluation of greenhouse gases emission based on energy consumption in wheat Agroecosystems. Energy Rep. 2017, 3, 37–45. [Google Scholar] [CrossRef]
- Rose, S.K.; Ahammad, H.; Eickhout, B.; Fisher, B.; Kurosawa, A.; Rao, S.; Riahi, K.; van Vuuren, D.P. Land-based mitigation in climate stabilization. Energy Econ. 2012, 34, 365–380. [Google Scholar] [CrossRef] [Green Version]
- Parvez, M.; Hazelton, J.; James, G. Greenhouse gas emissions disclosure by cities: The expectation gap. Sustain. Account. Manag. Policy J. 2019, 10, 685–709. [Google Scholar] [CrossRef]
- Wang, H.; Ang, B.W.; Zhou, P. Decomposing aggregate CO2 emission changes with heterogeneity: An extended production-theoretical approach. Energy J. 2018, 39, 59–79. [Google Scholar] [CrossRef]
- Qin, B.; Han, S. Spatial planning strategies for a low carbon city in China: Evidence from the neighborhoods of Beijing. Transform. Chin. Cities 2014, 231–247. [Google Scholar] [CrossRef]
- Qin, B.; Han, S.S. Planning parameters and household carbon emission: Evidence from high-and low-carbon neighborhoods in Beijing. Habitat Int. 2013, 37, 52–60. [Google Scholar] [CrossRef]
- Worldometer, Iran CO2Emissions. 2020. Available online: https://www.worldometers.info/co2-emissions/iran-co2-emissions/ (accessed on 26 July 2020).
- Dubois, G.; Sovacool, B.; Aall, C.; Nilsson, M.; Barbier, C.; Herrmann, A.; Bruyère, S.; Andersson, C.; Skold, B.; Nadaud, F.; et al. It starts at home? Climate policies targeting household consumption and behavioral decisions are key to low-carbon futures. Energy Res. Soc. Sci. 2019, 52, 144–158. [Google Scholar] [CrossRef]
- Steg, L.; Perlaviciute, G.; van der Werff, E. Understanding the human dimensions of a sustainable energy transition. Front. Psychol. 2015, 6, 805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orzan, G.; Cruceru, A.F.; Balaceanu, C.T.; Chivu, R.G. Consumers’ behavior concerning sustainable packaging: An exploratory study on Romanian consumers. Sustainability 2018, 10, 1787. [Google Scholar] [CrossRef]
- Saunders, H.D. The Khazzoom-Brookes Postulate and Neoclassical Growth. Energy J. 1992, 13, 130–148. [Google Scholar] [CrossRef]
- Walnum, H.J.; Aall, C.; Løkke, S. Can rebound effects explain why sustainable mobility has not been achieved? Sustainability 2014, 6, 9510–9537. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, H. Will efficient technologies save the world? A call for new thinking on the ways that end-use technologies affect energy using practices. In Proceedings of the ECEEE 2007 Summer Study, Found a Future Energy Policy, La Colle sur Loup, Côte d’Azur, France, 4–9 June 2007; pp. 23–30. [Google Scholar]
- Greening, L.A.; Greene, D.L.; Difiglio, C. Energy efficiency and consumption—The rebound effect—A survey. Energy Policy 2000, 28, 389–401. [Google Scholar] [CrossRef]
- Reinders, A.H.M.E.; Vringer, K.; Blok, K. The direct and indirect energy requirement of households in the European Union. Energy Policy 2003, 31, 139–153. [Google Scholar] [CrossRef]
- He, Q.; Ng, S.T.; Hossain, M.U.; Skitmore, M. Energy-efficient window retrofit for high-rise residential buildings in different climatic zones of China. Sustainability 2019, 11, 6473. [Google Scholar] [CrossRef] [Green Version]
- Mulder, P.; de Groot, H.L.F. Structural change and convergence of energy intensity across OECD countries, 1970–2005. Energy Econ. 2012, 34, 1910–1921. [Google Scholar] [CrossRef] [Green Version]
- Sabetghadam, M. Energy and Sustainable Development in Iran. Helio International. 2006. Available online: https://sustainabledevelopment.un.org/content/documents/854Iran-EN.pdf (accessed on 12 June 2020).
