The Effect of Citric Acid, NaCl, and CaCl2 on Qualitative Changes of Horse Meat in Cold Storage
Abstract
:1. Introduction
2. Material and Methods
2.1. Raw Material
- NaCl—a meat sample—batch was sprinkled and rubbed with NaCl (2% concentration in relation to meat weight);
- citric acid (CA) (analytically pure monohydrate—basic 99.4%; C₆H₈O₇ × H2O; 2-hydroxypropane-1,2,3-tricarboxylic acid hydrate)—3% water solution in relation to meat weight;
- 0.2 M and 0.3 M CaCl2 (pure hexahydrate; CaCl2 × 6 H2O; calcium chloride 6-hydrate)—0.2 M and 0.3 M CaCl2 solutions were prepared. Two different concentrations of CaCl2 were used to investigate whether a higher concentration does not degrade hydration properties and color parameters of horse meat.
2.2. Analytical Methods
2.3. Sensory Evaluations
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Ethical Statement
References
- Juárez, M.; Polvillo, O.; Gómez, M.D.; Alcalde, M.J.; Romero, F.; Valera, M. Breed effect on carcass and meat quality of foals slaughtered at 24 months of age. Meat Sci. 2009, 83, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Arcos-Garcia, G.; Totosaus, A.; Guerrero, I.; Perez-Chabela, M.L. Physicochemical, sensory, functional and microbial characterization of horse meat. Rev. Bras. Agrociência 2002, 8, 43–46. [Google Scholar]
- Franco, D.; Rodríguez, E.; Purriňos, L.; Crecente, S.; Bermúdez, R.; Lorenzo, J.M. Meat quality of “Galician Mountain” foals breed. Effect of sex, slaughter age and livestock production system. Meat Sci. 2011, 88, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Pateiro, M.; Franco, D. Influence of muscle type on physicochemical and sensory properties of foal meat. Meat Sci. 2013, 94, 77–83. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M. Influence of type of muscles on nutritional value of foal meat. Meat Sci. 2013, 93, 630–638. [Google Scholar] [CrossRef]
- Stanisławczyk, R.; Rudy, M.; Gil, M.; Duma-Kocan, P. Influence of cold and frozen storage on the chemical content, hydration properties and texture parameters of horse meat. Med. Weter 2019, 75, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Carballo, J. Changes in physico-chemical properties and volatile compounds throughout the manufacturing process of dry-cured foal loin. Meat Sci. 2015, 99, 44–51. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Sarries, M.V.; Tateo, A.; Polidori, P.; Franco, D.; Lanza, M. Carcass characteristics, meat quality and nutritional value of horsemeat: A review. Meat Sci. 2014, 96, 1478–1488. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S.; Bastianello Campagnol, P.C.; Zhu, Z.; Alpas, H.; Barba, F.J.; Tomasevic, I. Technological aspects of horse meat products—A review. Food Res. Int. 2017, 102, 176–183. [Google Scholar] [CrossRef]
- Litwińczuk, A.; Florek, M.; Skałecki, P.; Litwińczuk, Z. Chemical composition and physicochemical properties of horsemeat from the longissimus lumborum and semitendinosus muscle. J. Muscle Foods 2008, 19, 223–236. [Google Scholar] [CrossRef]
