The Effectiveness of Different Household Storage Strategies and Plant-Based Preservatives for Dehulled and Sun-Dried Breadfruit Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Storage Strategies
2.2. Sourcing, Heat Treatments and Drying of Breadfruit Seeds
2.3. Preparation of Botanical Treatments
2.4. Experimental Test
2.5. Weight Loss and Moisture Content
2.6. Enumeration of Insects
2.7. Total Mold Count
2.8. Product Quality
2.9. Determination of Minerals
2.10. Data Analysis
3. Mathematical Modeling
3.1. Modeling of Interstitial Gaseous Exchange
3.2. Intergranular Temperature and Relative Humidity
4. Results and Discussions
4.1. Temperature, Relative Humidity and Moisture Distribution
4.2. Insect Enumeration
4.3. Microbial Analysis
4.4. Proximate Analysis and Mineral Composition
4.5. Analysis of Gaseous Exchange
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Onyekwelu, J.C.; Fayose, O.J. Effect of storage methods on germination and proximate composition of Treculia africana seeds. In Proceedings of the Conference on International Agricultural Research for Development, University of Kassel-I-Witzen-hausen and University of Gottigen, Tropentag, October 2007. [Google Scholar]
- Osuji, J.O.; Owei, S.D. Mitotic index studies on Treculia africana Decne in Nigeria. Aust. J. Agric. Eng. 2010, 1, 25–28. [Google Scholar]
- Osukoya, O.; Nwoye-Ossy, M.; Olayide, I.; Ojo, O.; Adewale, O.; Kuku, A. Antioxidant activities of peptide hydrolysates obtained from the seeds of Treculia africana Decne (African breadfruit). Prep. Biochem. Biotechnol. 2020, 50, 504–510. [Google Scholar] [CrossRef]
- Adewole, E.; Ogunmodede, O.T.; Adeniran, O.A.; Talabi, J.; Lajide, L. Rheological properties and fatty acid of seedless bread fruit (Artocarpus altilis). Arch. Appl. Sci. Res. 2011, 3, 80–86. [Google Scholar]
- Okafor, V.C.; Chinweuba, D.C.; Ejesu, P.K.; Nwakuba, R.N. Some Selected Physical Properties of Parboiled Breadfruit Seeds (Treculia africana). Greener J. Sci. Eng. Technol. Res. 2016, 6, 19–26. [Google Scholar] [CrossRef]
- Adindu, M.N.; Williams, J.O. Effect of storage on dehydrated African breadfruit seeds (Treculia africana Decne). Plant Foods Hum. Nutr. 2004, 58, 1–8. [Google Scholar] [CrossRef]
- Nwabueze, T. Kernel extraction and machine efficiency in dehulling parboiled african breadfruit (Treculia africanadecne) whole seeds. J. Food Qual. 2009, 32, 669–683. [Google Scholar] [CrossRef]
- Ugwu, C.S.; Iwuchukwu, J.C. Processing and preservation of African bread fruit (Treculia africana) by women in Enugu North agricultural zone, Enugu State, Nigeria. Afr. J. Agric. Res. 2013, 8, 984–994. [Google Scholar] [CrossRef]
- Ijeh, I.I.; Ejike, E.C.; Nkwonta, O.M.; Njoku, B.C. Effect of Traditional Processing Techniques on the Nutri-tional and Phytochemical Composition of African Bread-Fruit (Treculia africana) Seeds. J. Appl. Sci. Environ. Manag. 2010, 14, 169–173. [Google Scholar]
