Special Issue on “Process Modeling in Pyrometallurgical Engineering”
1. Coal
2. Sintering
3. Blast Furnace
4. Iron Smelting
5. Copper Smelting
6. BOF
7. EAF
8. Ladle Furnace
9. Casting and Solidification
10. Rolling
Funding
Conflicts of Interest
References
- Liu, J.; Qiu, S.; He, Z.; Yu, Y. Experiments and 3D molecular model construction of lignite under different modification treatment. Processes 2020, 8, 399. [Google Scholar]
- Liu, J.; Yuan, Y.; Zhang, J.; He, Z.; Yu, Y. Combustion kinetics characteristics of solid fuel in the sintering process. Processes 2020, 8, 475. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Ohno, K.; Nonaka, S.; Maeda, T.; Kunitomo, K. Temperature distribution estimation in a Dwight-Lloyd Sinter machine based on the combustion rate of charcoal quasi-particles. Processes 2020, 8, 406. [Google Scholar] [CrossRef] [Green Version]
- Cheng, R.; Zhang, H.; Ni, H. Arsenic removal from arsenopyrite-bearing iron ore and arsenic recovery from dust ash by roasting method. Processes 2019, 7, 754. [Google Scholar]
- Kou, M.; Zhou, H.; Wang, L.P.; Hong, Z.; Yao, S.; Xu, H.; Wu, S. Numerical simulation of effects of different operational parameters on the carbon solution loss ratio of coke inside blast furnace. Processes 2019, 7, 528. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, H.; Zeng, J.; Li, Y.; Luo, S. Fault detection and identification of blast furnace ironmaking process using the gated recurrent unit network. Processes 2020, 8, 391. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Li, M.; Li, Y.; Ge, Y.; Saxén, H.; Yu, Y. Discrete Element Method (DEM) and experimental studies of the angle of repose and porosity distribution of pellet pile. Processes 2019, 7, 561. [Google Scholar] [CrossRef] [Green Version]
- Mio, H.; Narita, Y.; Nakano, K.; Nomura, S. Validation of the burden distribution of the 1/3-Scale of a blast furnace simulated by the Discrete Element Method. Processes 2020, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wei, H.; Ge, Y.; Xiao, G.; Yu, Y. A mathematical model combined with radar data for bell-less charging of a blast furnace. Processes 2020, 8, 239. [Google Scholar]
- Natsui, S.; Tonya, K.; Nogami, H.; Kikuchi, T.; Suzuki, R.O.; Ohno, K.; Sukenaga, S.; Kon, T.; Ishihara, S.; Ueda, S. Numerical study of binary trickle flow of liquid iron and molten slag in coke bed by smoothed particle hydrodynamics. Processes 2020, 8, 221. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Xiao, Q.; Zhang, C.; Zou, Z.; Saxén, H. Dead-man behavior in the blast furnace hearth—a brief review. Processes 2020, 8, 1335. [Google Scholar] [CrossRef]
- Peng, X.; Wang, J.; Zuo, H.; Xue, Q. Evolution and physical characteristics of a raceway based on a transient Eulerian multiphase flow model. Processes 2020, 8, 1315. [Google Scholar] [CrossRef]
- Okosun, T.; Nielson, S.; D’Alessio, J.; Ray, S.; Street, S.; Zhou, C. On the impacts of pre-heated natural gas injection in blast furnaces. Processes 2020, 8, 771. [Google Scholar] [CrossRef]
- Ge, Y.; Li, M.; Wei, H.; Liang, D.; Wang, X.; Yu, Y. Numerical analysis on velocity and temperature of the fluid in a blast furnace main trough. Processes 2020, 8, 249. [Google Scholar] [CrossRef] [Green Version]
- Roche, M.; Helle, M.; Saxén, H. Principal component analysis of blast furnace drainage patterns. Processes 2019, 7, 519. [Google Scholar]
- Xie, J.; Wang, B.; Zhang, J. Parametric dimensional analysis on a C-H2 smelting reduction furnace with double-row side nozzles. Processes 2020, 8, 129. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zou, Z.; Luo, Z.; Shao, L.; Liu, W. Model study on burden distribution in COREX melter gasifier. Processes 2019, 7, 892. [Google Scholar]
- Sun, Y.; Chen, R.; Zhang, Z.; Wu, G.; Zhang, H.; Li, L.; Liu, Y.; Li, X.; Huang, Y. Numerical simulation of the raceway zone in melter gasifier of COREX process. Processes 2019, 7, 867. [Google Scholar] [CrossRef] [Green Version]
- Jylhä, J.-P.; Khan, N.A.; Jokilaakso, A. Computational approaches for studying slag–matte interactions in the flash smelting furnace (FSF) settler. Processes 2020, 8, 485. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, Q.; Tian, Q.; Guo, X. Simulation study and industrial application of enhanced arsenic removal by regulating the proportion of concentrates in the SKS copper smelting process. Processes 2020, 8, 385. [Google Scholar] [CrossRef] [Green Version]
- Navarra, A.; Wilson, R.; Parra, R.; Toro, N.; Ross, A.; Nave, J.-C.; Mackey, P.J. Quantitative methods to support data acquisition modernization within copper smelters. Processes 2020, 8, 1478. [Google Scholar] [CrossRef]
