The Air and Sewage Pollutants from Biological Waste Treatment
Abstract
:1. Introduction
2. Goal and Aim of the Study
3. Materials and Methods
3.1. Study Methodology
3.2. Characteristic of Analysed Plants
4. Results and Discussion
4.1. Air Compounds
4.2. Technological Sewage Compounds
4.3. Air and Technological Wastewater Compounds
5. Conclusions
- None of the air pollution concentration values—ammonia, hydrogen sulphide and methyl mercaptan—meet the permissible reference values for assessing the degree of air pollution—respectively, 0.533 ppm, 0.013 ppm and 0.009 ppm (Regulation of the Minister of the Environment of 26 January 2010 on reference values for some substances in the air) [41].
- At AMWTP, where sewage is stored in a tank and only periodically pumped out, much higher values of both sewage and air parameters were observed than in the case of biogas plant A equipped with a sewage system, thanks to which sewage is directed to a sewage treatment plant.
- The analysis of the results of air compounds shown a significant positive correlation between the odour concentration and both the main odorogenic and volatile organic compounds. Analysing the individual compounds, a high positive correlation was also found—the strongest between H2S, NH3 and VOCs.
- After analysis of the results of sewage compounds, the insignificant correlation between P total and other parameters was found. For the rest of the compounds, the highest positive correlation was found between COD and BOD and N-NO2 and N-NH3 as well as COD and N-NO2.
- According to the results, the impact of physico-chemical parameters of technological sewage on odour emission was significant—the strong correlation was observed between odour concentration and chosen air and wastewater parameters. To make these relationships more accurate, linear regression models were performed, which were characterized by high determination coefficients.
- Municipal waste treatment plants, especially those equipped with a biogas installation, are an indispensable element of urban infrastructure as well as an important part of a circular economy. Therefore, it is important to support the technological processes carried out at plants by analysing them in scientific studies. TS from biological waste treatment processes is very persistent, due to its diverse and variable composition, as well as uncontrolled emission of odours from tanks intended for their storage. The presented research results show the essence and complexity of the raised issues.
- It seems advisable to extend the research conducted in this study with an analysis related to the biomethane potential of technological wastewater after the fermentation process. Such a study for household food waste was conducted by Lytras et al. [12]. The mentioned researchers analysed the co-digestion of waste activated sludge and condensate, produced through drying and shredding of source-separated collected food waste, which proved to be an effective method for its valorisation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, Y.V.; Klemeš, J.J.; Walmsley, T.G.; Bertók, B. Implementing Circular Economy in municipal solid waste treatment system using P-graph. Sci. Total Environ. 2020, 701, 134652. [Google Scholar] [CrossRef]
- Karak, T.; Bhagat, R.M.; Bhattacharyya, P. Municipal Solid Waste Generation, Composition, and Management: The World Scenario. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1509–1630. [Google Scholar] [CrossRef]