- Mugo, N.C.; Nderi, M.J.; Kimondo, M. Effect of Diatomaceous Earths on Mortality, Progeny and Weight Loss Caused by Three Primary Pests of Maize and Wheat in Kenya. Int. J. Sci. Technol. Soc. 2015, 3, 76. [Google Scholar] [CrossRef]
- Amadou, L.; Baoua, I.B.; Baributsa, D.; Williams, S.B.; Murdock, L.L. Triple bag hermetic technology for control-ling a bruchid (Spermophagus sp.) (Coleoptera: Chrysomelidae) in stored Hibiscus sabdariffa grain. J. Stored Prod. Res. 2016, 69, 22–25. [Google Scholar] [CrossRef] [Green Version]
- Nwaubani, S.I.; Otitodun, G.O.; Ajao, S.K.; Opit, G.P.; Ala, A.A.; Omobowale, M.O.; Ogwumike, J.C.; Abel, G.I.; Ogundare, M.O.; Braimah, J.A.; et al. Assessing efficacies of in-sect pest management methods for stored bagged maize preservation in storehouses located in Nigerian markets. J. Stored Prod. Res. 2020, 86, 101566. [Google Scholar] [CrossRef]
- Ramzan, M. Efficacy of edible oils against pulse beetle, callosobruchus maculatus. J. Insect Sci. 1994, 7, 37–39. [Google Scholar]
- Uddin, R.O.; Abdulazeez, R.W. Comparative efficacy of neem (Azadirachta indica), False sesame (Ceratotheca sesamoides) Endl. And the Physic nut (Jatropha curcas) in the protection of stored cowpea (Vigna unguiculata) L. Walp against the seed beetle Callosobruchus maculatus (F.). Ethiop. J. Environ. Stud. Manag. 2013, 6, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Kalsa, K.K.; Subramanyam, B.; Demissie, G.; Mahroof, R.; Gabbiye, N. Efficacy of filter cake against Sitophilus granarius L. and Rhyzopertha Dominica F. In stored wheat. In Proceedings of the 1st All Africa Post-harvest Congress and Exhibition, Nairobi, Kenya, 29 March 2017; pp. 118–120. [Google Scholar]
- Adarkwah, C.; Obeng-Ofori, D.; Ulrichs, C.; Schöller, M. Insecticidal efficacy of botanical food by-products against selected stored-grain beetles by the combined action with modified diatomaceous earth. J. Plant Dis. Prot. 2016, 124, 255–267. [Google Scholar] [CrossRef]
- Tadesse, T.M.; Subramanyam, B. Efficacy of filter cake and Triplex powders from Ethiopia applied to concrete arenas against Sitophilus zeamais. J. Stored Prod. Res. 2018, 76, 140–150. [Google Scholar] [CrossRef]
- Kalsa, K.K.; Subramanyam, B.; Demissie, G.; Mahroof, R.; Worku, A.; Gabbiye, N. Evaluation of postharvest preservation strategies for stored wheat seed in Ethiopia. J. Stored Prod. Res. 2019, 81, 53–61. [Google Scholar] [CrossRef]
- Korunić, Z.; Liška, A.; Lucić, P.; Hamel, D.; Rozman, V. Evaluation of diatomaceous earth formulations enhanced with natural products against stored product insects. J. Stored Prod. Res. 2020, 86, 101565. [Google Scholar] [CrossRef]
- Tefera, T.; Mugo, S.; Likhayo, P. Effects of insect population density and storage time on grain damage and weight loss in the due to the maize weevil Sitophilus zeamais and larger grain borer Prostephanus truncatus. Afr. J. Agric. Res. 2011, 6, 2249–2254. [Google Scholar]
- Crop Production and Global Environmental Issues. In Crop Production and Global Environmental Issues; Springer International Publishing: Cham, Switzerland, 2015; pp. 153–168.
