Machine Learning-Based Prediction of Selected Parameters of Commercial Biomass Pellets Using Line Scan Near Infrared-Hyperspectral Image
Abstract
:1. Introduction
2. Materials and Methods
2.1. Investigated Parameters
2.2. Sample
2.3. NIR Hyperspectral Image Measurement
2.4. Reference Methods
2.5. Model Development and Validation
2.6. Visualisation of FR, VM, FC, and A in the Distribution Map
3. Results and Discussion
3.1. NIR Spectra
3.2. Reference Value
3.3. Result of Model Development
3.4. Result Visualisation of FR, VM, FC, and A in the Distribution Map
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Renewable Energy Agency. Renewable Energy Outlook: Thailand; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2017; ISBN 978-92-9260-035-8. [Google Scholar]
- Renewable Energy Industry Club. The Direction of Energy. 2020. Available online: https://www.re-fti.org/Direction-energy-2563/ (accessed on 17 May 2020).
- Olaoye, J.O. Biomass as Sustainable Sources of Renewable Energy. 2014. Available online: https://www.researchgate.net/publication/298353780 (accessed on 17 May 2020).
- Yokoyama, S. Guidelines and Use Biomass for the Production; Support Program for Building of Asia Alliances for Agriculture and Environmental; Ministry of Agriculture, The Japan Institute of Energy: Tokyo, Japan, 2008; pp. 1–270.
- Biomass Resources. Available online: https://www.energy.gov/eere/bioenergy/biomass-resources (accessed on 10 January 2021).
- National Geographic Asia. Renewable Energy. Available online: https://ngthai.com/science/26556/renewable-energy/. (accessed on 17 May 2020).
- Ministry of Science and Technology. Wood Pellets. Available online: https://www.mhesi.go.th/knowledge/wood-pellets. (accessed on 17 May 2020).
- Department of Alternative Energy Development and Efficiency. Study Project of Biomass Pellet Standard for Development as a Biomass Fuel in the Future; Final Report; Faculty of Engineering and Industrial Technology Silpakorn University: Nakhon Pathom, Thailand, 2012; pp. 1–272. [Google Scholar]
- iEnergyGuru. Properties of Biomass Sources. Available online: https://ienergyguru.com/properties-of-biomass-sources/ (accessed on 17 May 2020).
- Garcia, R.; Pizarro, C.; Lavin, A.G. Spanish biofuels heating value estimation. Part I Ultimate analysis data. J. Fuel 2014, 117, 1130–1138. [Google Scholar] [CrossRef]
- Sudarmanta, B. Dual fuel engine performance using biodiesel and syn-gas from rice husk downdraft gasification for power generation. Semin. Int. Biomass 2015. [Google Scholar] [CrossRef]
- Sethi, P.; Mohapatro, R.N.; Mohanty, R.S.; Seet, S.K.; Nagarajan, R.; Roy, G.G. Study on spontaneous combustion of boiler grade coal and optimization of consumption at RinI. IOP Conf. Ser. Mater. Sci. Eng. 2018, 455, 12–86. [Google Scholar] [CrossRef]
- Feng, X.; Yu, C.; Shu, Z.; Liu, X.; Yan, W.; Zheng, Q.; Sheng, K.; He, Y. Rapid and nondestructive measurement of biofuel pellet quality indices based on two-dimensional near infrared spectroscopic imaging. J. Fuel 2018, 228, 197–205. [Google Scholar] [CrossRef]
- Posom, J.; Saechua, W.; Sirisomboon, P. Evaluation of pyrolysis characteristics of milled bamboo using near-infrared spectroscopy. Renew. Energy 2017, 103, 653–665. [Google Scholar] [CrossRef]
- Xue, J.; Yang, Z.; Han, L.; Liu, Y.; Liu, Y.; Zhou, C. On-line measurement of proximates and lignocellulose components of corn stover using NIRS. J. Applied. Energy 2015, 137, 18–25. [Google Scholar] [CrossRef]
- Fagan, C.C.; Everard, C.D.; Mcdonnell, K.P. Prediction of moisture, calorific value, ash and carbon content of two dedicated bioenergy crops using near-infrared spectroscopy. Bioresour. Technol. 2011, 102, 5200–5206. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, G.D.; Everard, C.D.; Mcdonnell, K.P. Prediction of biomass pellet quality indices using near infrared spectroscopy. J. Energy 2015, 80, 582–588. [Google Scholar] [CrossRef]
- Pitak, L.; Sirisomboon, P.; Saengprachatanarug, K.; Wongpichet, S.; Posom, J. Rapid elemental composition measurement of commercial pellets using line-scan hyperspectral imaging analysis. Energy 2021, 220, 119698. [Google Scholar] [CrossRef]