- Rosas-Flores, J.A.; Gálvez, D.M. What goes up: Recent trends in Mexican residential energy use. Energy 2010, 35, 2596–2602. [Google Scholar] [CrossRef]
- Rosas-Flores, J.A.; Rosas-Flores, D.; Gálvez, D.M. Saturation, energy consumption, CO2 emission and energy efficiency from urban and rural households appliances in Mexico. Energy Build. 2011, 43, 10–18. [Google Scholar] [CrossRef]
- Rosas-Flores, J.A.; Zenón-Olvera, E.; Gálvez, D.M. Potential energy saving in urban and rural households of Mexico with solar photovoltaic systems using geographical information system. Renew. Sustain. Energy Rev. 2019, 116, 109412. [Google Scholar] [CrossRef]
- Barkhordar, Z.A. Evaluating the economy-wide effects of energy efficient lighting in the household sector of Iran. Energy Policy 2019, 127, 125–133. [Google Scholar] [CrossRef]
- Bin, S.; Dowlatabadi, H. Consumer lifestyle approach to US energy use and the related CO2 emissions. Energy Policy 2005, 33, 197–208. [Google Scholar] [CrossRef]
- Wei, Y.M.; Liu, L.C.; Fan, Y.; Wu, G. The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China’s residents. Energy Policy 2007, 35, 247–257. [Google Scholar] [CrossRef]
- Yin, X.; Hao, Y.; Yang, Z.; Zhang, L.; Su, M.; Cheng, Y.; Zhang, P.; Yang, J.; Liang, S. Changing carbon footprint of urban household consumption in Beijing: Insight from a nested input-output analysis. J. Clean. Prod. 2020, 258. [Google Scholar] [CrossRef]
- Lee, C.C.; Ho, Y.M.; Chiu, H.Y. Role of personal conditions, housing properties, private loans, and housing tenure choice. Habitat Int. 2016, 53, 301–311. [Google Scholar] [CrossRef]
- De Almeida, A.; Fonseca, P.; Schlomann, B.; Feilberg, N. Characterization of the household electricity consumption in the EU, potential energy savings and specific policy recommendations. Energy Build. 2011, 43, 1884–1894. [Google Scholar] [CrossRef]
- Guerra-Santin, O.; Itard, L. The effect of energy performance regulations on energy consumption. Energy Effic. 2012, 5, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Ürge-Vorsatz, D.; Cabeza, L.F.; Serrano, S.; Barreneche, C.; Petrichenko, K. Heating and cooling energy trends and drivers in buildings. Renew. Sustain. Energy Rev. 2015, 41, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Satterthwaite, D.; McGranahan, G.; Tacoli, C. Urbanization and its implications for food and farming. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2809–2820. [Google Scholar] [CrossRef]
- Heinonen, J.; Junnila, S. Residential energy consumption patterns and the overall housing energy requirements of urban and rural households in Finland. Energy Build. 2014, 76, 295–303. [Google Scholar] [CrossRef]
- Norman, J.; MacLean, H.L.; Kennedy, C.A. Comparing high and low residential density: Life-cycle analysis of energy use and greenhouse gas emissions. J. Urban. Plan. Dev. 2006, 132, 10–21. [Google Scholar] [CrossRef]
- Ewing, R.; Rong, F. The impact of urban form on U.S. residential energy use. Hous. Policy Debate 2008, 19, 1–30. [Google Scholar] [CrossRef]
- Abrahamse, W.; Steg, L. How do socio-demographic and psychological factors relate to households’ direct and indirect energy use and savings? J. Econ. Psychol. 2009, 30, 711–720. [Google Scholar] [CrossRef]