- Stanisławczyk, R.; Znamirowska, Z. Changes in physico-chemical properties of horsemeat during frozen storage. Acta Sci. Pol. Technol. Aliment. 2005, 4, 89–96. [Google Scholar]
- Stanisławczyk, R.; Rudy, M.; Gil, M. The influence of frozen storage and selected substances on the quality of horse meat. Meat Sci. 2019, 155, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Seong, P.N.; Park, K.M.; Kang, G.H.; Cho, S.H.; Park, B.Y.; Chae, H.S.; Ba, H.V. The differences in chemical composition, physical quality traits and nutritional values of horse meat as affected by various retail cut types. Asian-Aust. J. Anim. Sci. 2016, 29, 89–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanisławczyk, R.; Rudy, M. Changes in physico-chemical properties of cooled and frozen horse meat depending on horse age. Chłodnictwo 2010, 12, 36–39. (In Polish) [Google Scholar]
- Dobranić, V.; Njari, B.; Mioković, B.; Cvrtila Fleck, Ž.; Kadivc, M. Chemical composition of horse meat. Meso 2009, 11, 62–67. [Google Scholar]
- Jastrzębska, E.; Daszkiewicz, T.; Górecka-Bruzda, A.; Feliś, D. Current situation and prospects for the horse meat market in Poland and the world. Med. Weter. 2019, 75, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, C.B.; Salitto, A.V.; Carduza, F.J.; Pazos, A.A.; Lasta, J.A. Effect of calcium chloride marination on bovine Cutaneus trunci muscle. Meat Sci. 2001, 57, 251–256. [Google Scholar] [CrossRef]
- Ostoja, H.; Cierach, M. Effect of calcium salts treatment on structure of beef. Acta Agrophys. 2008, 11, 465–474. (In Polish) [Google Scholar]
- Pérez, M.L.; Escalona, H.; Guerrero, I. Effect of calcium chloride marination on calpain and quality characteristics of meat from chicken, horse, cattle and rabbit. Meat Sci. 1998, 48, 125–134. [Google Scholar] [CrossRef]
- Omojola, A.B. Effects of calcium chloride (CaCl2) injection at different times post-mortem on meat of spent layers. Bulg. J. Agric. Sci. 2007, 13, 131–139. [Google Scholar]
- Lee, J.H.; Kannan, G.; Kouakou, B. Tenderness and flavor of leg cuts from meat goats influenced by calcium chloride injection. Int. J. Food Prop. 2018, 21, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Vlahova-Vangelova, D.B.; Abjanova, S.; Dragoe, S.G. Influence of the marinating type on the morphological and sensory properties of horse meat. Acta Sci. Pol. Technol. Aliment. 2014, 13, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.E.; Esfahani Mehr, A. The effect of meat marinating with lactic and citric acid on some physicochemical and electrophoretic pattern of beef burger. Iran. J. Vet. Med. 2015, 9, 103–108. [Google Scholar]
- Kim, J.H.; Hong, G.E.; Lim, K.W.; Park, W.; Lee, C.H. Influence of citric acid on the pink color and characteristics of sous vide processed chicken breasts during chill storage. Korean J. Food Sci. Anim. Resour. 2015, 35, 585–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Commission Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Off. J. Eur. Union 2011, 295, 1–177. [Google Scholar]
