Separation and Rectification of Chloroacetyl Chloride from TiCl4
Abstract
:1. Introduction
2. Experimental Section
2.1. Standard Sample Preparation
2.2. Determination of CAC in TiCl4 Solution
2.3. Separation of CAC Impurities
3. Results and Discussion
3.1. CAC Determination
3.2. Factors Influencing CAC Removal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, T.H.; Navarrete-López, A.M.; Li, S.G.; Dixon, D.A.; Gole, J.L. Hydrolysis of TiCl4: Initial Steps in the Production of TiO2. J. Phys. Chem. A 2010, 114, 7561–7570. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.Y.; Weng, Y.H.; Zhang, S.H.; Zhang, Z.; Fu, Z.S.; Fan, Z.Q. Kinetics and mechanism of ethylene polymerization with TiCl4/MgCl2 model catalysts: Effects of titanium content. J. Catal. 2018, 360, 57–65. [Google Scholar] [CrossRef]
- Li, L.; Liu, D.C.; Wan, H.L.; Li, K.H.; Deng, J.H.; Jiang, W.L. Removal of chloride impurities from titanium sponge by vacuum distillation. Vacuum 2018, 152, 166–172. [Google Scholar] [CrossRef]
- Tang, S.Y.; Liu, T.; Duan, S.P.; Guo, J.J.; Tang, A.J. Comparison of Growth Characteristics and Properties of CVD TiN and TiO2 Anti-Coking Coatings. Processes 2009, 7, 574. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.Y.; Wang, L.J.; Chou, K.C. A Novel Process for Simultaneous Extraction of Iron, Vanadium, Manganese, Chromium, and Titanium from Vanadium Slag by Molten Salt Electrolysis. Ind. Eng. Chem. Res. 2016, 55, 12962–12969. [Google Scholar] [CrossRef]
- Xiong, S.F.; Yuan, Z.F.; Xu, C.; Xi, L. Composition of off-gas produced by combined fluidized bed chlorination for preparation of TiCl4. Trans. Nonferrous Met. Soc. China 2010, 20, 128–134. [Google Scholar] [CrossRef]
- Rowe, L.W.; Opie, W.R. Production and Purification of TiCl4. JOM 1955, 7, 1189–1193. [Google Scholar] [CrossRef]
- Wang, X.W.; Zhang, L.P.; Shang, G.H.; Zhang, G.Q.; Yuan, J.W.; Gong, S.C. Processing copper–vanadium precipitate formed from crude TiCl4 in titania and titanium sponge production. Hydrometallurgy 2009, 99, 259–262. [Google Scholar] [CrossRef]
- Kusamichi, H.; Yukawa, T.; Toda, H.; Kaji, H. Study on the purification of TiCl4. J. Jpn. I. Met. 1955, 15, 66–69. [Google Scholar] [CrossRef] [Green Version]
- Lynch, D.C. Conversion of VOCl3 to VOCl2 in liquid TiCl4. Metall. Mater. Trans. B 2002, 33, 142–146. [Google Scholar] [CrossRef]
- Bruno, L.A.; Beard, B.C. Application of Infrared Spectroscopy for the Determination of TiOCl2 in TiCl4. Appl. Spectrosc. 1997, 51, 131–132. [Google Scholar] [CrossRef]
- Song, G.L.; Luo, Y.J.; Li, J.Q.; Zhan, B.L.; Tan, H. Determination of Titanium Oxychloride in Refined Titanium Tetrachloride by Infrared Spectroscopy. Adv. Mat. Res. 2014, 997, 475–479. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Y.; Tan, H.; He, J.; Song, G. Infrared spectroscopy for a quantitative determination of CH3−nClnCOCl in TiCl4. IOP Conf. Ser. Mater. Sci. Eng. 2015, 103, 012027. [Google Scholar] [CrossRef] [Green Version]
- Johannesen, R.B.; Gordon, C.L.; Stewart, J.E.; Raleigh, G. Application of infrared spectroscopy to the determination of impurities in titanium tetrachloride. J. Res. Natl. Inst. Stand. 1954, 53, 197–200. [Google Scholar] [CrossRef]
- Song, G.L.; Luo, Y.J.; Li, J.Q.; Tan, H. Determination of Carbon Dioxide in Refined Titanium Tetrachloride by Infrared Spectroscopy. Spectrosc. Spect. Anal. 2015, 35, 626–630. [Google Scholar] [CrossRef]