- Ndukwu, M.C.; Manuwa, S.I.; Olukunle, O.J.; Oluwalana, I.B. Mathematical model for direct evaporative space cooling systems. Niger. J. Technol. 2013, 32, 403–409. [Google Scholar]
- Ndukwu, C.; Manuwa, S.; Olukunle, O.; Oluwalana, B. A simple model for evaporative cooling of a storage space in a tropical climate. Sci. J. Agric. Eng. 2013, 3, 27–39. [Google Scholar]
- Igboayaka, E.C.; Ndukwu, M.C.; Ernest, I.C. A Modelling approach for determining the throughput capacity and en-ergy consumption of a cassava tuber shredder. J. Chin. Adv. Mater. Soc. 2018, 6, 801–816. [Google Scholar] [CrossRef]
- Onwude, D.I.; Chen, G.; Eke-Emezie, N.; Kabutey, A.; Khaled, A.Y.; Sturm, B. Recent Advances in Reducing Food Losses in the Supply Chain of Fresh Agricultural Produce. Processes 2020, 8, 1431. [Google Scholar] [CrossRef]
- Onunkwo, G.C.; Egeonu, H.C.; Adikwu, M.U.; Ojile, J.E.; Olowosulu, A.K. Some Physical Properties of Tablet-ted Seed of Garcinia kola (HECKEL). Chem. Pharm. Bull. 2004, 52, 649–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doherty, F.V.; Olaniran, O.O.; Kanife, U.C. Antimicrobial Activities of Aframomum Melegueta (Alligator Pepper). Int. J. Biol. 2010, 2, 126. [Google Scholar] [CrossRef] [Green Version]
- Gbadamosi, I.T.; Moody, J.O.; Lawal, A.M. Phytochemical screening and proximate analysis of eight ethnobotani-cals used as antimalaria remedies in Ibadan, Nigeria. J. Appl. Biosci. 2011, 44, 2967–2971. [Google Scholar]
- Arekemase, M.O.; Aliyu, M.B.; Kayode, R.M.; Ajiboye, A.E.; Ajijolakewu, A.K. Antimicrobial Effects of Garcinia Kola (Bitter Kola) on Some Selected Pathogens from University of Ilorin Teaching Hospital Ilorin, Nigeria. J. Asian Sci. Res. 2012, 2, 159–169. [Google Scholar]
- Ea, M.; Ka, O.; Uk, I. Physico-Chemical and Nutritive Properties of Bitter Kola (Garcinia Kola). J. Nutr. Food Sci. 2013, 3, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Badmos, A.A.; Ahmad-el, I.A.; Annongu, A.A.; Yusuff, A.T.; Kayode, R.M.O.; Salami, K.O.; Ahutu, I.A.; Lawal, A.O. Preservative effects of aqueous and ether extracts of Aframomum melegueta on West African soft cheese. Bang. J. Anim. Sci. 2017, 46, 51–55. [Google Scholar] [CrossRef]
- ISTA. International Rules for seed testing. In International Seed Testing Association (ISTA); Zürichstr. 50; ISTA: Bassersdorf, Switzerland, 2014. [Google Scholar]
- Badifu, G.I.O.; Akuboil, P.I.; Akpapunam, M.A. Chemical, Functional and Organoleptic Evaluation of African-Breadfruit (Treculia a.fricanil Ikne) Kernel Flour for Making Cooki. Tanzan. J. Agric. Sci. 2000, 3, 31–38. [Google Scholar]
- Cowan, S.T. Steel, Microscopic Examination of Micro-organisms. In Microbiological Methods; Collins: Cambridge, UK, 1990. [Google Scholar]
- Chessbrough, M. District Laboratory Practice. In Tropical Countries; Cambridge University Press: Cambridge, UK, 2002; Part 2. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; AOAC: Rockville, MD, USA, 2007. [Google Scholar]
- James, C.S. Analytical Chemistry of Foods. Anal. Chem. Foods 1995, 140–144. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Copper catalyst kjeldahl method (984.13). In Official Methods of Analysis, 15th ed.; AOAC: Rockville, MD, USA, 1990. [Google Scholar]
- Carpenter, C.E.; Hendriide, D.G. Mineral Analysis. In Food Analysis, 3rd ed.; Kluwer Academy, Plenum Publisher: New York, NY, USA, 2003; pp. 191–198. [Google Scholar]
- Ensminger, L.G. The Association of Official Analytical Chemists. Clin. Toxicol. 1976, 9, 471. [Google Scholar] [CrossRef]