- Migliori, M.; Catizzone, E.; Giordano, G.; Le Pera, A.; Sellaro, M.; Lista, A.; Zanardi, G.; Zoia, L. Pilot Plant Data Assessment in Anaerobic Digestion of Organic Fraction of Municipal Waste Solids. Sensors 2019, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Pires, A.; Martinho, G.; Chang, N.B. Solid waste management in European countries: A review of systems analysis techniques. J. Environ. Manag. 2011, 92, 1033–1050. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewska, M.; Kulig, A.; Lelicińska-Serafin, K. Comparative analysis of preliminary identification and characteristic of odour sources in biogas plants processing municipal waste in Poland. SN Appl. Sci. 2019, 1, 550. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.-I.; Lee, J.; Lin, K.-Y.A.; Kwon, E.E.; Tsang, Y.F. Biogas production from food waste via anaerobic digestion with wood chips. Energy Environ. 2018, 29, 1365–1372. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Ge, X.; Yang, L.; Li, Y. Anaerobic digestion of food waste—Challenges and opportunities. Bioresour. Technol. 2018, 247, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.K.; Suja, F.B.; Zain, S.M.; Pramanik, B.K. The anaerobic digestion process of biogas production from food waste: Prospects and constraints. Bioresour. Technol. Rep. 2019, 8, 100310. [Google Scholar] [CrossRef]
- Kader, F.; Baky, A.H.; Khan, M.N.H.; Chowdhury, H.A. Production of Biogas by Anaerobic Digestion of Food Waste and Process Simulation. Am. J. Mech. Eng. 2015, 3, 79–83. [Google Scholar] [CrossRef]
- Fisgativa, H.; Tremier, A. Influence of food waste characteristics variations on treatability through anaerobic digestion. In Proceedings of the 16th International Conference Rural-Urban Symbiosis (RAMIRAN), Hamburg, Germany, 8–10 September 2015. [Google Scholar]
- Xu, Y.; Lu, Y.; Zheng, L.; Wang, Z.; Dai, X. Perspective on enhancing the anaerobic digestion of waste activated sludge. J. Hazard. Mater. 2020, 389, 121847. [Google Scholar] [CrossRef]
- Lytras, G.; Koutroumanou, E.; Lyberatos, G. Anaerobic co-digestion of condensate produced from drying of Household Food Waste and Waste Activated Sludge. J. Environ. Chem. Eng. 2020, 8, 103947. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Font, X.; Artola, A.; Sánchez, A. Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants. Sensors 2011, 11, 4043–4059. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.T.; Maeda, T.; Yusoff, M.Z.M.; Ogawa, H.I. Effect of azithromycin on enhancement of methane production from waste activated wastewater. J. Ind. Microbiol. Biotechnol. 2014, 41, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Capelli, L.; Sironi, S.; Del Rosso, R.; Guillot, J.M. Measuring odours in the environment vs. dispersion modelling: A review. Atmos. Environ. 2013, 79, 731–743. [Google Scholar] [CrossRef]
- Maurer, D.L.; Koziel, J.A.; Kalus, K.; Andersen, D.S.; Opalinski, S. Pilot-Scale Testing of Non-Activated Biochar for Swine Manure Treatment and Mitigation of Ammonia, Hydrogen Sulfide, Odorous Volatile Organic Compounds (VOCs), and Greenhouse Gas Emissions. Sustainability 2017, 9, 929. [Google Scholar] [CrossRef] [Green Version]
- Molleda, A.; Lopez, A.; Cuartas, M.; Lobo, A. Release of pollutants in MBT landfills: Laboratory versus field. Chemosphere 2020, 249, 126–145. [Google Scholar] [CrossRef]
