Optimization of Extrusion and Ultrasound-Assisted Extraction of Phenolic Compounds from Jizi439 Black Wheat Bran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Chemicals
2.2. Experiment Design
2.3. Orthogonal Experiment for Extrusion and UAE
2.4. Determination of TPC
2.5. Determination of Antioxidant Activity (AA)
2.6. HPLC Analysis of Phenolic Compounds
2.7. Statistical Analysis
3. Results
3.1. Orthogonal Experiment for Extrusion
3.2. Orthogonal Experiment for Ultrasound-Assisted Extraction (UAE)
3.3. The Effect of Extrusion and UAE on TPC and AA of Jizi439 BWB
3.4. Profile of Phenolic Compounds in Jizi439 BWB Extracts
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Laddomada, B.; Caretto, S.; Mita, G. Wheat Bran Phenolic Acids: Bioavailability and Stability in Whole Wheat-Based Foods. Molecules 2015, 20, 15666–15685. [Google Scholar] [CrossRef] [PubMed]
- Lan, S.Q.; Li, X.P.; Zhang, Y.L.; Chen, S. Development of a New Black Wheat Variety Jizi439 with High Contents of Trace Elements. J. Hebei Agric. Sci. 2010, 14, 43–45. (In Chinese) [Google Scholar] [CrossRef]
- Wu, H.; Ji, T.; Ma, X.; Wang, L. Effect of Jizi439 (Black Wheat) on Blood Glucose Levels in Patients with Type 2 Diabetes. Chin. J. Pharm. Econ. 2015, 12, 75–79. (In Chinese) [Google Scholar]
- Sharma, S.; Agrawal, R.P.; Choudhary, M.; Jain, S.; Goyal, S.; Agarwal, V. Beneficial effect of chromium supplementation on glucose, HbA1C and lipid variables in individuals with newly onset type-2 diabetes. J. Trace Elem. Med. Boil. 2011, 25, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Havel, P.J. A scientific review: The role of chromium in insulin resistance. Diabetes Educ. 2004, 30, 1–14. [Google Scholar]
- Wolever, T. Is glycaemic index (GI) a valid measure of carbohydrate quality? Eur. J. Clin. Nutr. 2013, 67, 522–531. [Google Scholar] [CrossRef]
- Dembinska-Kiec, A.; Mykkänen, O.; Kieć-Wilk, B.; Mykkänen, H. Antioxidant phytochemicals against type 2 diabetes. Br. J. Nutr. 2008, 99, ES109–ES117. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Cai, Y.-Z.; Li, W.; Corke, H.; Kitts, D.D. Anthocyanin characterization and bioactivity assessment of a dark blue grained wheat (Triticum aestivum L. cv. Hedong Wumai) extract. Food Chem. 2007, 104, 955–961. [Google Scholar] [CrossRef]
- Baynes, J.W.; Thorpe, S.R. Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes 1999, 48, 1–9. [Google Scholar] [CrossRef]
- Pickup, J. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 2004, 27, 813–823. [Google Scholar] [CrossRef] [Green Version]
- Urso, M.; Clarkson, P.M. Oxidative stress, exercise, and antioxidant supplementation. Toxicology 2003, 189, 41–54. [Google Scholar] [CrossRef]
- Lea, A.J.; Tung, J.; Zhou, X. A Flexible, Efficient Binomial Mixed Model for Identifying Differential DNA Methylation in Bisulfite Sequencing Data. PLoS Genet. 2015, 11, e1005650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, S.; Bhanger, M.; Anwar, F. Antioxidant properties and components of bran extracts from selected wheat varieties commercially available in Pakistan. LWT Food Sci. Technol. 2007, 40, 361–367. [Google Scholar] [CrossRef]
- Liu, Q.; Qiu, Y.; Beta, T. Comparison of Antioxidant Activities of Different Colored Wheat Grains and Analysis of Phenolic Compounds. J. Agric. Food Chem. 2010, 58, 9235–9241. [Google Scholar] [CrossRef] [PubMed]