- Abalone, R.; Gastón, A.; Bartosik, R.E.; Rodríguez, J.C. Mathematical Modelling of Oxygen and Carbon Diox-ide Composition in the Interstitial Atmosphere of Silo-Bags”. In Proceedings of the International Commission of Agricultural and Biological Engineers, Section V, Conference “Technology and Management to Increase the Efficiency in Sustainable Agricultural Systems”, Rosario, Argentina, 1–4 September 2009. [Google Scholar]
- Gastón, A.; Abalone, R.; Bartosik, R.E.; Rodríguez, J.C. Mathematical modelling of heat and moisture transfer of wheat stored in plastic bags (silo-bags). Biosyst. Eng. 2009, 104, 72–85. [Google Scholar] [CrossRef]
- White, N.D.G.; Sinha, R.N.; Muir, W.E. Intergranular carbon dioxide as an indicator of biological activity associ-ated with the spoilage of stored wheat. Can. Agric. Eng. 1982, 24, 35–42. [Google Scholar]
- Simo-Tagne, M.; Ndukwu, M.C.; Zoulalian, A.; Bennamoun, L.; Kifani-Sahban, F.; Rogaume, Y. Numerical analysis and validation of a natural convection mix-mode solar dryer for drying red chilli under variable conditions. Renew. Energy 2020, 151, 659–673. [Google Scholar] [CrossRef]
- Obi, O.F.; Okechukwu, M.E. Parboiling duration effects on physical properties of African breadfruit seed. Agricultural Engineering International. CIGR J. 2020, 22, 186–193. [Google Scholar]
- Abe, T.; Basunia, M.A. Simulation of temperature and moisture content changes during storage of rough rice in cy-lindrical bins owing to weather variability. J. Agric. Eng. Res. 1996, 65, 223–233. [Google Scholar] [CrossRef]
- Fouda, A.; Melikyan, Z. A simplified model for analysis of heat and mass transfer in a direct evaporative cooler. Appl. Therm. Eng. 2011, 31, 932–936. [Google Scholar] [CrossRef]
- Bartosik, R.; Rodríguez, J.; Cardoso, L. Storage of corn, wheat soybean and sunflower in hermetic plastic bags. In Proceedings of the 2008 International Grain Quality & Technology Congress Proceedings, Chicago, IL, USA, 15–18 July 2008. [Google Scholar]
- Nithya, U.; Chelladurai, V.; Jayas, D.; White, N. Safe storage guidelines for durum wheat. J. Stored Prod. Res. 2011, 47, 328–333. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.T.T.; Baributsa, D.; Huesing, J.E.E.; Williams, S.B.B.; Murdock, L.L.L. PICS bags protect wheat grain, Trit-icum aestivum (L.), against rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae). J. Stored Prod. Res. 2015, 63, 22–30. [Google Scholar] [CrossRef]
- Angelovič, M.; Krištof, K.; Jobbágy, J.; Findura, P.; Križan, M. The effect of conditions and storage time on course of moisture and temperature of maize grains. BIO Web Conf. 2018, 10, 02001. [Google Scholar] [CrossRef]
- Sun, D.-W.; Woods, J. The Moisture Content/Relative Humidity Equilibrium Relationship of Wheat—A Review. Dry. Technol. 1993, 11, 1523–1551. [Google Scholar] [CrossRef]
- Ben, D.C.; Lieu, B.; Liem, R.; Van, P. Effect of hermetic storage in the super bag on seed quality and milled rice quality of different varieties in Bac Lieu. Vietnam Agric. Eng. 2006, 31, 55–56. [Google Scholar] [CrossRef]
- Njoroge, A.; Affognon, H.; Mutungi, C.; Manono, J.; Lamuka, P.; Murdock, L. Triple bag hermetic storage delivers a lethal punch to Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in stored maize. J. Stored Prod. Res. 2014, 58, 12–19. [Google Scholar] [CrossRef]
- Dowell, F.; Dowell, C. Reducing grain storage losses in developing countries. Qual. Assur. Saf. Crop. Foods 2017, 9, 93–100. [Google Scholar] [CrossRef]
- Navarro, S.; Donahaye, J. Innovative environmentally friendly technologies to maintain quality of durable agricultural produce. In Environmentally Friendly Technologies for Agricultural Produce Quality; Yeoshua, S.B., Ed.; CRC Press: Boca Ratón, FL, USA, 2005; pp. 203–226. [Google Scholar]
- Bakker, N.D. All You Need to Know about Rhodotorula. Available online: https://www.yeastinfection.org/all-you-need-to-know-about-rhodotorula/ (accessed on 20 August 2020).