- Monlau, F.; Sambusiti, C.; Ficara, E.; Aboulkas, A.; Barakat, A.; Carrere, H. New opportunities for agricultural digestate valorization: Current situation and perspectives. Energy Environ. Sci. 2015, 8, 2600–2621. [Google Scholar] [CrossRef]
- Minière, M.; Boutin, O.; Soric, A. Combination of chemical and biological processes to enhance the treatment of hardly biodegradable matter in industrial wastewater: Selection parameters and performances. Can. J. Environ. Eng. 2019, 97. [Google Scholar] [CrossRef]
- Filbakk, T.; Jirjis, R.; Nurmi, J.; Høibø, O. The effect of bark content on quality parameters of Scots pine (Pinus sylvestris L.) pellets. Biomass Bioenergy 2011, 35, 3342–3349. [Google Scholar] [CrossRef]
- Garbowski, T. Changes in the Physico-Chemical Parameters of Water as a Result of Long-Term Contact with Biomass, on the Example of Pine Bark (Pinus sylvestris). Water Air Soil Pollut. 2019, 230, 104. [Google Scholar] [CrossRef] [Green Version]
- Mace, K.A.; Artaxo, P.; Duce, R.A. Water-soluble organic nitrogen in Amazon Basin aerosols during the dry (biomass burning) and wet seasons. J. Geophys. Res. 2003, 108, 1–10. [Google Scholar] [CrossRef]
- Vamvuka, D.; Sfakiotakis, S. Effects of heating rate and water leaching of perennial energy crops on pyrolysis characteristics and kinetics. Renew. Energy 2011, 36, 2433–2439. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Vassilev, V.S. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 2015, 158, 330–350. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Kulig, A.; Lelicińska-Serafin, K. The Impact of Technological Processes on Odorant Emissions at Municipal Waste Biogas Plants. Sustainability 2020, 12, 5457. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Kulig, A.; Lelicińska-Serafin, K. Olfactometric testing as a method for assessing odour nuisance of biogas plants pro-cessing municipal waste. Arch. Environ. Prot. 2020, 46, 60–68. [Google Scholar] [CrossRef]
- Szyłak-Szydłowski, M. Comparison of two types of field olfactometers for assessing odours in laboratory and field tests. Chem. Eng. Trans. 2014, 40, 67–72. [Google Scholar] [CrossRef]
- Wang, X.; Parcsi, G.; Sivret, E.; Le, M.; Stuetz, R. Odorants and their contributions to overall odour emission from a landfill leachate. Atmosphere 2019, 10. [Google Scholar] [CrossRef]
- Fang, J.-J.; Jang, N.; Cen, D.-Y.; Shao, L.-M. Odor compounds from different sources of landfill: Characterization and source identification. Waste Manag. 2012, 32, 1401–1410. [Google Scholar] [CrossRef]
- Kulig, A.; Szyłak-Szydłowski, M. Assessment of the effects of wastewater treatment plant modernization by means of the field olfactometry method. Water 2019, 11, 2367. [Google Scholar] [CrossRef] [Green Version]
- Szyłak-Szydłowski, M. Odour Samples Degradation During Detention in Tedlar Bags. Water Air Soil Pollut. 2015, 226, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szyłak-Szydłowski, M. Validation of odour concentration from MBT piles using static chamber and wind tunnel with the different wind speed values. J. Air Waste Manag. Assoc. 2017, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Polish Committee for Standardization. PN-EN ISO 10523:2012. Water Quality. Determination of pH; The Polish Committee for Standardization: Warsaw, Poland, 2012. [Google Scholar]