- Frederiks, E.R.; Stenner, K.; Hobman, E.V. The socio-demographic and psychological predictors of residential energy consumption: A comprehensive review. Energies 2015, 8, 573–609. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, H.; Nakagami, H.; Masuda, T.; Yamaga, Y.; Haneda, H. A cross-cultural analysis of household energy use behaviour in Japan and Norway. Energy Policy 1996, 24, 795–803. [Google Scholar] [CrossRef]
- Westrom, M. Bathing in Japan: Applying a practice theory vocabulary to energy use through ethnography. Energy Res. Soc. Sci. 2018, 44, 232–241. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Griffiths, S. The cultural barriers to a low-carbon future: A review of six mobility and energy transitions across 28 countries. Renew. Sustain. Energy Rev. 2020, 119, 109569. [Google Scholar] [CrossRef]
- Lenzen, M.; Wier, M.; Cohen, C.; Hayami, H.; Pachauri, S.; Schaeffer, R. A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan. Energy 2006, 31, 181–207. [Google Scholar] [CrossRef]
- Park, H.C.; Heo, E. The direct and indirect household energy requirements in the Republic of Korea from 1980 to 2000-An input-output analysis. Energy Policy 2007, 35, 2839–2851. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Econ. 2012, 34, 177–188. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Q.; Zhang, F. Input-output modeling for urban energy consumption in Beijing: Dynamics and comparison. PLoS ONE 2014, 9, e89850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.K.; Bakshi, B.R.; Hubacek, K.; Nader, J. A sequential input–output framework to analyze the economic and environmental implications of energy policies: Gas taxes and fuel subsidies. Appl. Energy 2016, 184, 830–839. [Google Scholar] [CrossRef] [Green Version]
- Supasa, T.; Hsiau, S.S.; Lin, S.M.; Wongsapai, W.; Wu, J.C. Household energy consumption behaviour for different demographic regions in Thailand from 2000 to 2010. Sustainability 2017, 9, 2328. [Google Scholar] [CrossRef] [Green Version]
- Kok, R.; Benders, R.M.J.; Moll, H.C. Measuring the environmental load of household consumption using some methods based on input-output energy analysis: A comparison of methods and a discussion of results. Energy Policy 2006, 34, 2744–2761. [Google Scholar] [CrossRef]
- Hajilary, N.; Shahi, A.; Rezakazemi, M. Evaluation of socio-economic factors on CO2 emissions in Iran: Factorial design and multivariable methods. J. Clean. Prod. 2018, 189, 108–115. [Google Scholar] [CrossRef]
- Pachauri, S. An analysis of cross-sectional variations in total household energy requirements in India using micro survey data. Energy Policy 2004, 32, 1723–1735. [Google Scholar] [CrossRef]
- Muñoz, P.; Zwick, S.; Mirzabaev, A. The impact of urbanization on Austria’s carbon footprint. J. Clean. Prod. 2020, 263, 121326. [Google Scholar] [CrossRef]
- Narasimha Rao, M.; Reddy, B.S. Variations in energy use by Indian households: An analysis of micro level data. Energy 2007, 32, 143–153. [Google Scholar] [CrossRef]
- Gould, C.F.; Urpelainen, J.; Hopkins SAIS, J. The role of education and attitudes in cooking fuel choice: Evidence from two states in India. Energy Sustain. Dev. 2020, 54, 36–50. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Belinda, S.C. Demographic Determinants of Household Energy Use in the United States. Popul. Dev. Rev. 2002, 28, 53–88. Available online: https://www.jstor.org/stable/3115268 (accessed on 6 June 2020).