- Paraginski, R.T.; Rockenbach, B.A.; Dos Santos, R.F.; Elias, M.C.; De Oliveira, M. Quality of second-crop corn according to the period between harvest and drying. Rev. Bras. Eng. Agric. Ambient. 2015, 19, 358–363. [Google Scholar] [CrossRef] [Green Version]
- Ubani, O.N.; Williams, J.O.; Okpadokun, J.S.; Akano, D.A.; Ikeorah, J.N. Storage of Melon Seeds in Various Containers. Nigerian Stored Products Research Institute 22nd Annual Report; Technical Report No. 7; NSPRI: Ilorin, Nigeria, 1991; pp. 55–58. [Google Scholar]
- Weinberg, Z.G.; Yan, Y.; Chen, Y.; Finkelman, S.; Ashbell, G.; Navarro, S. The effect of moisture level on high moisture maize (Zea mays L.) under hermetic storage conditions—In vitro studies. J. Stored Prod. Res. 2008, 44, 136–144. [Google Scholar] [CrossRef]
Input Parameters | Values | Source |
---|---|---|
q1 | −4.0540 | [43] |
q2 | 0.0406 | [43] |
q3 | −0.0165 | [43] |
q4 | 0–0001 | [43] |
q5 | 0.2389 | [43] |
ε | 0.49 for 5 min blanching | [45] |
ρb | 632.87 kg/m3 for 5 min blanching | [45] |
ρsp | 1262.38 kg/m3 for 5 min blanching | [45] |
qh | 10.738 J/mg (CO2) | [42] |
qw | 4.09 × 10−5 kg (H2O)/mg (CO2) | [42] |
qo | 0.7272 mg (O2)/kg (dry matter) | [42] |
Sample | 4 Weeks | 12 Weeks |
---|---|---|
SL0 | 0.0 ± 0.0 | 3.3 ± 0.8 |
SLAP100 | 0.0 ± 0.0 | 4.5 ± 0.5 |
SLAP150 | 0.0 ± 0.0 | 3.0 ± 0.4 |
SLBK 100 | 3.2 ± 1.5 | 8.2 ± 2.5 |
SLBK150 | 3.4 ± 1.2 | 7.4 ± 0.9 |
RB0 | 2.1 ± 0.5 | 4.0 ± 1.5 |
RBAP100 | 2.4 ± 1.1 | 5.0 ± 1.5 |
RBAP150 | 5.2 ± 1.5 | 9.4 ± 0.5 |
RBBK100 | 4.4 ± 1.1 | 10.3 ± 3.6 |
RBBK150 | 2.0 ± 0.3 | 6.2 ± 0.4 |
BG0 | 3.0 ± 0.7 | 6.0 ± 0.2 |
BGAP100 | 4.1 ± 1.5 | 6.0 ± 1.5 |
BGAP150 | 2.8 ± 0.6 | 6.4 ± 0.7 |
BGBK100 | 2.0 ± 0.2 | 7.3 ± 1.6 |
BGBK150 | 3.2 ± 0.4 | 9.4 ± 1.8 |
Sample | Mean Mold Count (×103 CFU/mL) | Dominant Mold Specie Detected |
---|---|---|
SL0 | 0.443 ± 0.00312 | Aspergillus niger |
