Simultaneous Removal of Al, Cu and Zn Ions from Aqueous Solutions Using Ion and Precipitate Flotation Methods
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of pH on the Flotation Efficiency
3.2. Effect of pH on the Flotation Rate Constant
3.3. Effect of Collector Concentration on the Flotation Efficiency
3.4. Effect of Collector Concentration on the Flotation Rate Constant
3.5. Effect of Air Velocity on Flotation Efficiency
3.6. Effect of Air Velocity on the Flotation Rate Constant
3.7. Cost Estimation of Selected Methods for Removal of Metal Ions from Aqueous Solutions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Zhou, X.; Li, S. Efficient Removal of Heavy Metal Ions in Wastewater by Using a Novel Alginate-EDTA Hybrid Aerogel. Appl. Sci. 2019, 9, 547. [Google Scholar] [CrossRef] [Green Version]
- Santander, M.; Valderrama, L.; Guevara, M.; Rubio, J. Adsorbing colloidal flotation removing metals ions in a modified jet cell. Miner. Eng. 2011, 24, 1010–1015. [Google Scholar] [CrossRef]
- Blais, J.F.; Djedidi, Z.; Cheikh, R.B.; Tyagi, R.D.; Mercier, G. Metals Precipitation from Effluents: Review. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2008, 12, 135–149. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.H.; Babel, S. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Al-Senani, G.M.; Al-Fawzan, F.F. Adsorption study of heavy metal ions from aqueous solution by nanoparticle of wild herbs. Egypt. J. Aquat. Res. 2018, 44, 187–194. [Google Scholar] [CrossRef]
- Wołowiec, M.; Komorowska-Kaufman, M.; Pruss, A.; Rzepa, G.; Bajda, T. Removal of Heavy Metals and Metalloids from Water Using Drinking Water Treatment Residuals as Adsorbents: A Review. Minerals 2019, 9, 487. [Google Scholar] [CrossRef] [Green Version]
- Joseph, L.; Jun, B.M.; Flora, J.R.V.; Park, C.M.; Yoon, Y. Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere 2019, 229, 142–159. [Google Scholar] [CrossRef]
- Kulshreshtha, A.; Agrawal, R.; Barar, M.; Saxena, S. A Review on Bioremediation of Heavy Metals in Contaminated Water. IOSR J. Environ. Sci. Toxicol. Food Technol. 2014, 8, 44–50. [Google Scholar] [CrossRef]
- Gheju, M. Decontamination of hexavalent chromium-polluted waters: Significance of metallic iron technology. In Enhancing Cleanup of Environmental Pollutants; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; Volume 2, pp. 209–253. ISBN 9783319554235. [Google Scholar]
- Shiba, S.; Hirata, Y.; Seno, T. In-Situ Electrokinetic Remediation of Soil and Water in Aquifer Contaminated by Heavy Metal. In Groundwater Updates; Springer: Tokyo, Japan, 2000; pp. 135–140. [Google Scholar]
- Litter, M.I. Mechanisms of removal of heavy metals and arsenic from water by TiO2-heterogeneous photocatalysis. Pure Appl. Chem. 2015, 87, 557–567. [Google Scholar] [CrossRef]
- Deliyanni, E.A.; Kyzas, G.Z.; Matis, K.A. Various flotation techniques for metal ions removal. J. Mol. Liq. 2017, 225, 260–264. [Google Scholar] [CrossRef]