- Sadati, S.; Edwards, R. Incorporating solar energy sources in low energy buildings in two major cities in Iran. Energy Procedia 2019, 156, 85–89. [Google Scholar] [CrossRef]
- Zaharia, A.; Diaconeasa, M.C.; Brad, L.; Lădaru, G.R.; Ioanăs, C. Factors influencing energy consumption in the context of sustainable development. Sustainability 2019, 11, 4147. [Google Scholar] [CrossRef] [Green Version]
- Muller, C.; Yan, H. Household fuel use in developing countries: Review of theory and evidence. Energy Econ. 2018, 70, 429–439. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Fuel for Life: Household Energy and Health; WHO Library: Geneva, Switzerland, 2006; p. 23. [Google Scholar]
- Twumasi, M.A.; Jiang, Y.; Ameyaw, B.; Danquah, F.O.; Acheampong, M.O. The impact of credit accessibility on rural households clean cooking energy consumption: The case of Ghana. Energy Rep. 2020, 6, 974–983. [Google Scholar] [CrossRef]
- Ma, W.; Zhou, X.; Renwick, A. Impact of off-farm income on household energy expenditures in China: Implications for rural energy transition. Energy Policy 2019, 127, 248–258. [Google Scholar] [CrossRef]
- Heltberg, R. Factors determining household fuel choice in Guatemala. Environ. Dev. Econ. 2005, 10, 337–361. [Google Scholar] [CrossRef]
- Modi, V.; McDade, S.; Lallement, D.; Saghir, J. Energy Services for the Millennium Development Goals; The International Bank for Reconstruction and Development/The World Bank/ESMAP: Washington, DC, USA, 2005; Available online: http://www.unmillenniumproject.org/documents/MP_Energy_Low_Res.pdf (accessed on 6 June 2020).
- Sovacool, B.K. Conceptualizing urban household energy use: Climbing the “Energy Services Ladder”. Energy Policy 2011, 39, 1659–1668. [Google Scholar] [CrossRef]
- Haas, R.; Nakicenovic, N.; Ajanovic, A.; Faber, T.; Kranzl, L.; Müller, A.; Resch, G. Towards sustainability of energy systems: A primer on how to apply the concept of energy services to identify necessary trends and policies. Energy Policy 2008, 36, 4012–4021. [Google Scholar] [CrossRef]
- Sorrell, S.; Gatersleben, B.; Druckman, A. The limits of energy sufficiency: A review of the evidence for rebound effects and negative spillovers from behavioural change. Energy Res. Soc. Sci. 2020, 64, 101439. [Google Scholar] [CrossRef]
- Barnes, D.F.; Floor, W.M. Rural energy in developing countries: A challenge for economic development. Annu. Rev. Energy Environ. 1996, 21, 497–530. [Google Scholar] [CrossRef]
- Dutschke, M.; Kapp, G.; Lehmann, A.; Sch, V.; Economics, I. Risks and Chances of Combined Forestry and Biomass Projects under the Clean Development Mechanism. Sustain. Dev. 2006, 121, 351–397. [Google Scholar]
- Rena, R. Renewable Energy for Rural Development–A Namibian Experience. In Rural Development-Contemporary Issues and Practices; IntechOpen: London, UK, 2012; Available online: https://www.intechopen.com/books/rural-development-contemporary-issues-and-practices/renewable-energy-for-rural-development-a-namibian-experience (accessed on 14 May 2020).
- Fouquet, R. Heat, Power and Light: Revolutions in Energy Services; Edward Elgar: Cheltenham, UK, 2009; ISBN 9781845426606. [Google Scholar]
- Loveday, D.L.; Bhamra, T.; Tang, T.; Haines, V.J.A.; Holmes, M.J.; Green, R.J. The energy and monetary implications of the “24/7” “always on” society. Energy Policy 2008, 36, 4639–4645. [Google Scholar] [CrossRef]
- Wilk, R.R. Culture and Energy Consumption. Energy Sci. Policy Purs. Sustain. 2002, 1, 109–130. [Google Scholar]
- Joon, V.; Chandra, A.; Bhattacharya, M. Household energy consumption pattern and socio-cultural dimensions associated with it: A case study of rural Haryana, India. Biomass Bioenergy 2009, 33, 1509–1512. [Google Scholar] [CrossRef]
- Le, V.T.; Pitts, A. A survey on electrical appliance use and energy consumption in Vietnamese households: Case study of Tuy Hoa city. Energy Build. 2019, 197, 229–241. [Google Scholar] [CrossRef]
- Barnes, D.F.; Krutilla, K.; Hyde, W. The Urban Household Energy Transition; Routledge: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- García-Valladares, O.; Ituna-Yudonago, J.F. Energy, economic and emissions avoided contribution of domestic solar water heating systems for Mexico, Costa Rica and the Democratic Republic of the Congo. Sustain. Energy Technol. Assess. 2020, 39, 100721. [Google Scholar] [CrossRef]
- Nansaior, A.; Patanothai, A.; Rambo, A.T.; Simaraks, S. Climbing the energy ladder or diversifying energy sources? The continuing importance of household use of biomass energy in urbanizing communities in Northeast Thailand. Biomass Bioenergy 2011, 35, 4180–4188. [Google Scholar] [CrossRef]
- Chambwera, M. Economic Analysis of Urban Fuelwood Demand: The Case of Harare in Zimbabwe; Wageningen Universiteit: Wageningen, The Netherlands, 2004. [Google Scholar]
- Mekonnen, A.; Gunnar, K. Determinants of household fuel choice in major cities in Ethiopia. In Environment for Development Initiative; Environment for Development: Gothenburg, Sweden, 2008; Available online: www.jstor.org/stable/resrep14881 (accessed on 14 May 2020).