- Vlahova-Vangelova, D.; Dragoev, S. Marination: Effect on meat safety and human health. A Review. Bulg. J. Agric. Sci. 2014, 20, 503–509. [Google Scholar]
- Bae, S.M.; Cho, M.G.; Hong, G.T.; Jeong, J.Y. Effect of NaCl concentration and cooking temperature on the color and pigment characteristics of presalted ground chicken breasts. Korean J. Food Sci. Anim. 2018, 38, 417–430. [Google Scholar]
- Sallama, K.I.; Samejima, K. Microbiological and chemical quality of ground beef treated with sodium lactate and sodium chloride during refrigerated storage. LebensonWiss Technol. 2004, 37, 865–871. [Google Scholar] [CrossRef]
- Amaral, A.B.; Silva, M.V.D.; Lannes, S.C.D.S. Lipid oxidation in meat: Mechanisms and protective factors–A review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- PN-ISO 1442. Meat and Meat Products–Determination of Moisture Content (Reference Method); Polish Committee for Standardization: Warsaw, Poland, 2000. [Google Scholar]
- PN-A-04018: 1975/Az3. Agricultural Food Products. Determination of Nitrogen by the Kjeldahl Method and Expressing as Protein; Polish Committee for Standardization: Warsaw, Poland, 2002. [Google Scholar]
- PN-ISO 1444. Meat and Meat Products–Determination of Free Fat Content; Polish Committee for Standardization: Warsaw, Poland, 2000. [Google Scholar]
- Znaniecki, P. Outline of Circulation, Assessment and Processing of Raw Materials of Animalorigin; PWRiL: Warsaw, Poland, 1983; pp. 226–227. (In Polish) [Google Scholar]
- Van Oeckel, M.J.; Warnants, N.; Boucqueé, C.V. Comparison of different methods for measuring water holding capacity and juiciness of pork versus online screening methods. Meat Sci. 1999, 51, 313–320. [Google Scholar] [CrossRef]
- Baryłko-Pikielna, N.; Matuszewska, I. Sensory Testing of Food. Basics—Methods—Application; Polish Society of Food Technologists: Wrocław, Poland, 2009. (In Polish) [Google Scholar]
- ISO 8586-2. Sensory Analysis. General Guidance for the Selection, Training and Monitoring of Assessors; International Organization for Standardization: Geneva, Switzerland, 2008. [Google Scholar]
- ISO 8587. Sensory Analysis. Methodology, International Organization for Standardization (ISO); International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- PN-EN ISO 8589. General Guidelines for the Design of a Sensory Analysis Laboratory; Polish Committee for Standardization: Warsaw, Poland, 2010. [Google Scholar]
- Klinhom, P.; Klinhom, J.; Senapa, J.; Methawiwat, S. Improving the quality of citric acid and calcium chloride marinated culled cow meat. Int. Food Res. J. 2015, 22, 1410–1416. [Google Scholar]
- Pérez-Chabela, M.L.; Escalona-Buendia, H.; Guerrero-Legarreta, I. Physicochemical and sensory characteristics of calcium chloride-treated horse meat. Int. J. Food Prop. 2003, 6, 73–85. [Google Scholar] [CrossRef]
- Aktaş, N.; Aksu, M.I.; Kaya, M. The influence of marination with different salt concentrations on the tenderness, water holding capacity and bound water content of beef. Turk. J. Vet. Anim. Sci. 2003, 27, 1207–1211. [Google Scholar]
