Back-Channel Etched In-Ga-Zn-O Thin-Film Transistor Utilizing Selective Wet-Etching of Copper Source and Drain
Abstract
:1. Introduction
2. Experimental Details
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nomura, K.; Takagi, A.; Kamiya, T.; Ohta, H.; Hirano, M.; Hosono, H. Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn. J. Appl. Phys. 2006, 45, 4303. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 2003, 300, 1269–1272. [Google Scholar] [CrossRef]
- Park, J.S.; Maeng, W.J.; Kim, H.S.; Park, J.S. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Film. 2012, 520, 1679–1693. [Google Scholar] [CrossRef]
- Martins, J.; Bahubalindruni, P.; Rovisco, A.; Kiazadeh, A.; Martins, R.; Fortunato, E.; Barquinha, P. Bias stress and temperature impact on InGaZnO TFTs and circuits. Materials 2017, 10, 680. [Google Scholar] [CrossRef] [Green Version]
- Fujimoto, Y.; Uenuma, M.; Ishikawa, Y.; Uraoka, Y. Analysis of thermoelectric properties of amorphous InGaZnO thin film by controlling carrier concentration. AIP Adv. 2015, 5, 097209. [Google Scholar] [CrossRef]
- Khan, R.; Ohtaki, M.; Hata, S.; Miyazaki, K.; Hattori, R. Thermal conductivity of nano-crystallized indium-gallium-zinc oxide thin films determined by differential three-omega method. Nanomaterials 2021, 11, 1547. [Google Scholar] [CrossRef] [PubMed]
- Sarswat, P.K.; Sarkar, S.; Yi, G.; Free, M.L. Phosphorus-doped SnTe-type needle-like crystals: Band structure modifications and electronic properties. J. Phys. Chem. C 2017, 121, 18263–18273. [Google Scholar] [CrossRef]
- Oh, T. Analysis of surface current by quantum tunneling effect of thin film transistors with topological insulators. Sci. Rep. 2020, 10, 9509. [Google Scholar] [CrossRef]
- Lee, S.H.; Oh, D.J.; Hwang, A.Y.; Han, D.S.; Kim, S.; Jeong, J.K.; Park, J.W. Improvement in device performance of a-InGaZnO transistors by introduction of Ca-doped Cu source/drain electrode. IEEE Electron Device Lett. 2015, 36, 802–804. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, M.; Ning, H.; Xu, R.; Zou, J.; Tao, H.; Wang, L.; Peng, J. Method for fabricating amorphous indium-zinc-oxide thin-film transistors with copper source and drain electrodes. IEEE Electron Device Lett. 2015, 36, 342–344. [Google Scholar] [CrossRef]
- Arai, T. Oxide-TFT technologies for next-generation AMOLED displays. J. Soc. Inf. Disp. 2012, 20, 156–161. [Google Scholar] [CrossRef]
- Kim, W.-S.; Moon, Y.-K.; Kim, K.-T.; Lee, J.-H.; Ahn, B.-D.; Park, J.-W. An investigation of contact resistance between metal electrodes and amorphous gallium-indium-zinc oxide (a-GIZO) thin-film transistors. Thin Solid Film. 2010, 518, 6357–6360. [Google Scholar] [CrossRef]
- Yim, J.R.; Jung, S.Y.; Yeon, H.W.; Kwon, J.Y.; Lee, Y.J.; Lee, J.H.; Joo, Y.C. Effects of metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor. Jpn. J. Appl. Phys. 2012, 51, 011401. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Fang, Z.; Ning, H.; Tao, R.; Liu, X.; Zeng, Y.; Yao, R.; Huang, F.; Li, Z.; Xu, M.; et al. Effect of post treatment for cu-cr source/drain electrodes on a-igzo tfts. Materials 2016, 9, 623. [Google Scholar] [CrossRef] [Green Version]
- Youn, C.S.; Lee, D.G. Effects of post heat treatment on the mechanical properties of cold-rolled Ti/Cu clad sheet. Metals 2020, 10, 1672. [Google Scholar] [CrossRef]
- Fisher, I.; Eizenberg, M. Copper ion diffusion in porous and nonporous SiO2-based dielectrics using bias thermal stress and thermal stress tests. Thin Solid Film. 2008, 516, 4111–4121. [Google Scholar] [CrossRef]