- Gebreegziabher, Z.; Mekonnen, A.; Kassie, M.; Köhlin, G. Urban energy transition and technology adoption: The case of Tigrai, northern Ethiopia. Energy Econ. 2012, 34, 410–418. [Google Scholar] [CrossRef]
- Brizga, J.; Feng, K.; Hubacek, K. Household carbon footprints in the Baltic States: A global multi-regional input–output analysis from 1995 to 2011. Appl. Energy 2017, 189, 780–788. [Google Scholar] [CrossRef]
- Dai, H.; Masui, T.; Matsuoka, Y.; Fujimori, S. The impacts of China’s household consumption expenditure patterns on energy demand and carbon emissions towards 2050. Energy Policy 2012, 50, 736–750. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, B.; Wei, Y.M. Heterogeneous impacts of households on carbon dioxide emissions in Chinese provinces. Appl. Energy 2018, 229, 236–252. [Google Scholar] [CrossRef]
- Barr, S.; Gilg, A.W.; Ford, N. The household energy gap: Examining the divide between habitual- and purchase-related conservation behaviours. Energy Policy 2005, 33, 1425–1444. [Google Scholar] [CrossRef]
- Trotta, G. Factors affecting energy-saving behaviours and energy efficiency investments in British households. Energy Policy 2018, 114, 529–539. [Google Scholar] [CrossRef]
- Fuerst, F.; Kavarnou, D.; Singh, R.; Adan, H. Determinants of energy consumption and exposure to energy price risk: A UK studyDeterminanten des Energieverbrauchs und Energiepreisrisiko: Eine Studie aus Großbritannien. Z. Für Immob. 2020, 6, 65–80. [Google Scholar] [CrossRef]
- Lenzen, M.; Kanemoto, K.; Moran, D.; Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 2012, 46, 8374–8381. [Google Scholar] [CrossRef]
- Barrett, J.; Peters, G.; Wiedmann, T.; Scott, K.; Lenzen, M.; Roelich, K.; Le Quéré, C. Consumption-based GHG emission accounting: A UK case study. Clim. Policy 2013, 13, 451–470. [Google Scholar] [CrossRef]
- Sorrell, S. Reducing energy demand: A review of issues, challenges and approaches. Renew. Sustain. Energy Rev. 2015, 47, 74–82. [Google Scholar] [CrossRef] [Green Version]
- IEA World Energy Outlook. 2018. Available online: https://www.iea.org/reports/world-energy-outlook-2018 (accessed on 26 July 2020).