- Jiang, S.L.; Shen, X.; Zheng, Z. Gaussian process-based hybrid model for predicting oxygen consumption in the converter steelmaking process. Processes 2019, 7, 352. [Google Scholar] [CrossRef] [Green Version]
- Rahnama, A.; Li, Z.; Sridhar, S. Machine learning-based prediction of a BOS reactor performance from operating parameters. Processes 2020, 8, 371. [Google Scholar] [CrossRef] [Green Version]
- Dering, D.; Swartz, C.; Dogan, N. Dynamic modeling and simulation of basic oxygen furnace (BOF) operation. Processes 2020, 8, 483. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, L.S.; Samuelsson, P.B.; Jönsson, P.G. Modeling the effect of scrap on the electrical energy consumption of an electric arc furnace. Processes 2020, 8, 1044. [Google Scholar] [CrossRef]
- Hay, T.; Echterhof, T.; Visuri, V.-V. Development of an electric arc furnace simulator based on a comprehensive dynamic process model. Processes 2019, 7, 852. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Silaen, A.K.; Zhou, C.Q. 3D integrated modeling of supersonic coherent jet penetration and decarburization in EAF refining process. Processes 2020, 8, 700. [Google Scholar] [CrossRef]
- Jardón-Pérez, L.E.; González-Rivera, C.; Ramírez-Argáez, M.A.; Dutta, A. Numerical modeling of equal and differentiated gas injection in ladles: Effect on mixing time and slag eye. Processes 2020, 8, 917. [Google Scholar] [CrossRef]
- Yang, F.; Jin, Y.; Zhu, C.; Dong, X.; Lin, P.; Cheng, C.; Li, Y.; Sun, L.; Pan, J.; Cai, Q. Physical Simulation of molten steel homogenization and slag entrapment in argon blown ladle. Processes 2019, 7, 479. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Wang, J.; Zhang, W.; Xie, M.; Liu, F.; Cao, X. Bubble motion and interfacial phenomena during bubbles crossing liquid-liquid interfaces. Processes 2019, 7, 719. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.; Zhao, D.; Feng, W.; Xue, Z. Titanium distribution ratio model of ladle furnace slags for tire cord steel production based on the ion-molecule coexistence theory at 1853 K. Processes 2019, 7, 788. [Google Scholar] [CrossRef] [Green Version]
- Conejo, A.N. Physical and mathematical modelling of mass transfer in ladles due to bottom gas stirring: A review. Processes 2020, 8, 750. [Google Scholar] [CrossRef]
- Niaz, U.; Isac, M.M.; Guthrie, R.I.L. Numerical modeling of transport phenomena in the horizontal single belt casting (HSBC) process for the production of AA6111 aluminum alloy strip. Processes 2020, 8, 529. [Google Scholar] [CrossRef]
- Wang, L.; Xue, Z.-L.; Chen, Y.-L.; Bi, X.-G. Understanding TiN precipitation behavior during solidification of SWRH 92A tire cord steel by selected thermodynamic models. Processes 2020, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Mou, Q.; Zeng, Q.; Yu, Y. Experimental study on precipitation behavior of spinels in stainless steel-making slag under heating treatment. Processes 2019, 7, 487. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.-K. Thermal behavior of a rod during hot shape rolling and its comparison with a plate during flat rolling. Processes 2020, 8, 327. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.-K. Effect of cambered and oval-grooved roll on the strain distribution during the flat rolling process of a wire. Processes 2020, 8, 876. [Google Scholar] [CrossRef]
- Hu, Z.; He, D.; Song, W.; Feng, K. Model and algorithm for planning hot-rolled batch processing under time-of-use electricity pricing. Processes 2020, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Xiao, H.; Wang, M.; Li, J. Flow behavior and hot processing map of GH4698 for isothermal compression process. Processes 2019, 7, 491. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saxén, H.; Ramírez-Argáez, M.A.; Conejo, A.N.; Dutta, A. Special Issue on “Process Modeling in Pyrometallurgical Engineering”. Processes 2021, 9, 252. https://doi.org/10.3390/pr9020252
Saxén H, Ramírez-Argáez MA, Conejo AN, Dutta A. Special Issue on “Process Modeling in Pyrometallurgical Engineering”. Processes. 2021; 9(2):252. https://doi.org/10.3390/pr9020252
Chicago/Turabian StyleSaxén, Henrik, Marco A. Ramírez-Argáez, Alberto N. Conejo, and Abhishek Dutta. 2021. "Special Issue on “Process Modeling in Pyrometallurgical Engineering”" Processes 9, no. 2: 252. https://doi.org/10.3390/pr9020252
APA StyleSaxén, H., Ramírez-Argáez, M. A., Conejo, A. N., & Dutta, A. (2021). Special Issue on “Process Modeling in Pyrometallurgical Engineering”. Processes, 9(2), 252. https://doi.org/10.3390/pr9020252