- Haaland, D.M.; Easterling, R.G.; Vopicka, D.A. Multivariate Least-Squares Methods Applied to the Quantitative Spectral Analysis of Multicomponent Samples. Appl. Spectrosc. 1985, 39, 73–84. [Google Scholar] [CrossRef]
- Deng, G.Z. Titanium Metallurgy; Metallurgical Industry Press: Beijing, China, 2010; pp. 153–161. ISBN 9787502453367. (In Chinese) [Google Scholar]
- Speight, J.G. Lange’s Handbook of Chemistry, 16th ed.; CD&W Inc.: Laramie, WY, USA, 2004; Volume 2, p. 110. ISBN 0-07-143220-5. [Google Scholar]
- Magaril, E.; Magaril, R. Effect of pressure on the rectification sharpness in rectifying sections of tray distillation columns in oil and gas refining. Sep. Purif. Technol. 2019, 223, 49–64. [Google Scholar] [CrossRef]
- Perry, R.H.; Green, D.W. Perry’s Chemical Engineers’ Handbook, 7th ed.; McGraw-Hill: New York, NY, USA, 1997; Volume 13, p. 97. ISBN 0-07-049841-5. [Google Scholar]
- Liu, B.Y.; Lin, H.; Liao, J.J.; Tian, Y.J. Purification of SiCl4 as the Byproduct of Titanium Tetrachloride Refining. Int. J. Environ. Sci. 2013, 8, 601–606. [Google Scholar]
- Chen, Q. Simulation of Citronellal Extraction Tower Based on Aspen Plus Software. Adv. Mat. Res. 2015, 1090, 148–153. [Google Scholar] [CrossRef]
- Long, N.V.D.; Lee, M. Review of retrofitting distillation columns using thermally coupled distillation sequences and dividing wall columns to improve energy efficiency. J. Chem. Eng. Jpn. 2014, 47, 87–108. [Google Scholar] [CrossRef] [Green Version]
- Vorotyntsev, V.M.; Shablykin, D.N.; Vorotyntsev, I.V.; Petukhov, A.N.; Trubyanov, M.M. Concentration and temperature dependences of the liquid-vapor separation factor for ammonia with impurities of hydrocarbons and permanent gases. Russ. J Appl. Chem. 2013, 86, 1197–1203. [Google Scholar] [CrossRef]
- Hou, P.Q.; Yang, L.; Wang, Y.F.; Wang, L.X.; Li, S.N.; Luo, S.H. Optimize hydrothermal synthesis and electrochemical performance of Li2FeTiO4 composite cathode materials by using orthogonal experimental design method. Ionics 2020, 26, 1657–1662. [Google Scholar] [CrossRef]
- Garcia, M.V.; Tiemblo, P. Kinetic study of the reaction between ethanol and chloroacetyl chloride in chloroform: A laboratory experiment using Fourier transform infrared spectroscopy. J. Chem. Educ. 1992, 69, 841. [Google Scholar] [CrossRef]
- Ziémons, E.; Goffin, E.; Lejeune, R.; Angenot, L.; Thunus, L. FT-IR measurement of agitinine C after solvent extraction from Tithonia diversifolia. Talanta 2004, 62, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Palacios, D.; Armenta, S.; Lendl, B. Flow-Through Fourier Transform Infrared Sensor for Total Hydrocarbons Determination in Water. Appl. Spectrosc. 2009, 63, 1015–1023. [Google Scholar] [CrossRef]
- Naarendorp, F.; Rice, K.S.; Sieving, P.A. Summation of Rod and S Cone Signals at Threshold in Human Observers. Vision Res. 1996, 36, 2681–2688. [Google Scholar] [CrossRef] [Green Version]
- Dors, G.C.; Primel, E.G.; Fagundes, C.A.A.; Mariot, C.H.P.; Badiale-Furlong, E. Distribution of Pesticide Residues in Rice Grain and in its Coproducts. J. Braz. Chem. Soc. 2011, 22, 1921–1930. [Google Scholar] [CrossRef] [Green Version]
- Qiang, E.J.; Han, D.D.; Qiu, A.; Zhu, H.; Deng, Y.W.; Chen, J.W.; Zhao, X.H.; Zuo, W.; Wang, H.C.; Chen, J.M.; et al. Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system. Appl. Therm. Eng. 2018, 132, 508–520. [Google Scholar] [CrossRef]