- Moll, H.C.; Noorman, K.J.; Kok, R.; Engström, R.; Throne-Holst, H.; Clark, C. Pursuing more sustainable consumption by analyzing household metabolism in European countries and cities. Proc. J. Ind. Ecol. 2005, 9, 259–275. [Google Scholar] [CrossRef] [Green Version]
- Bhati, A.; Hansen, M.; Chan, C.M. Energy conservation through smart homes in a smart city: A lesson for Singapore households. Energy Policy 2017, 104, 230–239. [Google Scholar] [CrossRef]
- Cayla, J.M.; Maizi, N.; Marchand, C. The role of income in energy consumption behaviour: Evidence from French households data. Energy Policy 2011, 39, 7874–7883. [Google Scholar] [CrossRef]
- Leth-Petersen, S.; Togeby, M. Demand for space heating in apartment blocks: Measuring effects of policy measures aiming at reducing energy consumption. Energy Econ. 2001, 23, 387–403. [Google Scholar] [CrossRef]
- Lazowski, B.; Parker, P.; Rowlands, I.H. Towards a smart and sustainable residential energy culture: Assessing participant feedback from a long-term smart grid pilot project. Energy Sustain. Soc. 2018, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Glaeser, E.L.; Kahn, M.E. The greenness of cities: Carbon dioxide emissions and urban development. J. Urban. Econ. 2010, 67, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Li, S. Interval estimations of building heating energy consumption using the degree-day method and fuzzy numbers. Buildings 2018, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhuang, S.; Yang, H. Comparison of Residential Energy Consumption in China, Japan, Canada and USA. J. Asian Archit. Build. Eng. 2003, 2, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Sarak, H.; Satman, A. The degree-day method to estimate the residential heating natural gas consumption in Turkey: A case study. Energy 2003, 28, 929–939. [Google Scholar] [CrossRef]
- Kohler, M.; Blond, N.; Clappier, A. A city scale degree-day method to assess building space heating energy demands in Strasbourg Eurometropolis (France). Appl. Energy 2016, 184, 40–54. [Google Scholar] [CrossRef]
- Yun, G.Y.; Steemers, K. Behavioural, physical and socio-economic factors in household cooling energy consumption. Appl. Energy 2011, 88, 2191–2200. [Google Scholar] [CrossRef]
- Martinsson, J.; Lundqvist, L.J.; Sundström, A. Energy saving in Swedish households. The (relative) importance of environmental attitudes. Energy Policy 2011, 39, 5182–5191. [Google Scholar] [CrossRef]
- Wiesmann, D.; Lima Azevedo, I.; Ferrão, P.; Fernández, J.E. Residential electricity consumption in Portugal: Findings from top-down and bottom-up models. Energy Policy 2011, 39, 2772–2779. [Google Scholar] [CrossRef]
- Van Der Kroon, B.; Brouwer, R.; Van Beukering, P.J.H. The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis. Renew. Sustain. Energy Rev. 2013, 20, 504–513. [Google Scholar] [CrossRef]
- Ruiz-Mercado, I.; Masera, O. Patterns of Stove Use in the Context of Fuel–Device Stacking: Rationale and Implications. Ecohealth 2015, 12, 42–56. [Google Scholar] [CrossRef]
- Choumert-Nkolo, J.; Combes Motel, P.; Le Roux, L. Stacking up the ladder: A panel data analysis of Tanzanian household energy choices. World Dev. 2019, 115, 222–235. [Google Scholar] [CrossRef]
- IEA Energy Consumption. 2018. Available online: https://www.iea.org/countries/Iran (accessed on 14 May 2020).
- Moshiri, S.; Atabi, F.; Panjehshahi, M.H.; Lechtenböehmer, S. Long run energy demand in Iran: A scenario analysis. Int. J. Energy Sect. Manag. 2012, 6, 120–144. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmani, O.; Rezania, S.; Beiranvand Pour, A.; Aminpour, S.M.; Soltani, M.; Ghaderpour, Y.; Oryani, B. An Overview of Household Energy Consumption and Carbon Dioxide Emissions in Iran. Processes 2020, 8, 994. https://doi.org/10.3390/pr8080994
Rahmani O, Rezania S, Beiranvand Pour A, Aminpour SM, Soltani M, Ghaderpour Y, Oryani B. An Overview of Household Energy Consumption and Carbon Dioxide Emissions in Iran. Processes. 2020; 8(8):994. https://doi.org/10.3390/pr8080994
Chicago/Turabian StyleRahmani, Omeid, Shahabaldin Rezania, Amin Beiranvand Pour, Shahram M. Aminpour, Mohammad Soltani, Yousef Ghaderpour, and Bahareh Oryani. 2020. "An Overview of Household Energy Consumption and Carbon Dioxide Emissions in Iran" Processes 8, no. 8: 994. https://doi.org/10.3390/pr8080994