- Peleka, E.N.; Gallios, G.P.; Matis, K.A. A perspective on flotation: A review. J. Chem. Technol. Biotechnol. 2018, 93, 615–623. [Google Scholar] [CrossRef]
- Sebba, F. Ion Flotation; Elsevier Publishing Company: New York, NY, USA, 1962. [Google Scholar]
- Zouboulis, I.; Matis, K.A. Separation of Heavy Metals from Effluents by Flotation. In Pretreatment in Chemical Water and Wastewater Treatment; Springer: Berlin/Heidelberg, Germany, 1988; pp. 159–166. [Google Scholar]
- Chang, L.; Cao, Y.; Fan, G.; Li, C.; Peng, W. A review of the applications of ion floatation: Wastewater treatment, mineral beneficiation and hydrometallurgy. RSC Adv. 2019, 9, 20226–20239. [Google Scholar] [CrossRef]
- Zouboulis, A.I.; Matis, K.A. Ion flotation in environmental technology. Chemosphere 1987, 16, 623–631. [Google Scholar] [CrossRef]
- Selecki, A. Rozdzielanie Mieszanin. Metody Niekonwencjonalne; Wydawnictwo Naukowo-Techniczne: Warszawa, Poland, 1972. [Google Scholar]
- Kawalec-Pietrenko, B.; Selecki, A. Investigations of Kinetics of Removal of Trivalent Chromium Salts from Aqueous Solutions Using Ion and Precipitate Flotation Methods. Sep. Sci. Technol. 1984, 19, 1025–1038. [Google Scholar] [CrossRef]
- Gawroński, R. Procesy Oczyszczania Cieczy; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2006. [Google Scholar]
- Gryta, M.; Tomczak, W.; Bastrzyk, J. Badania rozdzielania brzeczek z bakteryjnej fermentacji glicerolu w układzie ultrafiltracja—nanofiltracja. Inżynieria Apar. Chem. 2013, 52, 423–424. (In Polish) [Google Scholar] [CrossRef]
- Nouri, J.; Mahvi, A.H.; Bazrafshan, E. Application of electrocoagulation process in removal of zinc and copper from aqueous solutions by aluminum electrodes. Int. J. Environ. Res. 2010, 4, 201–208. [Google Scholar] [CrossRef]
- Zhang, J.; Klasky, M.; Letellier, B.C. The aluminum chemistry and corrosion in alkaline solutions. J. Nucl. Mater. 2009, 384, 175–189. [Google Scholar] [CrossRef]
- Shakir, K.; Aziz, M.; Benyamin, K. Foam separation. Studies on the foam separation of Al(III) and the use of Al(III) hydroxide as a coprecipitant in the adsorbing colloid flotation of trace metal ions; part I: Foam separation of Al(III). Tenside Surfactants Deterg. 1990, 27, 329–335. [Google Scholar]
- Rubin, A.J.; Johnson, J.D. Effect of pH on Ion and Precipitate Flotation Systems. Anal. Chem. 1967, 39, 298–302. [Google Scholar] [CrossRef]
- Liu, Z.; Doyle, F.M. A thermodynamic approach to ion flotation. II. Metal ion selectivity in the SDS-Cu-Ca and SDS-Cu-Pb systems. Colloids Surfaces A Physicochem. Eng. Asp. 2001, 178, 93–103. [Google Scholar] [CrossRef]
- Jurkiewicz, K. The removal of zinc from solutions by foam separation, II. Precipitate flotation of zinc hydroxide. Int. J. Miner. Process. 1990, 29, 1–15. [Google Scholar] [CrossRef]