- Morgan, J.B.; Savell, J.W.; Hale, D.S.; Miller, R.K.; Griffin, D.B.; Cross, H.R.; Shackelford, S.D. National beef tenderness survey. J. Anim. Sci. 1991, 69, 3274–3283. [Google Scholar] [CrossRef]
- Wheeler, T.L.; Koohmaraie, M.; Lansdell, J.L.; Siragusa, G.R.; Miller, M.F. Effects of postmortem injection time, injection level and concentration of calcium chloride on beef quality traits. J. Anim. Sci. 1993, 71, 2965–2974. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Chabela, M.L.; Guerrero, I.; Gutierrez-Ruiz, M.C.; Betancourt-Rule, J.M. Effect of calcium chloride marination and collagen content on beef, horse, rabbit and hen meat hardness. J. Muscle Foods 2005, 16, 141–154. [Google Scholar] [CrossRef]
pH | CS | NaCl | CA | 0.2 M CaCl2 | 0.3 M CaCl2 |
---|---|---|---|---|---|
pH1 | 5.93 a ± 0.58 | 5.98 a ± 0.50 | 5.83 a ± 0.48 | 5.90 a ± 0.44 | 5.91 a ± 0.39 |
pH48 | 5.5 a ± 0.01 | 5.49 a ± 0.03 | 5.39 b ± 0.03 | 5.48 a b ± 0.05 | 5.50 a b ± 0.01 |
pH72 | 5.45 a ± 0.01 | 5.40 a ± 0.09 | 5.45 a ± 0.06 | 5.49 a ± 0.08 | 5.53 a ± 0.02 |
pH96 | 5.44 a ± 0.02 | 5.46 a b ± 0.04 | 5.40 a ± 0.01 | 5.51 b ± 0.04 | 5.53 b ± 0.01 |
Component | CS | NaCl | CA | 0.2 M CaCl2 | 0.3 M CaCl2 |
---|---|---|---|---|---|
Fat (%) | 2.10 a ± 0.10 | 2.80 a ± 1.65 | 1.96 a ± 0.20 | 1.98 a ± 0.05 | 1.76 a ± 0.05 |
Protein (%) | 20.86 a ± 0.11 | 20.93 a ± 0.65 | 21.20 a ± 0.01 | 21.16 a ± 0.05 | 21.23 a ± 0.05 |
Water (%) | 75.43 a ± 0.63 | 74.03 a ± 1.84 | 76.70 a ± 0.26 | 76.70 a ± 0.10 | 76.83 a ± 0.05 |
Specification | CS | NaCl | CA | 0.2 M CaCl2 | 0.3 M CaCl2 |
---|---|---|---|---|---|
Thermal drip96 (%) | 22.85 a ± 1.12 | 23.20 a ± 4.12 | 37.47 b ± 3.53 | 26.50 a ± 4.47 | 26.03 a ± 1.89 |
Forced drip96 (cm2) | 4.80 a ± 0.60 | 2.46 b ± 0.68 | 13.66 c ± 0.83 | 5.34 b ± 1.10 | 6.01 b ± 0.76 |
L *24 | 39.35 a c ± 1.05 | 31.21 a ± 1.11 | 41.00 d c ± 3.06 | 48.46 b d ± 1.09 | 51.79 b ± 5.86 |
a *24 | 18.77 a ± 3.57 | 14.15 a c ± 1.84 | 6.64 b ± 0.50 | 11.21 c ± 1.02 | 9.28 c ± 1.28 |
b *24 | 10.02 a ± 1.00 | 4.95 b ± 0.86 | 5.49 b ± 1.55 | 5.97 b ± 1.07 | 4.74 b ± 1.96 |
∆E | 10.64 | 13.05 | 12.51 | 16.51 | |
L *48 | 38.82 a c ± 1.48 | 30.90 b d ± 1.66 | 42.23 c ± 3.51 | 52.07 b ± 1.37 | 52.81 b ± 4.83 |
a *48 | 18.23 a ± 4.08 | 13.16 a b ± 3.70 | 6.65 b ± 0.73 | 9.65 b ± 0.11 | 9.51 b ± 1.60 |
b *48 | 9.69 a ± 0.58 | 5.50 b ± 0.85 | 5.65 b ± 1.96 | 6.98 a b ± 0.65 | 5.74 b ± 1.03 |
∆E | 10.29 | 12.72 | 16.01 | 16.95 | |
L *72 | 38.35 a ± 1.82 | 29.34 b ± 2.79 | 41.73 a ± 2.73 | 40.73 a ± 3.59 | 41.73 a ± 2.73 |
a*72 | 17.42 a ± 1.17 | 13.70 b ± 1.26 | 6.33 c ± 1.11 | 6.92 c ± 0.69 | 6.83 c ± 1.11 |
b *72 | 10.28 a ± 0.33 | 4.32 b ± 0.41 | 4.83 b ± 0.85 | 6.00 b ± 0.63 | 4.83 b ± 0.85 |
∆E | 11.42 | 12.81 | 11.58 | 12.37 | |
L *96 | 36.81 a ± 3.20 | 28.05 c ± 1.48 | 42.76 a ± 1.29 | 53.02 b ± 3.65 | 54.85 b ± 1.22 |
a *96 | 16.69 a ± 1.05 | 13.30 a ± 1.51 | 5.24 b ± 0.63 | 8.92 b ± 2.87 | 6.27 b ± 0.79 |