- The Polish Committee for Standardization. PN-EN 5664:2002. Water Quality. Determination of Ammonium Nitrogen. Distillation Method with Titration; The Polish Committee for Standardization: Warsaw, Poland, 2002. [Google Scholar]
- The Polish Committee for Standardization. PN-EN ISO 6878:2006. Water Quality. Determination of Phosphorus. Ammonium Molybdate Spectrometric Method; The Polish Committee for Standardization: Warsaw, Poland, 2006. [Google Scholar]
- The Polish Committee for Standardization. PN-EN 6060:2006. Water Quality. Determination of Chemical Oxygen Demand. Titration Method. Chemical Index; The Polish Committee for Standardization: Warsaw, Poland, 2006. [Google Scholar]
- The Polish Committee for Standardization. PN-EN 872:2007+Ap 1:2007. Water and Wastewater. Determination of Solids. Method Using Filtration through Glass Fibre Filters; The Polish Committee for Standardization: Warsaw, Poland, 2007. [Google Scholar]
- The Polish Committee for Standardization. PN-EN 26777:1999. Water Quality. Determination of Nitrite. Molecular Absorption Spectrometric Method; The Polish Committee for Standardization: Warsaw, Poland, 1999. [Google Scholar]
- The Polish Committee for Standardization. PN-EN 1899-1:2002. Water Quality. Determination of Biochemical Oxygen Demand after n Days (BOD)—Part 1: Dilution Method and Vaccination with Allylthiourea; The Polish Committee for Standardization: Warsaw, Poland, 2002. [Google Scholar]
- FAO. Regulation establishing reference values for certain substances in the air. J. Laws 2010, 16, 87. [Google Scholar]
Date | Plant | Technological Sewage | Air | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | Cod | Solids | BOD | N-NO2 | N-NH3 | Ptot. | cod | NH3 | VOC | H2S | CH3SH | ||
- | mg/dm3 | ou/m3 | ppm | ||||||||||
19.01.2018 | A | 6.9 | 13,865 | 4204 | 7600 | 2.14 | 1352 | 49.1 | 678 | 55 | 20.34 | 35.1 | 10 |
19.02.2018 | 6.8 | 21,575 | 1393 | 15,000 | 2.67 | 1283 | 77.4 | 721 | 75 | 24.56 | 52.6 | 10 | |
14.05.2018 | 6.7 | 31,876 | 1764 | 16,500 | 2.82 | 1184 | 42.4 | 3600 | 100 | 30.74 | 100 | 10 | |
21.06.2018 | 7.3 | 2615 | 276 | 2151 | 0.642 | 210 | 5.45 | 31 | 4 | 2.50 | 0.1 | 0.1 | |
26.09.2018 | 7.2 | 2740 | 2142 | 976 | 0.799 | 311 | 12.3 | 22 | 6 | 1.95 | 0.1 | 0.1 | |
31.01.2019 | 7.2 | 7642 | 3218 | 3227 | 1.64 | 901 | 32.5 | 78 | 15 | 5.46 | 10.1 | 8.4 | |
27.02.2019 | 7.3 | 28,515 | 2168 | 15,750 | 2.8 | 1457 | 22.2 | 3600 | 100 | 20.1 | 100 | 100 | |
28.03.2019 | 7.0 | 11,547 | 3515 | 6717 | 2.24 | 1051 | 30.7 | 656 | 42 | 4.57 | 32.4 | 10 | |
08.04.2019 | 8.0 | 12,890 | 3896 | 4200 | 2.74 | 2816 | 57.1 | 678 | 54 | 6.14 | 42.3 | 10 | |
29.05.2019 | 6.9 | 2114 | 228 | 915 | 0.523 | 205 | 22.2 | 22 | 4 | 1.56 | 1.4 | 3.2 | |
25.06.2019 | 6,8 | 2574 | 192 | 880 | 0.633 | 65.8 | 35.0 | 31 | 5 | 1.40 | 1.6 | 3.5 | |
25.07.2019 | 7.6 | 5902 | 598 | 2550 | 1.51 | 953 | 39.4 | 187 | 14 | 2.64 | 0.1 | 0.3 | |
21.08.2019 | 7.3 | 5788 | 396 | 2250 | 1.11 | 546 | 748 | 187 | 13 | 2.52 | 0.2 | 0.4 | |
26.09.2019 | 8.6 | 8115 | 760 | 2226 | 2.6 | 1706 | 43.4 | 246 | 25 | 2.42 | 0.6 | 0.6 | |
18.07.2019 | B | 7.8 | 2050 | 250 | 790 | 0.1 | 138 | 12.0 | 2050 | 1 | 1 | 0 | 0 |
01.08.2019 | 7.8 | 2110 | 205 | 750 | 0.11 | 140 | 12 | 2110 | 1 | 1.3 | 0 | 0 | |
19.09.2019 | 7.8 | 2150 | 203 | 720 | 0.12 | 138 | 13.0 | 2150 | 1 | 1 | 0 | 0 | |
