Methyl Orange Photo-Degradation by TiO2 in a Pilot Unit under Different Chemical, Physical, and Hydraulic Conditions
Abstract
1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Joseph, L.; Jun, B.M.; Jang, M.; Park, C.M.; Muñoz-Senmache, J.C.; Hernández-Maldonado, A.J.; Heyden, A.; Yu, M.; Yoon, Y. Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: A review. Chem. Eng. J. 2019, 369, 928–946. [Google Scholar] [CrossRef]
- García-Córcoles, M.T.; Rodríguez-Gómez, R.; de Alarcón-Gómez, B.; Çipa, M.; Martín-Pozo, L.; Kauffmann, J.M.; Zafra-Gómez, A. Chromatographic methods for the determination of emerging contaminants in natural water and wastewater samples: A review. Crit. Rev. Anal. Chem. 2019, 49, 160–186. [Google Scholar] [CrossRef] [PubMed]
- Alimi, O.S.; Budarz, J.F.; Hernandez, L.M.; Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
- Petrella, A.; Petruzzelli, V.; Basile, T.; Petrella, M.; Boghetich, G.; Petruzzelli, D. Recycled porous glass from municipal/industrial solid wastes sorting operations as a lead ion sorbent from wastewaters. React. Funct. Polym. 2010, 70, 203–209. [Google Scholar] [CrossRef]
- Petrella, A.; Petrella, M.; Boghetich, G.; Basile, T.; Petruzzelli, V.; Petruzzelli, D. Heavy metals retention on recycled waste glass from solid wastes sorting operations: A comparative study among different metal species. Ind. Eng. Chem. Res. 2012, 51, 119–125. [Google Scholar] [CrossRef]
- Tammaro, M.; Fiandra, V.; Mascolo, M.C.; Salluzzo, A.; Riccio, C.; Lancia, A. Photocatalytic degradation of atenolol in aqueous suspension of new recyclable catalysts based on titanium dioxide. J. Environ. Chem. Eng. 2017, 5, 3224–3234. [Google Scholar] [CrossRef]
- Quesada, H.B.; Baptista, A.T.A.; Cusioli, L.F.; Seibert, D.; de Oliveira Bezerra, C.; Bergamasco, R. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere 2019, 222, 766–780. [Google Scholar] [CrossRef]
- Sillanpää, M.; Ncibi, M.C.; Matilainen, A.; Vepsäläinen, M. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. Chemosphere 2018, 190, 54–71. [Google Scholar] [CrossRef]
- Petrella, A.; Spasiano, D.; Rizzi, V.; Cosma, P.; Race, M.; De Vietro, N. Thermodynamic and kinetic investigation of heavy metals sorption in packed bed columns by recycled lignocellulosic materials from olive oil production. Chem. Eng. Comm. 2019, 1–16. [Google Scholar] [CrossRef]
- Bai, X.; Acharya, K. Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga. Environ. Pollut. 2019, 247, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Spasiano, D.; Luongo, V.; Petrella, A.; Alfè, M.; Pirozzi, F.; Fratino, U.; Piccinni, A.F. Preliminary study on the adoption of dark fermentation as pretreatment for a sustainable hydrothermal denaturation of cement-asbestos composites. J. Clean. Prod. 2017, 166, 172–180. [Google Scholar] [CrossRef]
- Petrella, A.; Petruzzelli, V.; Ranieri, E.; Catalucci, V.; Petruzzelli, D. Sorption of Pb(II), Cd(II) and Ni(II) from single- and multimetal solutions by recycled waste porous glass. Chem. Eng. Commun. 2016, 203, 940–947. [Google Scholar] [CrossRef]
- Rizzi, V.; D’Agostino, F.; Gubitosa, J.; Fini, P.; Petrella, A.; Agostiano, A.; Semeraro, P.; Cosma, P. An alternative use of olive pomace as a wide-ranging bioremediation strategy to adsorb and recover disperse orange and disperse red industrial dyes from wastewater. Separations 2017, 4, 29. [Google Scholar] [CrossRef]
- Zazou, H.; Afanga, H.; Akhouairi, S.; Ouchtak, H.; Addi, A.A.; Akbour, R.A.; Assabane, A.; Douch, J.; Elmchaour, A.; Duplay, J.; et al. Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process. J. Water Process Eng. 2019, 28, 214–221. [Google Scholar] [CrossRef]
