The Garden Candytuft (Iberis umbellata L.): At the Crossroad of Copper Accumulation and Glucosinolates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Adsorbents and Adsorption Studies
2.3. Metal Accumulation Studies
Metal Analysis
2.4. Glucosinolates Analysis
2.4.1. Isolation of Desufoglucosinolates
2.4.2. UHPLC-DAD-MS/MS Analysis of Desulfoglucosinolates
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Basic, N.; Salamin, N.; Keller, C.; Galland, N.; Besnard, G. Cadmium hyperaccumulation and genetic differentiation of Thlaspi caerulescens populations. Biochem. Syst. Ecol. 2006, 34, 667–677. [Google Scholar] [CrossRef]
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef] [PubMed]
- De Caroli, M.; Furini, A.; DalCorso, G.; Rojas, M.; Di Sansebastiano, G.-P. Endomembrane Reorganization Induced by Heavy Metals. Plants 2020, 9, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marschner, P. Marschner’s Mineral. Nutrition of Higher Plants, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Malik, A. Metal bioremediation through growing cells. Environ. Int. 2004, 30, 261–278. [Google Scholar] [CrossRef] [PubMed]
- Svilović, S.; Rušić, D.; Žanetić, R. Thermodynamics and Adsorption Isotherms of Copper Ions Removal from Solutions Using Synthetic Zeolite X. Chem. Biochem. Eng. Q. 2008, 22, 299–305. [Google Scholar]
- Svilović, S.; Rušić, D.; Stipišić, R. Modeling batch kinetics of copper ions sorption using synthetic zeolite NaX. J. Hazard. Mater. 2009, 170, 941–947. [Google Scholar] [CrossRef]
- Nibou, D.; Mekatel, H.; Amokrane, S.; Barkat, M.; Trari, M. Adsorption of Zn2+ ions onto NaA and NaX zeolites: Kinetic, equilibrium and thermodynamic studies. J. Hazard. Mater. 2010, 173, 637–646. [Google Scholar] [CrossRef]
- Jovanovic, M.; Grbavcic, Z.; Rajic, N.; Obradovic, B. Removal of Cu(II) from aqueous solutions by using fluidized zeolite A beads: Hydrodynamic and sorption studies. Chem. Eng. Sci. 2014, 117, 85–92. [Google Scholar] [CrossRef]
- Mužek, M.N.; Svilović, S.; Zelić, J. Fly ash-based geopolymeric adsorbent for copper ion removal from wastewater. Desalin. Water Treat. 2014, 52, 2519–2526. [Google Scholar] [CrossRef]
- Mužek, M.N.; Svilović, S.; Ugrina, M.; Zelić, J. Removal of copper and cobalt ions by fly ash-based geopolymer from solutions-equilibrium study. Desalin. Water Treat. 2016, 57, 10689–10699. [Google Scholar] [CrossRef]
- Mužek, M.N.; Svilović, S.; Zelić, J. Kinetic studies of cobalt ion removal from aqueous solutions using fly ash-based geopolymer and zeolite NaX as sorbents. Sep. Sci. Technol. 2016, 51, 2868–2875. [Google Scholar] [CrossRef]
- Pandey, P.K.; Sharma, S.K.; Sambi, S.S. Removal of lead(II) from waste water on zeolite-NaX. J. Environ. Chem. Eng. 2015, 3, 2604–2610. [Google Scholar] [CrossRef]
- Yurekli, Y. Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes. J. Hazard. Mater. 2016, 309, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Yu, L.; Wang, Y.; Zhang, J.; Chen, Z.; Dong, L.; Zan, Q.; Li, R. Heavy metal adsorption with zeolites: The role of hierarchical pore architecture. Chem. Eng. J. 2019, 359, 363–372. [Google Scholar] [CrossRef]
- Krämer, U. Metal hyperaccumulation in plants. Annu. Rev. Plant Biol. 2010, 61, 517–534. [Google Scholar] [CrossRef]
- Tewes, L.J.; Stolpe, C.; Kerim, A.; Krämer, U.; Müller, C. Metal hyperaccumulation in the Brassicaceae species Arabidopsis halleri reduces camalexin induction after fungal pathogen attack. Environ. Exp. Bot. 2018, 153, 120–126. [Google Scholar] [CrossRef]