- Shaw, R.A.; Kotowich, S.; Mantsch, H.H.; Leroux, M. Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy. Clin. Biochem. 1996, 29, 11–19. [Google Scholar] [CrossRef]
- Gillespie, G.D.; Gowen, A.A.; Finnan, J.M.; Carroll, J.P.; Farrelly, D.J.; Mcdonnell, K.P. Near infrared hyperspectral imaging for the prediction of gaseous and particulate matter emissions from pine wood pellets. J. Biosyst. Eng. 2019, 179, 94–105. [Google Scholar] [CrossRef]
- Gillespie, G.D.; Farrelly, D.J.; Everard, C.D.; Mcdonnell, K.P. The use of near infrared hyperspectral imaging for the prediction of processing parameters associated with the pelleting of biomass feedstocks. J. Fuel Process. Technol. 2016, 152, 343–349. [Google Scholar] [CrossRef]
- Geoffrey, P.L.; Nam, S.Y.; Stanislav, Y.E. Optical wavelength selection for improved spectroscopic photoacoustic imaging. Photoacoustics 2013, 1, 36–42. [Google Scholar]
- Posom, J.; Klaprachan, J.; Rattanasopa, K.; Sirisomboon, P.; Saengprachatanarug, K.; Wongpichet, S. Predicting Marian Plum Fruit Quality without Environmental Condition Impact by Handheld Visible–Near-Infrared Spectroscopy. J. ACS Omega 2020, 5, 27909–27921. [Google Scholar] [CrossRef] [PubMed]
- Su, W.H.; Sun, D.W. Comparative assessment of feature-wavelength eligibility for measurement of water binding capacity and specific gravity of tuber using diverse spectral indices stemmed from hyperspectral images. Comput. J. Electron. Agric. 2016, 130, 69–82. [Google Scholar] [CrossRef]
- Su, W.H. Advanced Machine Learning in Point Spectroscopy, RGB- and Hyperspectral-Imaging for Automatic Discriminations of Crops and Weeds: A Review. Smart Cities 2020, 3, 39. [Google Scholar] [CrossRef]
- Chadwick, D.T.; Mcdonnell, K.P.; Brennan, L.P.; Fagan, C.C.; Everard, C.D. Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review. J. Renew. Sustain. Energy Rev. 2014, 30, 672–681. [Google Scholar] [CrossRef]
- Dardenne, P. Some considerations about NIR spectroscopy. Closing speech at NIR-2009. NIR News 21 2010, 8–14. [Google Scholar] [CrossRef]
- Liu, D.; Sun, D.W.; Zeng, X.A. Recent advances in wavelength selection Techniques for hyperspectral image processing in the food industry. J. Food Bioprocess Technol. 2014, 7, 307–323. [Google Scholar] [CrossRef]
- Patel, M. Principal Component Analysis (PCA): An Unsupervised Learning. 2016. Available online: https://rpubs.com/maulikpatel/231900 (accessed on 17 May 2020).
- Araujo, M.C.U.; Saldanha, T.C.B.; Galvão, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometr. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Fei, L.; Yong, H. Application of successive projections algorithm for variable selection to determine organic acids of plum vinegar. J. Food Chem. 2009, 115, 1430–1436. [Google Scholar]
- Romìa, M.B.; Bernàrdez, M.A. Infrared Spectroscopy for Food Quality Analysis and Control; Academic Press: San Francisco, CA, USA, 2009; pp. 74–75. [Google Scholar]
- Ghasemi, J.; Niazi, A.; Leardi, R. Genetic-algorithm-based wavelength selection in multicomponent spectrophotometric determination by PLS: Application on copper and zinc mixture. Talanta 2003, 59, 311–317. [Google Scholar] [CrossRef]
- Ferraro, M.C.; Castellano, P.M.; Kaufman, T.S. A spectrophotometric-partial least squares (PLS-1) method for the simultaneous determination of furosemide and amiloride hydrochloride in pharmaceutical formulations. J. Pharm. Biomed. Anal. 2001, 26, 443–451. [Google Scholar] [CrossRef]
- Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Zornoza, R.; Guerrero, C.; Mataix-Solera, J.; Scow, K.M.; Arcenegui, V.; Mataix-Beneyto, J. Near infrared spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean soils, Soil Biol. J. Biochem. 2008, 40, 1923–1930. [Google Scholar]
- García Martín, J.F. Optical path length and wavelength selection using Vis/NIR spectroscopy for olive oil’s free acidity determination. Int. J. Food Sci. Technol. 2015, 50, 1461–1467. [Google Scholar] [CrossRef] [Green Version]
- Osborne, B.G.; Fearn, T. Near Infrared Spectroscopy in Food Analysis; Longman Science & Technical: London, UK, 1986; pp. 36–40. [Google Scholar]