- Brillas, E. A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere 2020, 126198. [Google Scholar] [CrossRef] [PubMed]
- Amor, C.; Marchão, L.; Lucas, M.S.; Peres, J.A. Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review. Water 2019, 11, 205. [Google Scholar] [CrossRef]
- Vandenberg, L.N.; Luthi, D.; Quinerly, D.A. Plastic bodies in a plastic world: Multi-disciplinary approaches to study endocrine disrupting chemicals. J. Clean. Prod. 2017, 140, 373–385. [Google Scholar] [CrossRef]
- Plahuta, M.; Tišler, T.; Toman, M.J.; Pintar, A. Toxic and endocrine disrupting effects of wastewater treatment plant influents and effluents on a freshwater isopod Asellus aquaticus (Isopoda, Crustacea). Chemosphere 2017, 174, 342–353. [Google Scholar] [CrossRef]
- Gubitosa, J.; Rizzi, V.; Lopedota, A.; Fini, P.; Laurenzana, A.; Fibbi, G.; Fanelli, F.; Petrella, A.; Laquintana, V.; Denora, N.; et al. One pot environmental friendly synthesis of gold nanoparticles using Punica Granatum Juice: A novel antioxidant agent for future dermatological and cosmetic applications. J. Colloid Interface Sci. 2018, 521, 50–61. [Google Scholar] [CrossRef]
- Petrella, A.; Spasiano, D.; Rizzi, V.; Cosma, P.; Race, M.; De Vietro, N. Lead ion sorption by perlite and reuse of the exhausted material in the construction field. Appl. Sci. 2018, 8, 1882. [Google Scholar] [CrossRef]
- Tayo, L.L.; Caparanga, A.R.; Doma, B.T.; Liao, C.H. A Review on the removal of pharmaceutical and personal care products (PPCPs) using advanced oxidation processes. J. Adv. Oxid. Technol. 2018, 21, 196–214. [Google Scholar] [CrossRef]
- Wang, C.; Kim, J.; Malgras, V.; Na, J.; Lin, J.; You, J.; Zhang, M.; Li, J.; Yamauchi, Y. Metal–organic frameworks and their derived materials: Emerging catalysts for a sulfate radicals-based advanced oxidation process in water purification. Small 2019, 15, 1900744. [Google Scholar] [CrossRef]
- Oppenlander, T. Advanced oxidation processes (AOPs): Principles, Reaction Mechanisms, Reactor Concepts; Wiley VCH: Weinheim, Germany, 2007. [Google Scholar]
- Al-Mamun, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 2019, 7, 103248. [Google Scholar] [CrossRef]
- Mascolo, M.C.; Ring, T.A. Recyclable aggregates of mesoporous titania synthesized by thermal treatment of amorphous or peptized precursors. Materials 2018, 11, 381. [Google Scholar] [CrossRef] [PubMed]
- Moreira, N.F.; Narciso-da-Rocha, C.; Polo-López, M.I.; Pastrana-Martínez, L.M.; Faria, J.L.; Manaia, C.M.; Fernandez-Ibanez, F.; Nunes, O.C.; Silva, A.M. Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater. Water Res. 2018, 135, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Mascolo, M.C. Synthesis of wide spectrum of mesoporous titania materials by forced co-hydrolysis of Zr–Ti alkoxides. Micropor. Mesopor. Mater. 2013, 181, 160–165. [Google Scholar] [CrossRef]
- Petrella, A.; Cozzoli, P.D.; Curri, M.L.; Striccoli, M.; Cosma, P.; Agostiano, A. Photoelectrochemical study on photosynthetic pigments-sensitized nanocrystalline ZnO films. Bioelectrochemistry 2004, 63, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Camarillo, R.; Rincon, J. Photocatalytic discoloration of dyes: Relation between effect of operating parameters and dye structure. Chem. Eng. Technol. 2011, 34, 1675–1684. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Labidi, A.; Salaberria, A.M.; Fernandes, S.; Labidi, J.; Abderrabba, M. Functional chitosan derivative and chitin as decolorization materials for Methylene Blue and Methyl Orange from aqueous solution. Materials 2019, 12, 361. [Google Scholar] [CrossRef]
- Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H. Adsorption of basic dye using activated carbon prepared from oil palm shell: Batch and fixed bed studies. Desalination 2008, 225, 13–28. [Google Scholar] [CrossRef]
- Srinivasan, A.; Viraraghavan, T. Decolorization of dye wastewaters by biosorbents: A review. J. Environ. Manag. 2010, 91, 1915–1929. [Google Scholar] [CrossRef] [PubMed]
- Badr, Y.; El-Wahed, M.A.; Mahmoud, M.A. Photocatalytic degradation of methyl red dye by silica nanoparticles. J. Hazard. Mater. 2008, 154, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Waghmode, T.R.; Kurade, M.B.; Sapkal, R.T.; Bhosale, C.H.; Jeon, B.H.; Govindwar, S.P. Sequential photocatalysis and biological treatment for the enhanced degradation of the persistent azo dye methyl red. J. Hazard. Mater. 2019, 371, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Malviya, A.; Kaur, D.; Mittal, J.; Kurup, L. Studies on the adsorption kinetics and isotherms for the removal and recovery of methyl orange from wastewaters using waste materials. J. Hazard. Mater. 2007, 148, 229–240. [Google Scholar] [CrossRef]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Petrella, A.; Boghetich, G.; Petrella, M.; Mastrorilli, P.; Petruzzelli, V.; Petruzzelli, D. Photocatalytic degradation of azo dyes. Pilot plant investigation. Ind. Eng. Chem. Res. 2014, 53, 2566–2571. [Google Scholar] [CrossRef]
- Petrella, A.; Mascolo, G.; Murgolo, S.; Petruzzelli, V.; Ranieri, E.; Spasiano, D.; Petruzzelli, D. Photocatalytic oxidation of organic micro-pollutants: Pilot plant investigation and mechanistic aspects of the degradation reaction. Chem. Eng. Commun. 2016, 203, 1298–1307. [Google Scholar] [CrossRef]
- Petrella, A.; Spasiano, D.; Cosma, P.; Rizzi, V.; Race, M. Evaluation of the hydraulic and hydrodynamic parameters influencing photo-catalytic degradation of bio-persistent pollutants in a pilot plant. Chem. Eng. Comm. 2019, 206, 1286–1296. [Google Scholar] [CrossRef]
- Konstantinou, T.; Albanis, A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations. A review. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Kim, S.H.; Ngo, H.H.; Shon, H.K.; Vigneswaran, S. Adsorption and photocatalysis kinetics of herbicide onto titanium oxide and powdered activated carbon. Sep. Purif. Technol. 2008, 58, 335–342. [Google Scholar] [CrossRef]
- Tang, W.Z.; An, H. Photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere 1995, 31, 4157–4170. [Google Scholar] [CrossRef]
- Giraldo, A.L.; Penuela, G.A.; Torres-Palma, R.A.; Pino, N.J.; Palominos, R.A.; Mansilla, H.D. Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Res. 2010, 44, 5158–5167. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, D.; Mendice, C.; Bahnemann, D. TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B 2010, 99, 398–406. [Google Scholar] [CrossRef]
- Comparelli, R.; Fanizza, E.; Curri, M.L.; Cozzoli, P.D.; Mascolo, G.; Passino, R.; Agostiano, A. Photocatalytic degradation of azo dyes by organic-capped anatase TiO2 nanocrystals immobilized onto substrates. Appl. Catal. B 2005, 55, 81–91. [Google Scholar] [CrossRef]
- Guillard, C.; Lachheb, H.; Houas, A.; Ksibi, M.; Elaloui, E.; Herrmann, J.M. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. J. Photoch. Photobio. A 2003, 158, 27–36. [Google Scholar] [CrossRef]