10.10.2019 | 7.8 | 2100 | 200 | 790 | 0.13 | 140 | 12 | 2100 | 1 | 0.9 | 0 | 0 | |
27.11.2019 | 7.8 | 6390 | 511 | 3120 | 0.27 | 310 | 31.9 | 6390 | 1 | 0.3 | 0.5 | 3 | |
05.12.2019 | 7.8 | 2180 | 203 | 800 | 0.13 | 142 | 13.0 | 2180 | 1 | 0.3 | 0.2 | 0.3 | |
11.12.2019 | 7.8 | 3050 | 643 | 1260 | 0.062 | 150 | 16.6 | 3050 | 1 | 0.3 | 1 | 1.5 | |
16.01.2020 | 7.8 | 2170 | 203 | 750 | 0.13 | 145 | 13.0 | 2170 | 0 | 0.19 | 0 | 0 |
Test | Statistic | df | p | VS-MPR * | Effect Size | |
---|---|---|---|---|---|---|
Cod | Student | 1.489 | 20.000 | 0.152 | 1.284 | 0.660 |
Welch | 1.966 | 13.942 | 0.070 | 1.985 | 0.749 | |
Mann–Whitney | 91.500 | 0.017 | 5.409 | 0.634 | ||
NH3 | Student | 2.855 | 20.000 | 0.010 | 8.127 | 1.265 |
Welch | 3.817 | 13.005 | 0.002 | 28.018 | 1.443 | |
Mann–Whitney | 112.000 | <0.001 | 346.388 | 1.000 | ||
VOC | Student | 2.317 | 20.000 | 0.031 | 3.400 | 1.027 |
Welch | 3.095 | 13.083 | 0.008 | 9.096 | 1.170 | |
Mann–Whitney | 112.000 | <0.001 | 280.835 | 1.000 | ||
H2S | Student | 2.077 | 20.000 | 0.051 | 2.426 | 0.920 |
Welch | 2.776 | 13.005 | 0.016 | 5.634 | 1.049 | |
Mann–Whitney | 99.500 | 0.003 | 20.489 | 0.777 | ||
CH3SH | Student | 1.228 | 20.000 | 0.234 | 1.083 | 0.544 |
Welch | 1.640 | 13.083 | 0.125 | 1.417 | 0.620 | |
Mann–Whitney | 99.500 | 0.003 | 21.255 | 0.777 |
Normality | Equality of Variances | |||||
---|---|---|---|---|---|---|
Plant | W | p | F | df | p | |
COD | A | 0.609 | <0.001 | 4.41 | 1 | 0.049 |
B | 0.689 | 0.002 | ||||
NH3 | A | 0.841 | 0.017 | 23.5 | 1 | <0.001 |
B | 0.418 | <0.001 | ||||
VOC | A | 0.740 | <0.001 | 20.5 | 1 | <0.001 |
B | 0.842 | 0.079 | ||||
H2S | A | 0.757 | 0.002 | 15.6 | 1 | <0.001 |
B | 0.686 | 0.002 | ||||
CH3SH | A | 0.441 | <0.001 | 2.20 | 1 | 0.153 |
B | 0.648 | <0.001 |
Model | Unstandardized | Standard Error | Standardized | t | p | Tolerance | VIF | |
---|---|---|---|---|---|---|---|---|
H0 | (Intercept) | 527.455 | 218.842 | 2.410 | 0.025 | |||
H1 | (Intercept) | 122.349 | 95.979 | 1.275 | 0.220 | |||
NH3 | −20.877 | 10.359 | −0.664 | −2.015 | 0.060 | 0.042 | 23.645 | |
VOC | 1.044 | 22.957 | 0.009 | 0.045 | 0.964 | 0.114 | 8.803 | |
H2S | 49.632 | 10.580 | 1.509 | 4.691 | <0.001 | 0.044 | 22.503 | |
CH3SH | 4.864 | 5.459 | 0.100 | 0.891 | 0.385 | 0.368 | 2.717 |
Predictors Contained in the Model | P(M) | P(M|Data) | BFM | BF10 | R² |
---|---|---|---|---|---|
NH3 + H2S | 0.033 | 0.336 | 14.671 | 1.000 | 0.917 |
H2S | 0.050 | 0.318 | 8.875 | 0.632 | 0.888 |
NH3 + H2S + CH3SH | 0.050 | 0.094 | 1.977 | 0.187 | 0.922 |
NH3 + VOC + H2S | 0.050 | 0.065 | 1.310 | 0.128 | 0.918 |
VOC + H2S | 0.033 | 0.063 | 1.956 | 0.188 | 0.900 |
H2S + CH3SH | 0.033 | 0.054 | 1.670 | 0.162 | 0.899 |
NH3 + VOC + H2S + CH3SH | 0.200 | 0.052 | 0.221 | 0.026 | 0.922 |
VOC + H2S + CH3SH | 0.050 | 0.016 | 0.307 | 0.032 | 0.903 |
NH3 | 0.050 | 3.177 × 10−4 | 0.006 | 6.305 × 10−4 | 0.764 |
NH3 + CH3SH | 0.033 | 2.885 × 10−4 | 0.008 | 8.587 × 10−4 | 0.815 |
Test | Statistic | df | p | VS-MPR * | Effect Size | |
---|---|---|---|---|---|---|
COD | Student | 2.431 | 20.000 | 0.025 | 4.041 | 1.078 |
Welch | 3.206 | 14.057 | 0.006 | 11.492 | 1.222 | |
Mann–Whitney | 99.000 | 0.002 | 27.639 | 0.768 | ||
solids | Student | 2.814 | 20.000 | 0.011 | 7.567 | 1.247 |
Welch | 3.730 | 13.645 | 0.002 | 26.027 | 1.417 | |
Mann–Whitney | 96.000 | 0.007 | 10.647 | 0.714 | ||