SLAP100 | 0.577 ± 0.00249 | Aspergillus niger |
SLAP150 | 0.26 ± 0.00196 | Aspergillus sp |
SLBK 100 | 0.49 ± 0.00330 | Aspergillus niger |
SLBK150 | 0.33 ± 0.00312 | Aspergillus sp |
RB0 | 0.347 ± 0.00220 | Aspergillus niger |
RBAP100 | 0.703 ± 0.00401 | Rhodotorula sp |
RBAP150 | 0.677 ± 0.00596 | Aspergillus sp |
RBBK100 | 0.833 ± 0.00605 | Aspergillus sp |
RBBK150 | 0.697 ± 0.00420 | Aspergillus sp |
BG0 | 1.093 ± 0.00681 | Aspergillus niger |
BGAP100 | 0.93 ± 0.0040 | Aspergillus sp |
BGAP150 | 0.36 ± 0.00157 | Aspergillus sp |
BGBK100 | 0.283 ± 0.00159 | Aspergillus sp |
BGBK150 | 0.59 ± 0.00467 | Aspergillus sp |
Storage Method | Crude Protein (%) | Crude Fiber (%) | Crude Fat (%) | Ash (%) | Carbohydrates (%) | KcalEV |
---|---|---|---|---|---|---|
Initial values (0 weeks) | 10.72 ± 1.5 | 4.69 ± 1.15 | 6.17 ± 1.02 | 2.21 ± 0.08 | 78.11 ± 1.5 | 342.79 ± 23.3 |
6 weeks | ||||||
SL0 | 7.48 ± 0.15 | 5.20 ± 0.35 | 2.38 ± 0.00 | 2.42 ± 0.10 | 75.40 ± 3.3 | 352.94 ± 18.9 |
SLAP100 | 7.49 ± 0.02 | 5.21 ± 0.45 | 2.39 ± 0.51 | 2.43 ± 0.00 | 75.39 ± 2.5 | 352.95 ± 34.2 |
SLAP150 | 7.49 ± 0.11 | 5.22 ± 0.05 | 2.39 ± 0.45 | 2.43 ± 0.05 | 75.37 ± 4.1 | 352.95 ± 40.3 |
SLBK100 | 2.66 ± 0.05 | 5.15 ± 0.85 | 4.61 ± 0.15 | 1.18 ± 0.01 | 76.19 ± 6.8 | 356.87 ± 42.2 |
SLBK150 | 2.65 ± 0.05 | 5.36 ± 0.63 | 4.6 ± 0.72 | 1.17 ± 0.01 | 76.21 ± 4.5 | 356.84 ± 52.0 |
RB0 | 7.26 ± 0.24 | 5.14 ± 0.44 | 2.32 ± 0.43 | 2.36 ± 0.04 | 74.51 ± 2.5 | 347.96 ± 11.20 |
RBAP100 | 7.24 ± 0.35 | 5.13 ± 0.41 | 2.33 ± 0.11 | 2.35 ± 0.05 | 74.54 ± 3.7 | 348.03 ± 1.80 |
RBAP150 | 7.22 ± 0.05 | 5.12 ± 0.51 | 2.33 ± 0.86 | 2.34 ± 0.06 | 74.56 ± 4.3 | 348.09 ± 11.11 |
RBBK100 | 2.48 ± 0.15 | 5.06 ± 0.53 | 4.55 ± 0.54 | 1.15 ± 0.01 | 74.42 ± 8.5 | 348.49 ± 18.9 |
RBBK150 | 2.47 ± 0.01 | 5.09 ± 0.51 | 4.56 ± 0.51 | 1.16 ± 0.02 | 74.40 ± 6.5 | 348.52 ± 36.7 |