- Rascio, N. Metal accumulation by some plants growing on zinc-mine deposits. Oikos 1977, 29, 250–253. [Google Scholar] [CrossRef]
- Reeves, R.D. Hyperaccumulation of trace elements by plants. In Phytoremediation of Metal-Contaminated Soils; Morel, J.-L., Echevarria, G., Goncharova, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 68, pp. 25–52. [Google Scholar]
- Boyd, R.S. The defense hypothesis of elemental hyperaccumulation: Status, challenges and new directions. Plant Soil 2007, 293, 153–176. [Google Scholar] [CrossRef]
- Hunt, A.J.; Anderson, C.W.N.; Bruce, N.; Muñoz García, A.; Graedel, T.E.; Hodson, M.; Meech, J.A.; Nassar, N.T.; Parker, H.L.; Rylott, E.L.; et al. Phytoextraction as a tool for green chemistry. Green Process. Synth. 2014, 3, 3–22. [Google Scholar] [CrossRef]
- Mourato, M.P.; Moreira, I.N.; Leitão, I.; Pinto, F.R.; Sales, J.R.; Martins, L.L. Effect of Heavy Metals in Plants of the Genus Brassica. Int. J. Mol. Sci. 2015, 16, 17975–17998. [Google Scholar] [CrossRef] [Green Version]
- Blažević, I.; Montaut, S.; Burčul, F.; Olsen, C.E.; Burow, M.; Rollin, P.; Agerbirk, N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 2020, 169, 112100. [Google Scholar] [CrossRef] [PubMed]
- Pongrac, P.; Tolrà, R.; Vogel-Mikuš, K.; Poschenrieder, C.; Barceló, J.; Regvar, M. At the Crossroads of Metal Hyperaccumulation and Glucosinolates: Is There Anything Out There? Sherameti, I., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 19, pp. 139–161. [Google Scholar]
- Blažević, I.; Đulović, A.; Čikeš Čulić, V.; Popović, M.; Guillot, X.; Burčul, F.; Rollin, P. Microwave-assisted versus conventional isolation of glucosinolate degradation products from Lunaria annua L. and their cytotoxic activity. Biomolecules 2020, 10, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, P.D.; Tokuhisa, J.G.; Reichelt, M.; Gershenzon, J. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 2003, 62, 471–481. [Google Scholar] [CrossRef]
- Wathelet, J.P.; Iori, R.; Leoni, O.; Quinsac, A.; Palmieri, S. Guidelines for glucosinolate analysis in green tissues used for biofumigation. Agroindustria 2004, 3, 257–266. [Google Scholar]
- Šimat, V.; Vlahović, J.; Soldo, B.; Generalić Mekinić, I.; Čagalj, M.; Hamed, I.; Skroza, D. Production and characterization of crude oils from seafood processing by-products. Food Biosci. 2020, 33, 100484. [Google Scholar] [CrossRef]
- Svilović, S.; Mužek, M.N.; Nuić, I.; Vučenović, P. Taguchi design of optimum process parameters for sorption of copper ions using different sorbents. Water Sci. Technol. 2019, 80, 98–108. [Google Scholar] [CrossRef]
- Yurekli, Y. Determination of adsorption characteristics of synthetic NaX nanoparticles. J. Hazard. Mater. 2019, 378, 120743. [Google Scholar] [CrossRef]
- Schenkel, R. Sorption of Small Polar Molecules on Micro- and Mesoporous Zeolitic Materials. Ph.D. Thesis, Fakultät für Chemie, Technische Universität München, München, Germany, 2004. [Google Scholar]
- Jahangir, M.; Abdel-Farid, I.B.; Kim, H.K.; Choi, Y.H.; Verpoorte, R. Healthy and unhealthy plants: The effect of stress on the metabolism of Brassicaceae. Environ. Exp. Bot. 2009, 67, 23–33. [Google Scholar] [CrossRef]
- Jahangir, M.; Abdel-Farid, I.B.; Choi, Y.H.; Verpoorte, R. Metal ion-inducing metabolite accumulation in Brassica rapa. J. Plant Physiol. 2008, 165, 1429–1437. [Google Scholar] [CrossRef]
Adsorbent/Concentration | Zeolite NaX | Egg shells | Humus |
---|---|---|---|