- Franco, A.; Neves, M.C.; Ribeiro Carrott, M.M.L.; Mendonca, M.H.; Pereira, M.I.; Monteiro, O.C. Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites. J. Hazard. Mater. 2009, 161, 545–550. [Google Scholar] [CrossRef]
Test No. | c0 (mg/L) | TiO2 (g/cm3) | Vsol (L) | Q (L/s) | hw (cm) | lw (cm) | lc (cm) | ld (cm) | Virr (L) | Irt (s) | Light | Power (W) | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.7 | 0.16 | 60 | 0.066 | 13.5 | 14 | 140 | 0.65 | 1.27 | 17.9 | yes | 120 | 7.5 |
2 | 0.7 | 0.39 | 60 | 0.066 | 13.5 | 14 | 140 | 0.65 | 1.27 | 17.9 | yes | 120 | 7.5 |
3 | 0.7 | 0.55 | 60 | 0.066 | 13.5 | 14 | 140 | 0.65 | 1.27 | 17.9 | yes | 120 | 7.5 |
4 | 0.7 | 0.79 | 60 | 0.066 | 13.5 | 14 | 140 | 0.65 | 1.27 | 17.9 | yes | 120 | 7.5 |
5 | 0.7 | 0.85 | 60 | 0.066 | 13.5 | 14 | 140 | 0.65 | 1.27 | 17.9 | yes | 120 | 7.5 |
6 | 0.7 | 0.95 | 60 | 0.066 | 13.5 | 14 | 140 | 0.65 | 1.27 | 17.9 | yes | 120 | 7.5 |
7 | 0.3, 0.7, 1.2, 2.5, 5 | 0.79 | 60 | 0.066 | 13.5 | 14 | 140 | 0.65 | 1.27 | 17.9 | yes | 120 | 7.5 |
8 | 0.3, 0.7, 1.2, 2.5, 5 | 0.79 | 60 | 0.147 | 13.5 | 15 | 140 | 0.79 | 1.66 | 10.5 | yes | 120 | 7.5 |
9 | 0.3, 0.7, 1.2, 2.5, 5 | 0.79 | 60 | 0.210 | 13.5 | 15 | 140 | 0.85 | 1.78 | 7.9 | yes | 120 | 7.5 |
10 | 0.3, 0.7, 1.2, 2.5, 5 | 0.79 | 60 | 0.305 | 13.5 | 15 | 140 | 1.05 | 2.20 | 6.7 | yes | 120 | 7.5 |
11 | 0.7 | 0.79 | 72.5 | 0.355 | 18 | 15 | 140 | 1.08 | 2.30 | 5.8 | yes | 120 | 7.5 |
12 | 0.7 | 0.79 | 90 | 0.408 | 22.5 | 15 | 140 | 1.12 | 2.35 | 5.2 | yes | 120 | 7.5 |
13 | 0.7 | 0.79 | 105 | 0.441 | 27 | 15 | 140 | 1.16 | 2.45 | 4.9 | yes | 120 | 7.5 |
14 | 0.7 | 0 | 60 | 0.305 | 13.5 | 15 | 140 | 1.05 | 2.20 | 6.7 | yes | 120 | 7.5 |
15 | 0.7 | 0.79 | 60 | 0.305 | 13.5 | 15 | 140 | 1.05 | 2.20 | 6.7 | no | no | 7.5 |
16 | 0.7 | 0.79 | 60 | 0.305 | 13.5 | 15 | 140 | 1.05 | 2.20 | 6.7 | yes | 40 | 7.5 |
17 | 0.7 | 0.79 | 60 | 0.305 | 13.5 | 15 | 140 | 1.05 | 2.20 | 6.7 | yes | 80 | 7.5 |
18 | 0.7 | 0.79 | 60 | 0.305 | 13.5 | 15 | 140 | 1.05 | 2.20 | 6.7 | yes | 120 | 6.0 |
Dye | Molecular Structure | Power (W) | k (min−1) × 10−4 |
---|---|---|---|
Methyl Orange | 40 | 2 ± 0.2 | |
80 | 2.9 ± 0.3 | ||
120 | 4 ± 0.1 | ||
Methyl Red | 40 | 2.6 ± 0.1 | |
80 | 3.7 ± 0.1 | ||
120 | 5.7 ± 0.3 | ||
Methylene Blue | 40 | 8.8 ± 0.4 | |
80 | 19 ± 0.5 | ||
120 | 35 ± 0.5 |
Dye | Molecular Structure | Power (W) | k (min−1) × 10−4 |
---|---|---|---|
Methyl Orange | 120 | 5.6 ± 0.3 | |
Methyl Red | 120 | 5.2 ± 0.3 | |
Methylene Blue | 120 | 29 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrella, A.; Spasiano, D.; Cosma, P.; Rizzi, V.; Race, M.; Mascolo, M.C.; Ranieri, E. Methyl Orange Photo-Degradation by TiO2 in a Pilot Unit under Different Chemical, Physical, and Hydraulic Conditions. Processes 2021, 9, 205. https://doi.org/10.3390/pr9020205
Petrella A, Spasiano D, Cosma P, Rizzi V, Race M, Mascolo MC, Ranieri E. Methyl Orange Photo-Degradation by TiO2 in a Pilot Unit under Different Chemical, Physical, and Hydraulic Conditions. Processes. 2021; 9(2):205. https://doi.org/10.3390/pr9020205
Chicago/Turabian StylePetrella, Andrea, Danilo Spasiano, Pinalysa Cosma, Vito Rizzi, Marco Race, Maria Cristina Mascolo, and Ezio Ranieri. 2021. "Methyl Orange Photo-Degradation by TiO2 in a Pilot Unit under Different Chemical, Physical, and Hydraulic Conditions" Processes 9, no. 2: 205. https://doi.org/10.3390/pr9020205
APA StylePetrella, A., Spasiano, D., Cosma, P., Rizzi, V., Race, M., Mascolo, M. C., & Ranieri, E. (2021). Methyl Orange Photo-Degradation by TiO2 in a Pilot Unit under Different Chemical, Physical, and Hydraulic Conditions. Processes, 9(2), 205. https://doi.org/10.3390/pr9020205