BG0 | 7.20 ± 0.16 | 5.1 ± 0.57 | 2.24 ± 0.36 | 2.3 ± 0.00 | 74.10 ± 5.7 | 345.36 ± 44.4 |
BGAP100 | 7.22 ± 0.22 | 5.11 ± 0.41 | 2.23 ± 0.29 | 2.31 ± 0.10 | 74.10 ± 7.5 | 345.31 ± 51.9 |
BGAP150 | 7.23 ± 0.42 | 5.11 ± 0.81 | 2.22 ± 0.33 | 2.31 ± 0.08 | 74.09 ± 5.5 | 345.26 ± 45.8 |
BGBK100 | 2.42 ± 0.02 | 4.92 ± 0.64 | 4.41 ± 0.22 | 1.13 ± 0.02 | 72.00 ± 3.6 | 337.29 ± 61.8 |
BGBK150 | 2.43 ± 0.02 | 4.92 ± 0.53 | 4.4 ± 0.51 | 1.14 ± 0.02 | 71.99 ± 1.8 | 337.28 ± 21.1 |
12 weeks | ||||||
SL0 | 9.14 ± 0.11 | 5.49 ± 0.27 | 2.27 ± 0.08 | 2.53 ± 0.12 | 76.68 ± 8.5 | 363.71 ± 5.59 |
SLAP100 | 9.15 ± 0.08 | 5.50 ± 0.47 | 2.28 ± 0.04 | 2.53 ± 0.05 | 76.69 ± 4.5 | 363.86 ± 2.51 |
SLAP150 | 9.16 ± 1.01 | 5.5 ± 0.52 | 2.29 ± 0.27 | 2.52 ± 0.03 | 76.69 ± 6.3 | 364.01 ± 6.53 |
SLBK100 | 3.21 ± 0.07 | 5.41 ± 0.35 | 4.27 ± 0.22 | 1.7 ± 0.01 | 78.31 ± 8.8 | 364.45 ± 10.1 |
SLBK150 | 3.2 ± 0.030 | 5.41 ± 0.05 | 4.25 ± 0.31 | 1.71 ± 0.05 | 78.31 ± 6.1 | 364.29 ± 18.24 |
RB0 | 9.03 ± 0.080 | 5.37 ± 0.75 | 2.21 ± 0.44 | 2.3 ± 0.06 | 76.06 ± 7.4 | 360.25 ± 27.7 |
RBAP100 | 9.04 ± 1.12 | 5.38 ± 0.11 | 2.21 ± 0.18 | 2.32 ± 0.01 | 76.05 ± 4.6 | 360.19 ± 8.8 |
RBAP150 | 9.04 ± 1.09 | 5.39 ± 0.64 | 2.2 ± 0.59 | 2.33 ± 0.01 | 76.04 ± 9.2 | 360.12 ± 38.2 |
RBBK100 | 3.15 ± 0.02 | 5.32 ± 0.62 | 4.17 ± 0.15 | 1.05 ± 0.01 | 78.39 ± 4.0 | 363.69 ± 41.2 |
RBBK150 | 3.16 ± 0.25 | 5.31 ± 0.29 | 4.18 ± 0.52 | 1.06 ± 0.03 | 78.38 ± 3.5 | 363.78 ± 19.34 |
BG0 | 7.05 ± 0.15 | 5.3 ± 0.880 | 2.14 ± 0.43 | 2.14 ± 0.10 | 77.62 ± 6.1 | 357.94 ± 10.8 |
BGAP100 | 7.06 ± 0.15 | 5.32 ± 0.12 | 2.13 ± 0.50 | 2.15 ± 0.02 | 77.62 ± 7.3 | 357.90 ± 15.5 |
BGAP150 | 7.06 ± 1.20 | 5.33 ± 0.32 | 2.12 ± 0.59 | 2.16 ± 0.02 | 77.62 ± 5.8 | 357.8 ± 12.35 |
BGBK100 | 2.21 ± 0.00 | 5.23 ± 0.09 | 4.03 ± 0.06 | 1.01 ± 0.03 | 78.60 ± 6.2 | 359.45 ± 28.3 |
BGBK150 | 2.21 ± 0.03 | 5.21 ± 0.86 | 4.02 ± 0.17 | 1.00 ± 0.02 | 78.61 ± 1.5 | 359.46 ± 22.97 |