- Vaher, M.; Matso, K.; Levandi, T.; Helmja, K.; Kaljurand, M. Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. Procedia Chem. 2010, 2, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Chunduri, V.; Kumar, A.; Kumar, R.; Khare, P.; Kondepudi, K.K.; Bishnoi, M.; Garg, M. Anthocyanin bio-fortified colored wheat: Nutritional and functional characterization. PLoS ONE 2018, 13, e0194367. [Google Scholar] [CrossRef] [Green Version]
- Guha, M.; Ali, S.Z. Extrusion cooking of rice: Effect of amylose content and barrel temperature on product profile. J. Food Process. Preserv. 2006, 30, 706–716. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Liu, R.H. Processed Sweet Corn Has Higher Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 4959–4964. [Google Scholar] [CrossRef]
- Esposito, F.; Arlotti, G.; Bonifati, A.M.; Napolitano, A.; Vitale, D.; Fogliano, V. Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Res. Int. 2005, 38, 1167–1173. [Google Scholar] [CrossRef]
- Brennan, C.S.; Brennan, M.; Derbyshire, E.; Tiwari, B. Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends Food Sci. Technol. 2011, 22, 570–575. [Google Scholar] [CrossRef]
- Wang, J.; Sun, B.; Cao, Y.; Tian, Y.; Li, X. Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem. 2008, 106, 804–810. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Enríquez, J.R.; Ramirez-Wong, B.; Robles-Sánchez, R.M.; Robles-Zepeda, R.; González-Aguilar, G.A.; Gutiérrez-Dorado, R. Effect of Extrusion Conditions and the Optimization of Phenolic Compound Content and Antioxidant Activity of Wheat Bran Using Response Surface Methodology. Plant. Foods Hum. Nutr. 2018, 73, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, J.; Shen, J.; Silva, A.; Dennis, D.A.; Barrow, C.J. A Simple 96-Well Microplate Method for Estimation of Total Polyphenol Content in Seaweeds. Envrion. Boil. Fishes 2006, 18, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Shan, F.; Sun, S.; Corke, A.H.; Beta, T. Free Radical Scavenging Properties and Phenolic Content of Chinese Black-Grained Wheat. J. Agric. Food Chem. 2005, 53, 8533–8536. [Google Scholar] [CrossRef] [PubMed]
- Shimamura, T.; Sumikura, Y.; Yamazaki, T.; Tada, A.; Kashiwagi, T.; Ishikawa, H.; Matsui, T.; Sugimoto, N.; Akiyama, H.; Ukeda, H. Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives—Inter-laboratory evaluation study. Anal. Sci. 2014, 30, 717–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmer, A.R.; Leonardi, B.; Miron, D.; Schapoval, E.E.S.; De Oliveira, J.R.; Gosmann, G. Antioxidant and anti-inflammatory properties of Capsicum baccatum: From traditional use to scientific approach. J. Ethnopharmacol. 2012, 139, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Y.; Hu, C.R. Experiment Design and Data Processing, 2nd ed.; Chemical Industry Press: Beijing, China, 2008; pp. 124–146. [Google Scholar]
- Anton, A.A.; Fulcher, R.G.; Arntfield, S.D. Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: Effects of bean addition and extrusion cooking. Food Chem. 2009, 113, 989–996. [Google Scholar] [CrossRef]
- Lohani, U.C.; Muthukumarappan, K. Effect of Extrusion Processing Parameters on Antioxidant, Textural and Functional Properties of Hydrodynamic Cavitated Corn Flour, Sorghum Flour and Apple Pomace-Based Extrudates. J. Food Process. Eng. 2016, 40, 40. [Google Scholar] [CrossRef]
- Sharma, P.; Gujral, H.S.; Singh, B. Antioxidant activity of barley as affected by extrusion cooking. Food Chem. 2012, 131, 1406–1413. [Google Scholar] [CrossRef]
- Chalermchaiwat, P.; Jangchud, K.; Jangchud, A.; Charunuch, C.; Prinyawiwatkul, W. Antioxidant activity, free gamma-aminobutyric acid content, selected physical properties and consumer acceptance of germinated brown rice extrudates as affected by extrusion process. LWT Food Sci. Technol. 2015, 64, 490–496. [Google Scholar] [CrossRef]