- Kawalec-Pietrenko, B.; Rybarczyk, P. Al(III) and Cu(II) simultaneous foam separation: Physicochemical problems. Chem. Pap. 2014, 68, 890–898. [Google Scholar] [CrossRef]
- Ghazy, S.; El-Morsy, S. Precipitate Flotation of Aluminum and Copper. Trends Appl. Sci. Res. 2008, 3, 14–24. [Google Scholar] [CrossRef]
- Hogan, D.E.; Curry, J.E.; Maier, R.M. Ion Flotation of La3+, Cd2+, and Cs+ using Monorhamnolipid Collector. Colloids Interfaces 2018, 2, 43. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; Chang, L.; Li, P.; Han, G.; Huang, Y.; Cao, Y. An overview on the surfactants used in ion flotation. J. Mol. Liq. 2019, 286, 110955. [Google Scholar] [CrossRef]
- Salmani Abyaneh, A.; Fazaelipoor, M.H. Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation. J. Environ. Manag. 2016, 165, 184–187. [Google Scholar] [CrossRef]
- Sobianowska-Turek, A.; Ulewicz, M.; Sobianowska, K. Ion flotation and solvent sublation of zinc(II) and manganese(II) in the presence of proton-ionizable lariat ethers. Physicochem. Probl. Miner. Process. 2016, 52, 1048–1060. [Google Scholar] [CrossRef]
- Wu, H.; Huang, Y.; Liu, B.; Han, G.; Su, S.; Wang, W.; Yang, S.; Xue, Y.; Li, S. An efficient separation for metal-ions from wastewater by ion precipitate flotation: Probing formation and growth evolution of metal-reagent flocs. Chemosphere 2021, 263, 128363. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, W.; Huang, Y.; Han, G.; Yang, S.; Su, S.; Sana, H.; Peng, W.; Cao, Y.; Liu, J. Comprehensive evaluation on a prospective precipitation-flotation process for metal-ions removal from wastewater simulants. J. Hazard. Mater. 2019, 371, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Zakeri Khatir, M.; Abdollahy, M.; Khalesi, M.R.; Rezai, B. Selective separation of neodymium from synthetic wastewater by ion flotation. Sep. Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Soliman, M.A.; Rashad, G.M.; Mahmoud, M.R. Kinetics of ion flotation of Co(II)-EDTA complexes from aqueous solutions. Radiochim. Acta 2015, 103, 643–652. [Google Scholar] [CrossRef]
- Jurkiewicz, K. Adsorptive bubble separation of zinc and cadmium cations in presence of ferric and aluminum hydroxides. J. Colloid Interface Sci. 2005, 286, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Salmani, M.H.; Davoodi, M.; Ehrampoush, M.H.; Ghaneian, M.T.; Fallahzadah, M.H. Removal of cadmium (II) from simulated wastewater by ion flotation technique. Iran. J. Environ. Health Sci. Eng. 2013, 10. [Google Scholar] [CrossRef] [Green Version]
- Polat, H.; Erdogan, D. Heavy metal removal from waste waters by ion flotation. J. Hazard. Mater. 2007, 148, 267–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartkiewicz, B. Treatment of Industrial Wastewaters (in Polish); PWN: Warszawa, Poland, 2007; ISBN 978-83-01-16267-2. [Google Scholar]