Classification | Calculation Results | Classification | Calculation Results |
---|---|---|---|
5.707 × 10−5 | 24.73 | ||
4.168 × 10−3 | 37.10 | ||
1.634 × 10−5 | 4.15 | ||
2.168 ×10−4 | 0.32 |
Batch Number | 1# (ppm) | 2# (ppm) | 3# (ppm) | 4# (ppm) | 5# (ppm) | Mean Value (ppm) | RSD (%) |
---|---|---|---|---|---|---|---|
No. 1 | 4.83 | 4.86 | 4.92 | 4.77 | 4.85 | 4.85 | 1.12 |
No. 2 | 12.48 | 12.3 | 12.41 | 12.35 | 12.55 | 12.42 | 0.80 |
No. 3 | 44.72 | 44.25 | 44.51 | 44.66 | 44.59 | 44.55 | 0.41 |
Batch Number | Before Standard Solution Addition (ppm) | CAC Content in Standard Solution (ppm) | After Standard Solution Addition (ppm) | Recovery Rate (%) |
---|---|---|---|---|
No. 1 | 12.48 | 20.00 | 32.55 | 100.6 |
No. 2 | 18.43 | 30.00 | 49.40 | 105.3 |
No. 3 | 23.88 | 40.00 | 62.74 | 95.2 |
No. 4 | 35.69 | 50.00 | 84.46 | 96.6 |
No. 5 | 42.18 | 20.00 | 62.54 | 100.9 |
No. 6 | 51.82 | 20.00 | 73.21 | 102.7 |
Linear Equation | Correlation Coefficient (R2) | Detection Limit (ppm) | Characteristic Peak Position (cm−1) | Detection Method | Ref. |
---|---|---|---|---|---|
y = −0.00001571x + 1.00001785946 | 0.8995 | 3.159 | 1820 | FTIR | [13] |
- | - | 0.50 | 1802 | IR | [14] |
y = 0.04081x − 0.11599 | 0.990 | 0.633 | 1820 | FTIR | this work |
No. | Factors | CAC Removal Efficiency (%) | ||||
---|---|---|---|---|---|---|
Heating Powder (kWt−1) | Reflux Ratio (%) | Reflux Temperature (°C) | Top Pressure of the Rectification Tower (kPa) | Feed Temperature (°C) | ||
1 | 50 | 30 | 65 | −2 | 80 | 65.23 ± 0.20 |
2 | 50 | 40 | 75 | 0 | 95 | 69.35 ± 0.15 |
3 | 50 | 50 | 85 | 2 | 110 | 75.37 ± 0.08 |
4 | 50 | 60 | 95 | 4 | 125 | 78.52 ± 0.18 |
5 | 65 | 30 | 75 | 2 | 125 | 68.40 ± 0.13 |
6 | 65 | 40 | 65 | 4 | 110 | 76.48 ± 0.11 |
7 | 65 | 50 | 95 | −2 | 95 | 79.77 ± 0.19 |
8 | 65 | 60 | 85 | 0 | 80 | 80.05 ± 0.13 |
9 | 85 | 30 | 85 | 4 | 95 | 72.14 ± 0.12 |
10 | 85 | 40 | 95 | 2 | 80 | 76.30 ± 0.10 |
11 | 85 | 50 | 65 | 0 | 125 | 81.07 ± 0.11 |
12 | 85 | 60 | 75 | −2 | 110 | 79.71 ± 0.14 |
13 | 100 | 30 | 95 | 0 | 110 | 76.43 ± 0.13 |
14 | 100 | 40 | 85 | −2 | 125 | 80.00 ± 0.15 |
15 | 100 | 50 | 75 | 4 | 80 | 76.09 ± 0.12 |
16 | 100 | 60 | 65 | 2 | 95 | 78.69 ± 0.19 |
K1 | 72.117 | 70.550 | 75.368 | 76.177 | 74.417 | |
K2 | 76.175 | 75.532 | 73.387 | 76.725 | 74.987 | |
K3 | 77.305 | 78.075 | 76.890 | 74.690 | 76.998 | |
K4 | 77.803 | 79.242 | 77.755 | 75.808 | 76.998 | |
R | 5.686 | 8.692 | 4.368 | 2.035 | 2.581 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, F.; Li, L.; Zhang, D.; Ma, S.; Ma, Z.; Qiu, K. Separation and Rectification of Chloroacetyl Chloride from TiCl4. Processes 2021, 9, 287. https://doi.org/10.3390/pr9020287
Zhu F, Li L, Zhang D, Ma S, Ma Z, Qiu K. Separation and Rectification of Chloroacetyl Chloride from TiCl4. Processes. 2021; 9(2):287. https://doi.org/10.3390/pr9020287
Chicago/Turabian StyleZhu, Fuxing, Liang Li, Dafu Zhang, Shangrun Ma, Zhanshan Ma, and Kehui Qiu. 2021. "Separation and Rectification of Chloroacetyl Chloride from TiCl4" Processes 9, no. 2: 287. https://doi.org/10.3390/pr9020287
APA StyleZhu, F., Li, L., Zhang, D., Ma, S., Ma, Z., & Qiu, K. (2021). Separation and Rectification of Chloroacetyl Chloride from TiCl4. Processes, 9(2), 287. https://doi.org/10.3390/pr9020287