- Choi, K.-H.; Kim, H.-K. Correlation between Ti source/drain contact and performance of InGaZnO-based thin film transistors. Appl. Phys. Lett. 2013, 102, 052103. [Google Scholar] [CrossRef] [Green Version]
- Lan, L.; Xu, M.; Peng, J.; Xu, H.; Li, M.; Luo, D.; Zou, J.; Tao, H.; Wang, L.; Yao, R. Influence of source and drain contacts on the properties of the indium-zinc oxide thin-film transistors based on anodic aluminum oxide gate dielectrics. J. Appl. Phys. 2011, 110, 103703. [Google Scholar] [CrossRef]
- Hu, S.; Ning, H.; Lu, K.; Fang, Z.; Li, Y.; Yao, R.; Xu, M.; Wang, L.; Peng, J.; Lu, X. Mobility enhancement in amorphous in-Ga-Zn-O thin-film transistor by induced metallic in nanoparticles and Cu electrodes. Nanomaterials 2018, 8, 197. [Google Scholar] [CrossRef] [Green Version]
- Toda, T.; Wang, D.; Jiang, J.; Hung, M.P.; Furuta, M. Quantitative analysis of the effect of hydrogen diffusion from silicon oxide etch-stopper layer into amorphous In-Ga-Zn-O on thin-film transistor. IEEE Trans. Electron Devices 2014, 61, 3762–3767. [Google Scholar] [CrossRef]
- Çakır, O. Review of etchants for copper and its alloys in wet etching processes. Key Eng. Mater. 2007, 364, 460–465. [Google Scholar] [CrossRef]
- Williams, K.R.; Gupta, K.; Wasilik, M. Etch rates for micromachining processing—Part II. J. Microelectromech. Syst. 2003, 12, 761–778. [Google Scholar] [CrossRef] [Green Version]
- Georgiadou, M.; Alkire, R. Anisotropic chemical etching of copper foil: II. experimental studies on shape evolution. J. Electrochem. Soc. 1993, 140, 1348–1355. [Google Scholar] [CrossRef]
- Noma, H.; Nakanishi, T. Etching process analysis based on etchant flow for high-density build-up substrate. In Proceedings of the 6th Electronics Packaging Technology Conference, EPTC 2004, Singapore, 8–10 December 2004. [Google Scholar] [CrossRef]
- Hu, S.; Ning, H.; Lu, K.; Fang, Z.; Tao, R.; Yao, R.; Zou, J.; Xu, M.; Wang, L.; Peng, J. Effect of Al2O3 passivation layer and Cu electrodes on high mobility of amorphous IZO TFT. IEEE J. Electron Devices Soc. 2018, 6, 733–737. [Google Scholar] [CrossRef]
- Hu, S.; Lu, K.; Ning, H.; Fang, Z.; Liu, X.; Xie, W.; Yao, R.; Zou, J.; Xu, M.; Peng, J. Effect of ITO serving as a barrier layer for Cu electrodes on performance of a-IGZO TFT. IEEE Electron Device Lett. 2018, 39, 504–507. [Google Scholar] [CrossRef]
- Kim, L.Y.; Kwon, O.K. Effects of stacked Mo-Ti/Cu source and drain electrodes on the performance of amorphous In-Ga-Zn-O thin-film transistors. IEEE Electron Device Lett. 2018, 39, 43–46. [Google Scholar] [CrossRef]
S/D | μFE (cm2/V-s) | μSAT (cm2/V-s) | Vth (V) | ION (A) | SS (V/Decade) | Annealing Condition |
---|---|---|---|---|---|---|
Cu | 9.2 × 10−5 | 1.8 × 10−5 | 5 | 1.6 × 10−9 | - | Before Post-annealing |
Mo/Cu | 12.3 | 11 | 1.2 | 3.2 × 10−6 | 0.58 | After Post-annealing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, R.; Misran, M.A.B.; Ohtaki, M.; Song, J.T.; Ishihara, T.; Hattori, R. Back-Channel Etched In-Ga-Zn-O Thin-Film Transistor Utilizing Selective Wet-Etching of Copper Source and Drain. Processes 2021, 9, 2193. https://doi.org/10.3390/pr9122193
Khan R, Misran MAB, Ohtaki M, Song JT, Ishihara T, Hattori R. Back-Channel Etched In-Ga-Zn-O Thin-Film Transistor Utilizing Selective Wet-Etching of Copper Source and Drain. Processes. 2021; 9(12):2193. https://doi.org/10.3390/pr9122193
Chicago/Turabian StyleKhan, Rauf, Muhamad Affiq Bin Misran, Michitaka Ohtaki, Jun Tae Song, Tatsumi Ishihara, and Reiji Hattori. 2021. "Back-Channel Etched In-Ga-Zn-O Thin-Film Transistor Utilizing Selective Wet-Etching of Copper Source and Drain" Processes 9, no. 12: 2193. https://doi.org/10.3390/pr9122193