- Ruffer, H.; Rosenwinkel, K. Treatment of Industrial Wastewaters (in Polish); Oficyna Wydawnicza Projprzem-EKO: Bydgoszcz, Poland, 1998; ISBN 83-906015-2-4. [Google Scholar]
- Medina, B.Y.; Torem, M.L.; De Mesquita, L.M.S. On the kinetics of precipitate flotation of Cr III using sodium dodecylsulfate and ethanol. Miner. Eng. 2005, 18, 225–231. [Google Scholar] [CrossRef]
- Študlar, K.; Janoušek, I. The photometric determination of zinc with xylenol orange. Talanta 1961, 8, 203–208. [Google Scholar] [CrossRef]
- Mochizuki, T.; Kuroda, R. Rapid continuous determination of aluminium in copper-base alloys by flow-injection spectrophotometry. Fresenius’ Z. Anal. Chem. 1982, 311, 11–15. [Google Scholar] [CrossRef]
- Marczenko, Z.; Balcerzak, M. Spektrofotometryczne Metody w Analizie Nieorganicznej; Wydawnictwo Naukowe PWN: Warszawa, Poland, 1998; ISBN 9788301126124. [Google Scholar]
- Stoica, L.; Oproiu, G.C.; Cosmeleata, R.; Dinculescu, M. Kinetics of Cu2+ separation by flotation. Sep. Sci. Technol. 2003, 38, 613–632. [Google Scholar] [CrossRef]
- Jiao, C.S.; Ding, Y. Foam separation of chromium (VI) from aqueous solution. J. Shanghai Univ. 2009, 13, 263–266. [Google Scholar] [CrossRef]
- Opriou, G.; Lacatusu, I.; Stoica, L. Examination of kinetic flotation process for two experimental Cu(II) and Ni(II)—A-benzoinoxime systems, based on kinetic literature models. Rev. Chim. 2009, 60, 641–645. [Google Scholar]
- Reyes, M.; Patiñeo, F.; Tavera, F.J.; Escudero, R.; Rivera, I.; Pérez, M. Kinetics and recovery of xanthate-copper compounds by ion flotation techniques. J. Mex. Chem. Soc. 2009, 53, 15–22. [Google Scholar] [CrossRef]
- Reyes, M.; Patino, F.; Tavera, F.J.; Escudero, R.; Ribera, I.; Perez, M. Kinetics and Hydrodynamics of Silver Ion Flotation. J. Mex. Chem. Soc. 2012, 53, 15–22. [Google Scholar]
- Puigdomenech, I. MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms); Royal Institute of Technology: Stockholm, Sweden, 2010. [Google Scholar]
- Crawford, R.J.; Harding, I.H.; Mainwaring, D.E. Adsorption and Coprecipitation of Single Heavy Metal Ions onto the Hydrated Oxides of Iron and Chromium. Langmuir 1993, 9, 3050–3056. [Google Scholar] [CrossRef]
- Parks, G.A. The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems. Chem. Rev. 1965, 65, 177–198. [Google Scholar] [CrossRef]
- Drzymała, J.; Lekki, J.; Szczypa, J. Zerowy ładunek powierzchniowy tlenków i wodorotlenków metali (in Polish). In Prace Naukowe Instytutu Chemii Nieorganicznej i Metalurgii Pierwiastków Rzadkich Politechniki Wrocławkiej (40). Studia i Materiały (16); Wydawnictwo Politechniki Wrocławskiej: Wrocław, Poland, 1978. [Google Scholar]
- Walkowiak, W. Mechanism of Selective Ion Flotation. 1. Selective Flotation of Transition Metal Cations. Sep. Sci. Technol. 1991, 26, 559–568. [Google Scholar] [CrossRef]
- Charewicz, W.A.; Holowiecka, B.A.; Walkowiak, W. Selective flotation of zinc(II) and silver(I) ions from dilute aqueous solutions. Sep. Sci. Technol. 1999, 34, 2447–2460. [Google Scholar] [CrossRef]