- Yang, Z.; Li, K.; Zhang, M.; Xin, D.; Zhang, J. Rapid determination of chemical composition and classification of bamboo fractions using visible near infrared spectroscopy coupled with multivariate data analysis. J. Biotechnol. Biofuels 2016, 9, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posom, J.; Sirisomboon, P. Evaluation of the higher heating value, volatile matter, fixed carbon and ash content of ground bamboo using near infrared spectroscopy. J. Near Infrared Spectrosc. 2017, 25, 301–310. [Google Scholar] [CrossRef]
- Galvao, R.K.; Araujo, M.C.; Jose, G.E.; Pontes, M.J.; Silva, E.C.; Saldanha, T.C. A method for calibration and validation subset partitioning. Talanta 2005, 67, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Posom, J.; Sirisomboon, P. Evaluation of lower heating value and elemental composition of bamboo using near infrared spectroscopy. J. Energy 2017, 121, 147–158. [Google Scholar] [CrossRef]
- Sirisomboon, P.; Funke, A.; Posom, J. Improvement of proximate data and calorific value assessment of bamboo through near infrared wood chips acquisition. J. Renew. Energy 2020, 147, 1921–1931. [Google Scholar] [CrossRef]
Parameters | N | Max | Min | Mean | Range | SD |
---|---|---|---|---|---|---|
FR, db% | 140 | 0.68 | 0.30 | 0.51 | 0.38 | 0.07 |
VM, db% | 140 | 66.77 | 39.20 | 56.71 | 27.57 | 5.17 |
FC, db% | 140 | 35.23 | 12.83 | 28.89 | 22.40 | 4.17 |
A, db% | 140 | 41.57 | 1.40 | 7.42 | 40.17 | 8.01 |
Parameter | SEL | R2max |
---|---|---|
FR, % | 0.01 | 0.98 |
VM, % | 0.65 | 0.99 |
FC, % | 0.33 | 0.99 |
Ash, % | 1.02 | 0.98 |
Parameters | N | Method | Wavelength | Pretreatment | lv | R2cal | R2val | SEC | SECV |
---|---|---|---|---|---|---|---|---|---|
FR, % | 140 | Full-PLS | 256 | raw | 8 | 0.71 | 0.63 | 0.04 | 0.04 |
140 | iSPA-PLS | 100 | D2 | 9 | 0.78 | 0.72 | 0.03 | 0.04 | |
140 | iGA-PLS | 25 | D2 | 10 | 0.72 | 0.66 | 0.04 | 0.04 | |
VM, % | 140 | Full-PLS | 256 | D1 | 8 | 0.89 | 0.86 | 1.74 | 1.95 |
140 | iSPA-PLS | 100 | SNV | 8 | 0.90 | 0.88 | 1.67 | 1.85 | |
140 | iGA-PLS | 100 | raw | 9 | 0.89 | 0.86 | 1.75 | 1.96 | |
FC, % | 140 | Full-PLS | 256 | SNV | 9 | 0.88 | 0.85 | 1.59 | 1.82 |
140 | iSPA-PLS | 100 | SNV | 8 | 0.85 | 0.81 | 1.78 | 2.01 | |
140 | iGA-PLS | 50 | SNV | 10 | 0.83 | 0.77 | 1.91 | 2.23 | |
Ash, % | 140 | Full-PLS | 256 | SNV | 9 | 0.93 | 0.91 | 2.18 | 2.48 |
140 | iSPA-PLS | 100 | SNV | 7 | 0.92 | 0.91 | 2.36 | 2.62 | |
140 | iGA-PLS | 50 | D2 | 9 | 0.90 | 0.87 | 2.69 | 3.02 |
Parameters | Calibration Set | Validation Set | |||||||
---|---|---|---|---|---|---|---|---|---|
PLS Factor | N | R2 | SEC | n | r2 | SEP | RPD | Bias | |
FR, % | 9 | 106 | 0.76 | 0.04 | 34 | 0.75 | 0.03 | 1.97 | 0.01 |
VM, % | 8 | 106 | 0.91 | 1.62 | 34 | 0.82 | 2.10 | 2.46 | 0.10 |
FC, % | 8 | 106 | 0.86 | 1.82 | 34 | 0.81 | 1.80 | 2.32 | −0.39 |
Ash, % | 7 | 106 | 0.93 | 2.27 | 34 | 0.88 | 2.53 | 3.17 | −0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitak, L.; Laloon, K.; Wongpichet, S.; Sirisomboon, P.; Posom, J. Machine Learning-Based Prediction of Selected Parameters of Commercial Biomass Pellets Using Line Scan Near Infrared-Hyperspectral Image. Processes 2021, 9, 316. https://doi.org/10.3390/pr9020316
Pitak L, Laloon K, Wongpichet S, Sirisomboon P, Posom J. Machine Learning-Based Prediction of Selected Parameters of Commercial Biomass Pellets Using Line Scan Near Infrared-Hyperspectral Image. Processes. 2021; 9(2):316. https://doi.org/10.3390/pr9020316
Chicago/Turabian StylePitak, Lakkana, Kittipong Laloon, Seree Wongpichet, Panmanas Sirisomboon, and Jetsada Posom. 2021. "Machine Learning-Based Prediction of Selected Parameters of Commercial Biomass Pellets Using Line Scan Near Infrared-Hyperspectral Image" Processes 9, no. 2: 316. https://doi.org/10.3390/pr9020316
APA StylePitak, L., Laloon, K., Wongpichet, S., Sirisomboon, P., & Posom, J. (2021). Machine Learning-Based Prediction of Selected Parameters of Commercial Biomass Pellets Using Line Scan Near Infrared-Hyperspectral Image. Processes, 9(2), 316. https://doi.org/10.3390/pr9020316