BOD | Student | 2.250 | 20.000 | 0.036 | 3.080 | 0.997 |
Welch | 2.971 | 13.917 | 0.010 | 7.886 | 1.131 | |
Mann–Whitney | 102.000 | 0.002 | 31.060 | 0.821 | ||
N-NO2 | Student | 5.105 | 20.000 | <0.001 | 692.871 | 2.262 |
Welch | 6.807 | 13.204 | <0.001 | 2805.832 | 2.577 | |
Mann–Whitney | 112.000 | <0.001 | 279.760 | 1.000 | ||
N-NH3 | Student | 3.183 | 20.000 | 0.005 | 14.667 | 1.411 |
Welch | 4.239 | 13.296 | <0.001 | 57.110 | 1.606 | |
Mann–Whitney | 102.000 | 0.002 | 31.060 | 0.821 | ||
Ptot. | Student | 1.047 | 20.000 | 0.308 | 1.014 | 0.464 |
Welch | 1.398 | 13.058 | 0.185 | 1.177 | 0.529 | |
Mann–Whitney | 96.000 | 0.007 | 10.745 | 0.714 |
Normality | Equality of Variances | ||||
---|---|---|---|---|---|
Plant | W | p | F | p | |
COD | A | 0.845 | 0.019 | 9.869 | 0.005 |
B | 0.551 | <0.001 | |||
solids | A | 0.888 | 0.075 | 13.399 | 0.002 |
B | 0.659 | <0.001 | |||
BOD | A | 0.773 | 0.002 | 9.159 | 0.007 |
B | 0.551 | <0.001 | |||
N-NO2 | A | 0.870 | 0.042 | 9.869 | 0.005 |
B | 0.759 | 0.010 | |||
N-NH3 | A | 0.921 | 0.224 | 13.399 | 0.002 |
B | 0.477 | <0.001 | |||
Ptot. | A | 0.384 | <0.001 | 9.159 | 0.007 |
B | 0.574 | <0.001 | 2.356 | 0.140 |
Model | Unstandardized | Standard Error | Standardized | t | p | Tolerance | VIF | |
---|---|---|---|---|---|---|---|---|
H0 | (Intercept) | 527.455 | 218.842 | 2.410 | 0.025 | |||
H1 | (Intercept) | −866.332 | 1620.863 | −0.534 | 0.601 | |||
pH | 75.096 | 211.913 | 0.036 | 0.354 | 0.728 | 0.312 | 3.205 | |
COD | 0.311 | 0.042 | 2.654 | 7.428 | <0.001 | 0.025 | 40.031 | |
solids | −0.009 | 0.078 | −0.012 | −0.117 | 0.909 | 0.301 | 3.324 | |
BOD | −0.277 | 0.070 | −1.380 | −3.971 | 0.001 | 0.026 | 37.879 | |
N-NO2 | −151.692 | 215.553 | −0.159 | −0.704 | 0.493 | 0.062 | 16.032 | |
N-NH3 | −0.524 | 0.310 | −0.364 | −1.691 | 0.113 | 0.069 | 14.562 | |
Ptot. | −0.348 | 0.403 | −0.052 | −0.863 | 0.403 | 0.865 | 1.156 |
Models | P(M) | P(M|data) | BFM | BF10 | R² |
---|---|---|---|---|---|
COD + BOD + N-NH3 | 0.004 | 0.337 | 141.804 | 1.000 | 0.947 |
COD + BOD + N-NO2 | 0.004 | 0.123 | 39.034 | 0.364 | 0.940 |
COD + BOD + N-NO2 + N-NH3 | 0.004 | 0.078 | 23.586 | 0.231 | 0.952 |
COD + BOD + N-NH3 + Ptot. | 0.004 | 0.073 | 21.917 | 0.216 | 0.951 |
pH + COD + BOD + N-NH3 | 0.004 | 0.067 | 20.157 | 0.200 | 0.951 |
COD + solids + BOD + N-NH3 | 0.004 | 0.041 | 11.833 | 0.121 | 0.948 |
COD + BOD + N-NO2 + N-NH3 + Ptot. | 0.006 | 0.025 | 4.317 | 0.045 | 0.954 |
pH + COD + BOD + N-NH3 + Ptot. | 0.006 | 0.023 | 3.847 | 0.040 | 0.954 |
pH + COD + BOD + N-NO2 + N-NH3 | 0.006 | 0.020 | 3.357 | 0.035 | 0.953 |
COD + solids + BOD + N-NO2 | 0.004 | 0.018 | 5.173 | 0.054 | 0.942 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewska, M.; Szyłak-Szydłowski, M. The Air and Sewage Pollutants from Biological Waste Treatment. Processes 2021, 9, 250. https://doi.org/10.3390/pr9020250
Wiśniewska M, Szyłak-Szydłowski M. The Air and Sewage Pollutants from Biological Waste Treatment. Processes. 2021; 9(2):250. https://doi.org/10.3390/pr9020250
Chicago/Turabian StyleWiśniewska, Marta, and Mirosław Szyłak-Szydłowski. 2021. "The Air and Sewage Pollutants from Biological Waste Treatment" Processes 9, no. 2: 250. https://doi.org/10.3390/pr9020250
APA StyleWiśniewska, M., & Szyłak-Szydłowski, M. (2021). The Air and Sewage Pollutants from Biological Waste Treatment. Processes, 9(2), 250. https://doi.org/10.3390/pr9020250