- Atkins, P. Podstawy Chemii Fizycznej; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2002. (In Polish) [Google Scholar]
- Jensen, W.B. The quantification of electronegativity: Some precursors. J. Chem. Educ. 2012, 89, 94–96. [Google Scholar] [CrossRef]
- Rubin, A.J.; Johnson, J.D.; Lamb, J.C. Comparison of variables in ion and precipitate flotation. Ind. Eng. Chem. Process Des. Dev. 1966, 5, 368–375. [Google Scholar] [CrossRef]
- Doyle, F.M. Ion flotation—Its potential for hydrometallurgical operations. Int. J. Miner. Process. 2003, 72, 387–399. [Google Scholar] [CrossRef]
- Hinojosa-Reyes, M.; Rodríguez-González, V.; Arriaga, S. Enhancing ethylbenzene vapors degradation in a hybrid system based on photocatalytic oxidation UV/TiO 2-In and a biofiltration process. J. Hazard. Mater. 2012, 209–210, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Rybarczyk, P. Równolegle Przebiegające Procesy Separacji Pianowej Jonów Al(III), Cu (II) i Zn(II) z Roztworów Ich Mieszanin. Ph.D. Thesis, Gdansk University of Technology, Gdańsk, Poland, 2015. [Google Scholar]
- Grieves, R. Foam Separations for Industrial Wastes: Process Selection on JSTOR. J. Water Pollut. Control Fed. 1970, 42, 336–344. [Google Scholar]
- Bolisetty, S.; Peydayesh, M.; Mezzenga, R. Sustainable technologies for water purification from heavy metals: Review and analysis. Chem. Soc. Rev. 2019, 48, 463–487. [Google Scholar] [CrossRef] [PubMed]
Method | Example | Conditions or Metal Concentration Range (mg dm−3) | Metal Removal Efficiency, % | Advantages | Disadvantages | References |
---|---|---|---|---|---|---|
Precipitation | Hydroxide precipitation | 10–103 and >103 | >90 | Low cost, ease of operation | High volumes of sludge, cost of sludge processing | [4] |
Coagulation and flocculation | Coagulation using aluminum sulfate | pH ranges: 5.5–7.5 and 10.5–11.5; removal of suspended solids | >95 | Short sedimentation time, stability of agglomerates | High consumption of chemicals, cost of sludge processing | [21] |
Ion exchange | Ion exchange zeolites | <103 | >90 | Selective removal of metal ions | High investment costs, need of solution pre-treatment | [5] |
Membrane separation | Reverse osmosis | Removal of organic and inorganic compounds | >97 | High process efficiency, durability of equipment | Relatively high cost | [22] |
Adsorption | Activated carbon | <103 | >70 | Possibility of adsorbent regeneration | High cost | [1] |
Electrochemical processes | Electrochemical precipitation | 10–103 | >95 | Low consumption of chemicals, short process time | High costs | [23] |
Flotation techniques | Ion flotation | 10–103 | >95 | Low costs, process selectivity | Consumption of surface-active substance | [3] |
System | Species | Literature IEP | Experimental IEP |
---|---|---|---|