- Ozer, E.A.; Herken, E.N.; Guzel, S.; Ainsworth, P.; Ibanoglu, S. Effect of extrusion process on the antioxidant activity and total phenolics in a nutritious snack food. Int. J. Food Sci. Technol. 2006, 41, 289–293. [Google Scholar] [CrossRef]
- Khanal, R.C.; Howard, L.R.; Brownmiller, C.R.; Prior, R.L. Influence of Extrusion Processing on Procyanidin Composition and Total Anthocyanin Contents of Blueberry Pomace. J. Food Sci. 2009, 74, H52–H58. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem. 2008, 108, 977–985. [Google Scholar] [CrossRef]
- Thoo, Y.Y.; Ho, S.K.; Liang, J.Y.; Ho, C.W.; Tan, C.P. Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (Morinda citrifolia). Food Chem. 2010, 120, 290–295. [Google Scholar] [CrossRef]
- Dini, I.; Tenore, G.C.; Dini, A. Antioxidant compound contents and antioxidant activity before and after cooking in sweet and bitter Chenopodium quinoa seeds. LWT Food Sci. Technol. 2010, 43, 447–451. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.; Shahidi, F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 2005, 93, 47–56. [Google Scholar] [CrossRef]
- Silva, E.; Rogez, H.; Larondelle, Y. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep. Purif. Technol. 2007, 55, 381–387. [Google Scholar] [CrossRef]
- Biesaga, M. Influence of extraction methods on stability of flavonoids. J. Chromatogr. A 2011, 1218, 2505–2512. [Google Scholar] [CrossRef]
- Sivakumar, V.; Verma, V.R.; Rao, P.G.; Swaminathan, G. Studies on the use of power ultrasound in solid–liquid myrobalan extraction process. J. Clean. Prod. 2007, 15, 1813–1818. [Google Scholar] [CrossRef]
- Kim, K.-H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Van Hung, P.; Maeda, T.; Miyatake, K.; Morita, N. Total phenolic compounds and antioxidant capacity of wheat graded flours by polishing method. Food Res. Int. 2009, 42, 185–190. [Google Scholar] [CrossRef]
- Wang, S.; Dong, F.; Wang, G. Optimization of Extraction Process for Phenolic Acid from Wheat Grains and Effect of Geographic Origin and Variety on Phenolic Acid Content. Food Sci. 2019, 40, 306–312. [Google Scholar]
- Gaxiola-Cuevas, N.; Mora-Rochín, S.; Cuevas-Rodríguez, E.; León-López, L.; Reyes-Moreno, C.; Montoya-Rodríguez, A.; Milán-Carrillo, J. Phenolic Acids Profiles and Cellular Antioxidant Activity in Tortillas Produced from Mexican Maize Landrace Processed by Nixtamalization and Lime Extrusion Cooking. Plant. Foods Hum. Nutr. 2017, 72, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Chuck-Hernández, C.; Gutiérrez-Uribe, J.; Serna-Saldivar, S.O. Effect of thermoplastic extrusion and cell wall degrading enzymes on the phenolic and flavonoid compounds extracted from whole and dehulled black beans (Phaseolus vulgaris L.). Insights Biotechnol. 2011, 1, 14–18. [Google Scholar]
Level | Factors | ||
---|---|---|---|
A | B | C | |
1 | 90 | 21 | 140 |
2 | 110 | 23 | 160 |
3 | 130 | 25 | 180 |
Level | Factors | |||
---|---|---|---|---|
A | B | C | D | |
1 | 30 | 20 | 20 | 200 |
2 | 50 | 40 | 35 | 300 |
3 | 70 | 60 | 50 | 400 |
Experiment No. | A | B | C | TPC (μg GAE/g DW) | AA DPPH Scavenging Activity (%) | |
---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1848.0 ± 138.1 | 69.5 ± 2.3 | |
2 | 1 | 2 | 2 | 1897.2 ± 40.9 | 71.2 ± 1.1 | |
3 | 1 | 3 | 3 | 1951.0 ± 88.3 | 72.3 ± 1.6 | |
4 | 2 | 1 | 2 | 2106.8 ± 93.7 | 83.3 ± 1.3 | |
5 | 2 | 2 | 3 | 1956.5 ± 64.6 | 75.4 ± 1.7 | |
6 | 2 | 3 | 1 | 2232.4 ± 64.9 | 86.7 ± 2.9 | |
7 | 3 | 1 | 3 | 1951.8 ± 30.4 | 81.1 ± 0.6 | |
8 | 3 | 2 | 1 | 2024.7 ± 69.1 | 85.0 ± 1.8 | |
