Disinfection By-Products (DBPs) in Seawaters, Sediments and Biota near a Marine Terminal for Regasifying Liquefied Natural Gas (LNG) in the Northern Adriatic Sea (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Strategy
2.2. Analysis of Disinfection Byproducts (DBPs)
2.2.1. Reagents and Chemicals
2.2.2. Volatile Disinfection Byproducts (VDbPs)
2.2.3. Haloacetic Acids (HAAs) and Dalapon
2.2.4. Halophenols (HAPhs)
2.3. Statistical Methods
3. Results
3.1. Seawater
3.2. Sediment
3.3. Biota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trabucco, B.; Grossi, L.; Marusso, V.; Bacci, T.; Bertasi, F.; Ceracchi, S.; Lomiri, S.; Vani, D.; Virno Lamberti, C. Macrozoobenthic assemblages around a marine terminal for re-gasifying liquefied natural gas (LNG) in the north Adriatic Sea (Italy). J. Mar. Biol. Assoc. UK 2015, 95, 1541–1553. [Google Scholar] [CrossRef]
- Class, T.; Kohnle, R.; Ballschmiter, K. Chemistry of organic traces in air VII: Bromo-and bromochloromethanes in air over the Atlantic Ocean. Chemosphere 1986, 15, 429–436. [Google Scholar] [CrossRef]
- Bravo-Linares, C.; Mudge, S.M. Volatile Organic Compound (VOC) Analysis in Water, Sediments, and Soils and Its Application in Environmental Forensics. In Methods in Environmental Forencsics; Mudge, S.M., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: New York, NY, USA, 2009; pp. 171–194. [Google Scholar]
- Dewulf, J.; Dewettinck, T.; DeVisscher, A.; Van Langenhove, H. Sorption of chlorinated C-1- and C-2-hydrocarbons and monocyclic aromatic hydrocarbons on sea sediment. Water Res. 1996, 30, 3130–3138. [Google Scholar] [CrossRef]
- Fenical, W. Natural halogenated organics. In Marine Organic Chemistry, Evolution, Composition, Interactions and Chemistry of Organic Matter in Seawater; Duursma, E.K., Dawson, R., Eds.; Elsevier: New York, NY, USA, 1981; pp. 375–393. [Google Scholar]
- Gribble, G.J. The natural production of organobromine compounds. Environ. Sci. Pollut. Res. 2000, 7, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Romanelli, G.; Berto, D.; Calace, N.; Amici, M.; Maltese, S.; Formalewicz, M.; Campanelli, A.; Marini, M.; Magaletti, E.; Scarpato, A. Ballast water management system: Assessment of chemical quality status of several ports in Adriatic Sea. Mar. Pollut. Bull. 2019, 147, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Virno Lamberti, C.; Tomassetti, P.; Ceracchi, S.; Gabellini, M. Water Column Study in the Monitoring Plan of the First Italian Offshore LNG Terminal. Int. J. Environ. Sci. 2000, 26, 78–81. [Google Scholar] [CrossRef]
- Cacciatore, F.; Bernarello, V.; Boscolo Brusà, R.; Sesta, G.; Franceschini, G.; Maggi, C.; Gabellini, M.; Virno Lamberti, C. PAH (Polycyclic Aromatic Hydrocarbon) bioaccumulation and PAHs/shell weight index in Ruditapes philippinarum (Adams & Reeve, 1850) from the Vallona lagoon (northern Adriatic Sea, NE Italy). Ecotoxicol. Environ. Saf. 2021, 148, 787–798. [Google Scholar] [CrossRef]
- Cacciatore, F.; Amici, M.; Romanelli, G.; Bernarello, V.; Franceschini, G.; Gabellini, M.; Virno Lamberti, C. Bioaccumulation of PCDD/F and PCBs in Ruditapes philippinarum (Adams & Reeve, 1850) in Vallona Lagoon (Italy). Int. J. Environ. Sci. Nat. Res. 2021, 27, 556203. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Method 5030B. Purge and Trap for Aqueous Samples; United States Environmental Protection Agency: Washington, DC, USA, 2003. [Google Scholar]
- Environmental Protection Agency (EPA). Method 5035. Closed-system Purge and Trap Extraction for Volatile Organics in Soil and Waste Samples; United States Environmental Protection Agency: Washington, DC, USA, 2002. [Google Scholar]
- Environmental Protection Agency (EPA). Method 5021A. Volatile Organic Compounds in Various Sample Matrices Using Equilibrium Headspace Analysis; United States Environmental Protection Agency: Washington, DC, USA, 2014. [Google Scholar]
- Environmental Protection Agency (EPA). Method 552.2. Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Extraction, Derivatization and Gas Chromatography with Electron Capture Detection; United States Environmental Protection Agency: Washington, DC, USA, 1995. [Google Scholar]
- Environmental Protection Agency (EPA). Method 552.3 Determination of Haloacetic Acids and Dalapon in Drinking Water by Liquid-Liquid Microextraction, Derivatization, and Gas Chromatography with Electron Capture Detection; United States Environmental Protection Agency: Washington, DC, USA, 2003. [Google Scholar]
- Environmental Protection Agency (EPA). Method 1653, Rev. A. Chlorinated Phenolics in Wastewater by In Situ Acetylation and GCMS; United States Environmental Protection Agency: Washington, DC, USA, 1997. [Google Scholar]