Metal hydroxides | Al(OH)3 | 8.1–8.9 [55] | 8.2 ± 0.2 |
Cu(OH)2 | 9.4–10.0 [55,56] | 9.8 ± 0.2 | |
Zn(OH)2 | 9–9.5 [55,56] | 9.5 ± 0.2 | |
Aggregates containing mixture of metals | Al(III) + Cu(II) + Zn(II) | - | 9.8 ± 0.2 |
Metal | c0(Al) = c0(Cu) = c0(Zn) = 0.15 mmol dm−3 cSDS = 0.125 mmol dm−3 | c0(Al) = c0(Cu) = c0(Zn) = 2 mmol dm−3 cSDS = 0.187 mmol dm−3 | ||||
---|---|---|---|---|---|---|
pH | k, min−1 | R2 | pH | k, min−1 | R2 | |
Al(III) | 4.8 | 0.523 | 0.973 | 4.5 | 0.380 | 0.977 |
6.1 | 0.829 | 0.971 | 5.5 | 0.621 | 0.986 | |
7.2 | 1.208 | 0.980 | 6.9 | 0.802 | 0.985 | |
8.0 | 1.580 | 0.968 | 8.7 | 1.176 | 0.980 | |
9.6 | 0.904 | 0.960 | 10.5 | 0.510 | 0.983 | |
Cu(II) | 6.1 | 0.617 | 0.975 | 5.5 | 0.468 | 0.992 |
7.2 | 1.340 | 0.965 | 6.9 | 0.663 | 0.986 | |
8.0 | 1.527 | 0.983 | 7.8 | 0.889 | 0.975 | |
9.0 | 1.467 | 0.977 | 8.7 | 1.123 | 0.990 | |
11.0 | 0.825 | 0.993 | 10.5 | 0.549 | 0.995 | |
Zn(II) | 6.1 | 0.475 | 0.986 | 6.9 | 0.592 | 0.990 |
7.2 | 1.154 | 0.994 | 7.3 | 0.689 | 0.996 | |
8.0 | 1.389 | 0.996 | 7.8 | 0.839 | 0.984 | |
10.2 | 1.043 | 0.993 | 8.7 | 1.161 | 0.980 | |
11.0 | 0.783 | 0.989 | 10.5 | 0.521 | 0.997 |
c0, mmol dm−3 | pH | CSDS, mmol dm−3 | RAl | RCu | RZn |
---|---|---|---|---|---|
0.15 | 8.0 | 0.022 | 0.441 | 0.638 | 0.421 |
0.044 | 0.810 | 0.730 | 0.653 | ||
0.075 | 0.950 | 0.920 | 0.897 | ||
0.094 | 0.957 | 0.940 | 0.920 | ||
0.125 | 0.965 | 0.970 | 0.980 | ||
0.250 | 0.966 | 0.971 | 0.975 | ||
0.484 | 0.963 | 0.960 | 0.956 | ||
0.625 | 0.956 | 0.950 | 0.953 | ||
2 | 8.5 | 0.014 | 0.231 | 0.199 | 0.214 |
0.035 | 0.498 | 0.456 | 0.477 | ||
0.070 | 0.832 | 0.812 | 0.833 | ||
0.125 | 0.929 | 0.932 | 0.922 | ||
0.187 | 0.978 | 0.980 | 0.979 | ||
0.250 | 0.979 | 0.980 | 0.978 | ||
0.347 | 0.971 | 0.977 | 0.978 | ||
0.693 | 0.960 | 0.960 | 0.959 |
Metal | c0(Al) = c0(Cu) = c0(Zn) = 0.15 mmol dm−3 pH = 8.0 | c0(Al) = c0(Cu) = c0(Zn) = 2 mmol dm−3 pH = 8.7 | ||||
---|---|---|---|---|---|---|
cSDS, mmol dm−3 | k, min−1 | R2 | cSDS, mmol dm−3 | k, min−1 | R2 | |
Al(III) | 0.125 | 1.580 | 0.968 | 0.187 | 1.176 | 0.980 |
0.220 | 0.867 | 0.990 | 0.347 | 0.589 | 0.991 | |
0.355 | 0.216 | 0.969 | 0.485 | 0.505 | 0.996 | |
0.625 | 0.045 | 0.984 | 0.625 | 0.345 | 0.973 | |
0.815 | 0.030 | 0.988 | 0.874 | 0.244 | 0.976 | |
Cu(II) | 0.125 | 1.527 | 0.983 | 0.187 | 1.123 | 0.990 |
0.220 | 0.964 | 0.992 | 0.347 | 0.607 | 0.991 | |
0.355 | 0.217 | 0.981 | 0.485 | 0.490 | 0.996 | |
0.625 | 0.057 | 0.994 | 0.625 | 0.307 | 0.987 | |
0.815 | 0.035 | 0.989 | 0.874 | 0.252 | 0.997 | |
Zn(II) | 0.125 | 1.389 | 0.996 | 0.187 | 1.161 | 0.980 |
0.220 | 0.952 | 0.993 | 0.347 | 0.597 | 0.992 | |
0.355 | 0.242 | 0.984 | 0.485 | 0.513 | 0.997 | |
0.625 | 0.060 | 0.994 | 0.625 | 0.320 | 0.995 | |
0.815 | 0.037 | 0.987 | 0.874 | 0.254 | 0.998 |
c0, mmol dm−3 | cSDS, mmol dm−3 | pH | uG, mm s−1 | RAl | RCu | RZn | Vc, cm3 |