b *96 | 10.51 a ± 0.74 | 4.70 b c ± 0.98 | 4.88 b ± 0.15 | 7.75 c ± 1.08 | 7.10 b ± 0.67 |
∆E | 11.04 | 14.07 | 18.18 | 21.11 |
Specification | CS | NaCl | CA | 0.2 M CaCl2 | 0.3 M CaCl2 |
---|---|---|---|---|---|
Hardness 1 (N) | 139.62 a ± 18.73 | 101.83 b ± 26.05 | 87.04 c ± 22.59 | 105.93 b ± 27.05 | 100.50 b ± 25.89 |
Hardness 2 (N) | 73.89 a ± 16.33 | 67.87 c ± 3.58 | 40.40 b ± 6.83 | 46.22 b ± 11.10 | 42.09 b ± 10.76 |
Stiffness up to 5 mm (N) | 30.75 a ± 15.39 | 19.36 b ± 5.11 | 12.37 c ± 3.06 | 20.83 b ± 5.84 | 16.58 b ± 2.83 |
Stiffness up to 8 mm (N) | 98.28 a ± 3.57 | 68.57 b ± 5.34 | 40.83 c ± 9.50 | 57.77 b ± 8.02 | 59.18 b ± 11.28 |
Adhesiveness (mJ) | 1.26 a ± 1.00 | 2.10 a ± 1.76 | 0.93 a ± 0.05 | 0.70 a ± 0.07 | 1.13 a ± 0.09 |
Resilience | 0.05 a ± 0.32 | 0.10 a ± 0.04 | 0.05 a ± 0.01 | 0.14 a ± 0.03 | 0.14 a ± 0.07 |
Cohesiveness | 0.07 a ± 0.02 | 0.19 a ± 0.03 | 0.10 a ± 0.01 | 0.20 a ± 0.02 | 0.17 a ± 0.07 |
Springiness(mm) | 4.57 a ± 0.27 | 3.01 b ± 0.85 | 2.96 b ± 0.16 | 3.54 a b ± 0.19 | 3.67 a b ± 0.41 |
Gumminess (mm) | 9.77 a ± 2.82 | 17.59 a ± 3.07 | 8.70 a ± 1.73 | 20.74 a ± 2.76 | 17.08 a ± 2.73 |
Chewiness (mJ) | 44.66 a ± 6.17 | 55.50 a ± 9.26 | 25.76 b ± 1.11 | 73.33 c ± 5.69 | 62.70 c ± 7.11 |
Specification | CS | NaCl | CA | 0.2 M CaCl2 | 0.3 M CaCl2 |
---|---|---|---|---|---|
Aroma: Intensity | 3.20 a ± 0.25 | 3.75 b ± 0.15 | 2.50 c ± 0.21 | 4.20 b ± 0.16 | 4.05 b ± 0.20 |
Aroma: Desirability | 3.17 a ± 0.11 | 3.83 b ± 0.10 | 2.89 c ± 0.16 | 4.31 b ± 0.12 | 4.26 b ± 0.14 |
Juiciness | 2.55 a ± 0.31 | 3.05 a ± 0.18 | 1.54 c ± 0.09 | 4.36 b ± 0.09 | 4.42 b ± 0.12 |
Tenderness | 2.82 a ± 0.12 | 3.18 a ± 0.12 | 1.12 c ± 0.10 | 4.01 b ± 0.05 | 4.10 b ± 0.08 |
Taste: Intensity | 2.85 a ± 0.15 | 4.15 b ± 0.17 | 1.05 c ± 0.05 | 4.45 b ± 0.10 | 4.50 b ± 0.12 |
Taste: Desirability | 2.99 a ± 0.17 | 4.28 b ± 0.21 | 1.16 c ± 0.08 | 4.38 b ± 0.12 | 4.56 b ± 0.09 |
General Acceptability | 2.93 ± 0.18 | 3.70 ± 0.15 | 1.71 ± 0.11 | 4.28 ± 0.10 | 4.28 ± 0.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanisławczyk, R.; Rudy, M.; Gil, M.; Duma-Kocan, P.; Dziki, D.; Rudy, S. The Effect of Citric Acid, NaCl, and CaCl2 on Qualitative Changes of Horse Meat in Cold Storage. Processes 2020, 8, 1099. https://doi.org/10.3390/pr8091099
Stanisławczyk R, Rudy M, Gil M, Duma-Kocan P, Dziki D, Rudy S. The Effect of Citric Acid, NaCl, and CaCl2 on Qualitative Changes of Horse Meat in Cold Storage. Processes. 2020; 8(9):1099. https://doi.org/10.3390/pr8091099
Chicago/Turabian StyleStanisławczyk, Renata, Mariusz Rudy, Marian Gil, Paulina Duma-Kocan, Dariusz Dziki, and Stanisław Rudy. 2020. "The Effect of Citric Acid, NaCl, and CaCl2 on Qualitative Changes of Horse Meat in Cold Storage" Processes 8, no. 9: 1099. https://doi.org/10.3390/pr8091099
APA StyleStanisławczyk, R., Rudy, M., Gil, M., Duma-Kocan, P., Dziki, D., & Rudy, S. (2020). The Effect of Citric Acid, NaCl, and CaCl2 on Qualitative Changes of Horse Meat in Cold Storage. Processes, 8(9), 1099. https://doi.org/10.3390/pr8091099