c0 (mmol dm−3) | 7.95 | ||
c10 (mmol dm−3) | 0.38 | 0.13 | 3.99 |
q10 (mmol g−1) | 0.38 | 0.39 | 0.20 |
q10 (mg g−1) | 24.02 | 24.85 | 12.52 |
Adsorption efficiency (%) | 95.22 | 98.36 | 49.81 |
Samples | Heavy Metal (μg g−1 DW) | Glucosinolates * (μg g−1 DW) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu | Cd | Pb | Mo | Mn | Fe | Co | Ni | Zn | 1 | 2 | 3 | 4 | 5 | 6 | |
Humus Compo Sana | 10.19 ± 0.02 a | 0.05 ± 0.00 a | 1.71 ± 0.00 a | 0.01 ± 0.00 a | 19.29 ± 0.04 a | 263.31 ± 0.85 a | 0.13 ± 0.00 a | 0.92 ± 0.00 a | 15.41 ± 0.02 a | / | / | / | / | / | / |
The garden candytuft seeds | 3.53 ± 0.08 a | 0.07 ± 0.00 b | 0.34 ± 0.00 b | 0.74 ± 0.01 b | 9.88 ± 0.19 b | 53.66 ± 0.02 b | 0.01 ± 0.00 b | 1.33 ± 0.04 b | 33.88 ± 0.36 b | 3155.08 ± 169.68 ac | 23434.24 ± 1124.09 a | 41.07 ± 4.51 | 2131.23 ± 136.98 a | 290.69 ± 10.41 a | tr |
The control seedling sample | 4.31 ± 0.07 a | 0.23 ± 0.01 c | 2.90 ± 0.02 c | 0.44 ± 0.03 c | 171.06 ± 4.41 c | 24.27 ± 0.28 cd | 0.03 ± 0.00 c | 1.42 ± 0.03 c | 140.56 ± 3.46 c | 1956.57 ± 71.23 b | 4785.42 ± 395.24 bd | n.d. | 1079.88 ± 57.49 b | 16.38 ± 2.54 b | 14.36 ± 0.00 a |
Seedlings grown in humus with zeolite NaX addition watered only with H2O | 27.88 ± 0.73 b | 0.06 ± 0.00 ab | 0.30 ± 0.00 b | 0.17 ± 0.01 d | 57.14 ± 1.85 d | 22.87 ± 1.00 cd | 0.03 ± 0.00 c | 1.03 ± 0.03 d | 107.87 ± 1.93 d | 3138.14 ± 334.66 ac | 4538.99 ± 414.89 b | n.d. | 1784.85 ± 173.79 c | 90.07 ± 20.89 c | 205.76 ± 6.72 b |
Seedlings grown in humus with extra humus addition watered only with H2O | 39.82 ± 0.59 c | 0.09 ± 0.01 d | 0.92 ± 0.02 d | 0.46 ± 0.01 c | 60.33 ± 1.02 d | 18.61 ± 0.59 c | 0.03 ± 0.00 c | 1.44 ± 0.03 c | 108.86 ± 1.24 d | 3443.60 ± 494.73 a | 2313.22 ± 196.61 c | n.d. | 1426.25 ± 129.83 d | 16.38 ± 3.12 b | 334.95 ± 23.25 c |
Seedlings grown in humus with egg shell addition watered only with H2O | 44.45 ± 3.05 c | 0.03 ± 0.00 e | 2.12 ± 0.09 e | 0.18 ± 0.00 d | 27.96 ± 0.44 e | 27.35 ± 0.18 cd | 0.02 ± 0.00 d | 1.05 ± 0.01 d | 69.10 ± 2.65 e | 2769.69 ± 295.50 c | 5647.91 ± 493.25 d | n.d. | 888.35 ± 97.19 e | 32.75 ± 5.63 d | 110.06 ± 1.56 d |
Seedlings grown in pure humus and watered only with CuSO4∙5H2O | 514.63 ± 9.97 d | 0.29 ± 0.01 f | 0.67 ± 0.01 f | 0.39 ± 0.03 e | 129.82 ± 5.31 f | 29.86 ± 1.22 d | 0.07 ± 0.00 e | 2.26 ± 0.09 e | 41.28 ± 1.77 f | 1264.15 ± 52.94 d | 1776.65 ± 172.34 c | n.d. | 12.28 ± 0.00 f | tr | 50.25 ± 0.55 e |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mužek, M.N.; Omanović, D.; Đulović, A.; Burčul, F.; Svilović, S.; Blažević, I. The Garden Candytuft (Iberis umbellata L.): At the Crossroad of Copper Accumulation and Glucosinolates. Processes 2020, 8, 1116. https://doi.org/10.3390/pr8091116
Mužek MN, Omanović D, Đulović A, Burčul F, Svilović S, Blažević I. The Garden Candytuft (Iberis umbellata L.): At the Crossroad of Copper Accumulation and Glucosinolates. Processes. 2020; 8(9):1116. https://doi.org/10.3390/pr8091116
Chicago/Turabian StyleMužek, Mario Nikola, Dario Omanović, Azra Đulović, Franko Burčul, Sandra Svilović, and Ivica Blažević. 2020. "The Garden Candytuft (Iberis umbellata L.): At the Crossroad of Copper Accumulation and Glucosinolates" Processes 8, no. 9: 1116. https://doi.org/10.3390/pr8091116
APA StyleMužek, M. N., Omanović, D., Đulović, A., Burčul, F., Svilović, S., & Blažević, I. (2020). The Garden Candytuft (Iberis umbellata L.): At the Crossroad of Copper Accumulation and Glucosinolates. Processes, 8(9), 1116. https://doi.org/10.3390/pr8091116