---|---|---|---|---|---|---|---|
0.15 | 1.186 | 3.0 | 0.56 | 0.84 | 0.71 | 0.71 | 70 |
0.79 | 0.95 | 0.89 | 0.90 | 105 | |||
1.51 | 0.96 | 0.95 | 0.96 | 240 | |||
2.40 | 0.97 | 0.96 | 0.98 | 315 | |||
0.15 | 0.125 | 8.0 | 0.13 | 0.94 | 0.93 | 0.92 | 7 |
0.72 | 0.97 | 0.97 | 0.95 | 13 | |||
1.51 | 0.98 | 0.98 | 0.97 | 20 | |||
3.24 | 0.96 | 0.96 | 0.93 | 45 | |||
2 | 0.187 | 8.7 | 0.23 | 0.96 | 0.99 | 0.99 | 10 |
1.12 | 0.97 | 0.99 | 0.99 | 15 | |||
1.51 | 0.97 | 0.98 | 0.97 | 27 | |||
2.86 | 0.97 | 0.99 | 0.99 | 40 |
Metal | c0(Al) = c0(Cu) = c0(Zn) = 0.15 mmol dm−3 | c0(Al) = c0(Cu) = c0(Zn) = 2 mmol dm−3 | |||||||
---|---|---|---|---|---|---|---|---|---|
pH = 3.0 cSDS = 1.186 mmol dm−3 | pH = 8.0 cSDS = 0.125 mmol dm−3 | pH = 8.7 cSDS = 0.187 mmol dm−3 | |||||||
uG, mm s−1 | k, min−1 | R2 | uG, mm s−1 | k, min−1 | R2 | uG, mm s−1 | k, min−1 | R2 | |
Al(III) | 0.56 | 0.029 | 0.981 | 0.13 | 0.214 | 0.995 | 0.23 | 0.276 | 0.981 |
0.79 | 0.033 | 0.996 | 0.72 | 0.554 | 0.992 | 1.12 | 0.880 | 0.980 | |
1.51 | 0.069 | 0.976 | 1.51 | 1.580 | 0.968 | 1.51 | 1.176 | 0.985 | |
2.40 | 0.087 | 0.964 | 3.24 | 2.621 | 0.995 | 2.86 | 1.903 | 0.988 | |
Cu(II) | 0.56 | 0.030 | 0.976 | 0.13 | 0.205 | 0.981 | 0.23 | 0.262 | 0.984 |
0.79 | 0.034 | 0.991 | 0.72 | 0.600 | 0.987 | 1.12 | 0.855 | 0.981 | |
1.51 | 0.069 | 0.978 | 1.51 | 1.527 | 0.983 | 1.51 | 1.123 | 0.990 | |
2.40 | 0.088 | 0.986 | 3.24 | 2.547 | 0.977 | 2.86 | 1.994 | 0.958 | |
Zn(II) | 0.56 | 0.030 | 0.975 | 0.13 | 0.227 | 0.985 | 0.23 | 0.257 | 0.996 |
0.79 | 0.041 | 0.977 | 0.72 | 0.636 | 0.974 | 1.12 | 0.861 | 0.985 | |
1.51 | 0.070 | 0.951 | 1.51 | 1.389 | 0.996 | 1.51 | 1.161 | 0.980 | |
2.40 | 0.091 | 0.971 | 3.24 | 2.614 | 0.984 | 2.86 | 2.207 | 0.970 |
Method | Average Cost, € m−3 | Average Energy Consumption, kWh m−3 |
---|---|---|
Reverse osmosis | 0.22 | 2.1 |
Nanofiltration | 0.18 | 0.5 |
Adsorption | 0.07 | 0.1 |
Ion exchange | 0.10 | 0.1 |
Electrodialysis | 0.20 | 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybarczyk, P.; Kawalec-Pietrenko, B. Simultaneous Removal of Al, Cu and Zn Ions from Aqueous Solutions Using Ion and Precipitate Flotation Methods. Processes 2021, 9, 301. https://doi.org/10.3390/pr9020301
Rybarczyk P, Kawalec-Pietrenko B. Simultaneous Removal of Al, Cu and Zn Ions from Aqueous Solutions Using Ion and Precipitate Flotation Methods. Processes. 2021; 9(2):301. https://doi.org/10.3390/pr9020301
Chicago/Turabian StyleRybarczyk, Piotr, and Bożenna Kawalec-Pietrenko. 2021. "Simultaneous Removal of Al, Cu and Zn Ions from Aqueous Solutions Using Ion and Precipitate Flotation Methods" Processes 9, no. 2: 301. https://doi.org/10.3390/pr9020301
APA StyleRybarczyk, P., & Kawalec-Pietrenko, B. (2021). Simultaneous Removal of Al, Cu and Zn Ions from Aqueous Solutions Using Ion and Precipitate Flotation Methods. Processes, 9(2), 301. https://doi.org/10.3390/pr9020301