- Environmental Protection Agency (EPA). Method 8270, Rev. 3. Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS); United States Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- Ruus, A.; Schaanning, M.; Øxnevad, S.; Hylland, K. Experimental results on bioaccumulation of metals and organic contaminants from marine sediments. Aquat. Toxicol. 2005, 72, 273–292. [Google Scholar] [CrossRef] [PubMed]
- Allonier, S.A.; Khalanski, M.; Camel, V.; Bermond, A. Characterization of chlorination by-products in cooling effluents of coastal nuclear power stations. Mar. Pollut. Bull. 1999, 38, 1232–1241. [Google Scholar] [CrossRef]
- Fabbricino, M.; Korshin, G.V. Formation of disinfection by-products and applicability of differential absorbance spectroscopy to monitor halogenation in chlorinated coastal and deep ocean seawater. Desalination 2005, 176, 57–69. [Google Scholar] [CrossRef]
- Manasfi, T.; Lebaron, K.; Verlande, M.; Dron, J.; Demelas, C.; Vassalo, L.; Revenko, G.; Quivet, E.; Boudenne, J.L. Occurrence and speciation of chlorination byproducts in marine waters and sediments of a semi-enclosed bay exposed to industrial chlorinated effluents. Int. J. Hyg. Environ. Health 2019, 222, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Boudjellaba, D.; Dron, J.; Revenko, G.; Demelas, C.; Boudenne, J.L. Chlorinationby-product concentration levels in seawater and fish of an industrialised bay (Gulf of Fos, France) exposed to multiple chlorinated effluents. Sci. Total Environ. 2016, 541, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Sim, W.J.; Lee, S.H.; Lee, I.S.; Choi, S.D.; Oh, J.E. Distribution and formation of chlorophenols and bromophenols in marine and riverine environments. Chemosphere 2009, 77, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Padhi, R.K.; Subramanian, S.; Mohanty, A.K.; Satpathy, K.K. Monitoring chlorine residual and trihalomethanes in the chlorinated seawater effluent of a nuclear power plant. Environ. Monit. Assess. 2019, 191, 471. [Google Scholar] [CrossRef] [PubMed]
Distance from the LNG Terminal | ||||
---|---|---|---|---|
Year | 10–20 m | 50–75 m | 100–250 m | 1000 m |
2010 | nc | nc | nc | nc |
2011 | 16.9 | 4.5 | 5.0 | 5.1 |
2012 (1) | 23.6 | 1.4 | 9.4 | 1.3 |
2012 (2) | 4.8 | 3.2 | 1.4 | 1 |
2013 | 1.1 | 1 | 1 | 1 |
2014 | 3.15 | 1 | 1 | 1 |
2015 | 1 | 1 | 1 | 1 |
Distance from the LNG Terminal | ||||||
---|---|---|---|---|---|---|
DBPs | Year | 100 m | 200 m | 350 m | 500 m | 1000 m |
DBAA | 2011 | 1.33 | 1.42 | 1.88 | 1.75 | 2 |
2012 | 1 | 1.83 | 2 | 2.5 | 1 | |
2013 | 1 | 1 | 1 | 1 | 1 | |
2014 | 1 | 1 | 1 | 1 | 1 | |
2015 | 0.75 | 1.25 | 0.94 | 0.75 | 0.75 | |
MCAA | 2011 | 1 | 1 | 1.27 | 1.32 | 1 |
2012 | 1 | 1 | 1 | 1 | 1 | |
2013 | 1 | 1 | 1 | 1 | 1 | |
2014 | 1 | 1 | 1 | 1 | 1 | |
2015 | 1.35 | 1.25 | 0.41 | 0.78 | 1.63 |
Distance from the LNG Terminal | ||||
---|---|---|---|---|
DBPs | Year | Control Site | 500 m | 800 m |
Chloroform | 2011 | 1 | 1 | |
2012 | 2.24 | 0.76 | ||
2013 | 2 | 1 | ||
2014 | 0.5 | 0.5 | 0.5 | |
MCAA | 2011 | 1.96 | 3.21 | |
2012 | 1 | 1 | ||
2013 | 1 | 1 | ||
2014 | 1 | 1 | 1 | |
DCAA | 2011 | 0.86 | 1.18 | |
2012 | 0.41 | 0.64 | ||
2013 | 1 | 1 | ||
2014 | 1.56 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacciatore, F.; Amici, M.; Romanelli, G.; Bernarello, V.; Franceschini, G.; Gabellini, M.; Virno Lamberti, C. Disinfection By-Products (DBPs) in Seawaters, Sediments and Biota near a Marine Terminal for Regasifying Liquefied Natural Gas (LNG) in the Northern Adriatic Sea (Italy). Processes 2021, 9, 2175. https://doi.org/10.3390/pr9122175
Cacciatore F, Amici M, Romanelli G, Bernarello V, Franceschini G, Gabellini M, Virno Lamberti C. Disinfection By-Products (DBPs) in Seawaters, Sediments and Biota near a Marine Terminal for Regasifying Liquefied Natural Gas (LNG) in the Northern Adriatic Sea (Italy). Processes. 2021; 9(12):2175. https://doi.org/10.3390/pr9122175
Chicago/Turabian StyleCacciatore, Federica, Marina Amici, Giulia Romanelli, Valentina Bernarello, Gianluca Franceschini, Massimo Gabellini, and Claudia Virno Lamberti. 2021. "Disinfection By-Products (DBPs) in Seawaters, Sediments and Biota near a Marine Terminal for Regasifying Liquefied Natural Gas (LNG) in the Northern Adriatic Sea (Italy)" Processes 9, no. 12: 2175. https://doi.org/10.3390/pr9122175
APA StyleCacciatore, F., Amici, M., Romanelli, G., Bernarello, V., Franceschini, G., Gabellini, M., & Virno Lamberti, C. (2021). Disinfection By-Products (DBPs) in Seawaters, Sediments and Biota near a Marine Terminal for Regasifying Liquefied Natural Gas (LNG) in the Northern Adriatic Sea (Italy). Processes, 9(12), 2175. https://doi.org/10.3390/pr9122175