9 | 3 | 3 | 2 | 1999.3 ± 120.3 | 82.9 ± 1.8 | |
TPC | k1 | 1898.7 | 1968.9 | 2035.0 | ||
k2 | 2098.6 | 1959.5 | 2001.1 | |||
k3 | 1991.9 | 2060.9 | 1953.1 | |||
R | 199.8 | 101.4 | 82.0 | |||
AA | k1 | 71.0 | 78.0 | 80.4 | ||
k2 | 81.8 | 77.2 | 79.1 | |||
k3 | 83.0 | 80.6 | 76.2 | |||
R | 12.0 | 3.4 | 4.1 |
Variance Sources | Response | Free Degree | SS | MS | F | p |
---|---|---|---|---|---|---|
A | TPC | 2 | 59,990 | 29,995 | 2.9 | 0.26 |
AA | 2 | 316 | 158 | 26 | 0.04 | |
B | TPC | 2 | 23,760 | 11,880 | 1.1 | 0.47 |
AA | 2 | 8.8 | 4.4 | 0.7 | 0.58 | |
C | TPC | 2 | 1765 | 882 | 0.1 | 0.92 |
AA | 2 | 1.1 | 0.6 | 0.1 | 0.91 | |
Error | TPC | 2 | 20,682 | 10,341 | ||
AA | 2 | 12.0 | 6 |
Experiment No. | A | B | C | D | TPC (μg GAE/g DW) | AA DPPH Scavenging Activity (%) | |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 2188.2 ± 110.0 | 79.0 ± 1.1 | |
2 | 1 | 2 | 2 | 2 | 2499.2 ± 38.8 | 79.7 ± 1.6 | |
3 | 1 | 3 | 3 | 3 | 2301.3 ± 145.9 | 80.3 ± 1.1 | |
4 | 2 | 1 | 2 | 3 | 2491.7 ± 14.6 | 86.8 ± 1.3 | |
5 | 2 | 2 | 3 | 1 | 2370.9 ± 187.4 | 85.6 ± 1.5 | |
6 | 2 | 3 | 1 | 2 | 2527.3 ± 96.0 | 85.1 ± 0.8 | |
7 | 3 | 1 | 3 | 2 | 2682.7 ± 26.6 | 72.4 ± 1.0 | |
8 | 3 | 2 | 1 | 3 | 2898.5 ± 230.1 | 72.9 ± 0.9 | |
9 | 3 | 3 | 2 | 1 | 2883.2 ± 87.6 | 71.0 ± 0.6 | |
TPC | k1 | 2393.6 | 2454.2 | 2538.0 | 2480.8 | ||
k2 | 2463.3 | 2589.5 | 2624.7 | 2569.8 | |||
k3 | 2821.5 | 2570.6 | 2451.6 | 2563.8 | |||
R | 491.9 | 135.3 | 173.1 | 89.0 | |||
AA | k1 | 79.7 | 79.4 | 79.0 | 78.6 | ||
k2 | 85.8 | 79.4 | 79.2 | 79.1 | |||
k3 | 72.1 | 78.8 | 79.4 | 80.0 | |||
R | 13.7 | 0.6 | 0.4 | 1.43 |
Variance Sources | Response | Free Degree | SS | MS | F | p |
---|---|---|---|---|---|---|
A | TPC | 2 | 1,164,365 | 582,182 | 37.2 | 0.00 |
AA | 2 | 851 | 426 | 326.5 | 0.00 | |
B | TPC | 2 | 96,645 | 48,322 | 3.1 | 0.07 |
AA | 2 | 2.0 | 1.0 | 0.8 | 0.47 | |
C | TPC | 2 | 134,773 | 67,387 | 4.3 | 0.03 |
AA | 2 | 0.7 | 0.4 | 0.3 | 0.76 | |
D | TPC | 2 | 44,477 | 22,238 | 1.4 | 0.27 |
AA | 2 | 9.5 | 4.7 | 3.6 | 0.04 | |
Error | TPC | 2 | 281,516 | 15,640 | ||
AA | 2 | 23.5 | 1.3 |
Control | NENU | EU | |
---|---|---|---|
Gallic acid | 2.80 ± 0.09a | 0.46 ± 0.02b | 0.47 ± 0.001b |
Chlorogenic acid | ND | 2.17 ± 0.01b | 2.41 ± 0.001a |
Vanillic acid and caffeic acid | ND | 0.65 ± 0.003b | 0.80 ± 0.001a |
Syringic acid | 1.16 ± 0.002 | ND | ND |
P-coumaric acid | 0.92 ± 0.02 | ND | ND |
Luteolin | ND | 1.30 ± 0.05b | 2.10 ± 0.01a |
Apigenin | ND | 0.02 ± 0.002b | 0.03 ± 0.001a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Li, X.; Zhu, X.; Wang, G.; Zhuang, K.; Wang, Y.; Ding, W. Optimization of Extrusion and Ultrasound-Assisted Extraction of Phenolic Compounds from Jizi439 Black Wheat Bran. Processes 2020, 8, 1153. https://doi.org/10.3390/pr8091153
Chen X, Li X, Zhu X, Wang G, Zhuang K, Wang Y, Ding W. Optimization of Extrusion and Ultrasound-Assisted Extraction of Phenolic Compounds from Jizi439 Black Wheat Bran. Processes. 2020; 8(9):1153. https://doi.org/10.3390/pr8091153
Chicago/Turabian StyleChen, Xi, Xinyue Li, Xiangwei Zhu, Guozhen Wang, Kun Zhuang, Yuehui Wang, and Wenping Ding. 2020. "Optimization of Extrusion and Ultrasound-Assisted Extraction of Phenolic Compounds from Jizi439 Black Wheat Bran" Processes 8, no. 9: 1153. https://doi.org/10.3390/pr8091153
APA StyleChen, X., Li, X., Zhu, X., Wang, G., Zhuang, K., Wang, Y., & Ding, W. (2020). Optimization of Extrusion and Ultrasound-Assisted Extraction of Phenolic Compounds from Jizi439 Black Wheat Bran. Processes, 8(9), 1153. https://doi.org/10.3390/pr8091153