Storage Method | Na | Mg | Ca | P | K | Fe | Zn |
---|---|---|---|---|---|---|---|
Initial values | 9.32 ± 0.85 | 1.71 ± 0.11 | 1.40 ± 0.40 | 1.13 ± 0.01 | 11.34 ± 2.5 | 1.88 ± 0.22 | 2.03 ± 0.42 |
6 weeks | |||||||
SL0 | 1.01 ± 0.00 | 1.14 ± 0.05 | 1.25 ± 0.13 | 1.38 ± 0.21 | 2.06 ± 0.85 | 0.42 ± 0.10 | 0.83 ± 0.00 |
SLAP100 | 1.02 ± 0.00 | 1.14 ± 0.22 | 1.25 ± 0.10 | 1.38 ± 0.20 | 2.05 ± 0.25 | 0.41 ± 0.00 | 0.82 ± 0.04 |
SLAP150 | 1.02 ± 0.01 | 1.13 ± 0.12 | 1.24 ± 0.13 | 1.37 ± 0.10 | 2.04 ± 0.56 | 0.04 ± 0.01 | 0.81 ± 0.01 |
SLBK100 | 1.93 ± 0.01 | 1.31 ± 0.08 | 1.86 ± 0.08 | 4.17 ± 0.73 | 10.33 ± 3.6 | 2.38 ± 0.09 | 0.53 ± 0.01 |
SLBK150 | 1.92 ± 0.01 | 1.30 ± 0.22 | 1.85 ± 0.20 | 4.15 ± 0.87 | 10.31 ± 2.5 | 2.37 ± 0.05 | 0.52 ± 0.00 |
RB0 | 0.92 ± 0.02 | 1.10 ± 0.05 | 1.20 ± 0.00 | 1.29 ± 0.02 | 2.01 ± 0.08 | 0.40 ± 0.04 | 0.80 ± 0.01 |
RBAP100 | 0.92 ± 0.03 | 1.13 ± 0.03 | 1.21 ± 0.84 | 1.28 ± 0.02 | 2.02 ± 0.50 | 0.41 ± 0.05 | 0.80 ± 0.00 |
RBAP150 | 0.91 ± 0.01 | 1.13 ± 0.15 | 1.22 ± 0.25 | 1.27 ± 0.05 | 2.02 ± 0.15 | 0.42 ± 0.05 | 0.80 ± 0.00 |
RBBK100 | 1.92 ± 0.05 | 1.27 ± 0.06 | 1.82 ± 0.09 | 4.01 ± 1.50 | 10.12 ± 3.33 | 2.31 ± 0.25 | 0.52 ± 0.10 |
RBBK150 | 1.93 ± 0.03 | 1.27 ± 0.18 | 1.81 ± 0.16 | 4.0 ± 1.55 | 10.13 ± 2.50 | 2.32 ± 0.21 | 0.52 ± 0.00 |
BG0 | 0.84 ± 0.10 | 1.10 ± 0.11 | 1.12 ± 0.08 | 1.20 ± 0.11 | 1.93 ± 0.25 | 0.32 ± 0.00 | 0.72 ± 0.08 |
BGAP100 | 0.83 ± 0.03 | 1.11 ± 0.01 | 1.12 ± 0.33 | 1.22 ± 0.00 | 1.92 ± 0.53 | 0.32 ± 0.00 | 0.72 ± 0.11 |
BGAP150 | 0.82 ± 0.02 | 1.12 ± 0.07 | 1.12 ± 0.06 | 1.23 ± 0.02 | 1.91 ± 0.51 | 0.31 ± 0.00 | 0.71 ± 0.13 |
BGBK100 | 1.81 ± 0.04 | 1.27 ± 0.08 | 1.81 ± 0.06 | 3.92 ± 0.84 | 10.02 ± 1.5 | 2.24 ± 0.80 | 0.46 ± 0.01 |
BGBK150 | 1.80 ± 0.02 | 1.26 ± 0.11 | 1.82 ± 0.12 | 3.92 ± 0.11 | 10.01 ± 2.5 | 2.23 ± 0.53 | 0.46 ± 0.00 |
12 weeks | |||||||
SL0 | 1.02 ± 0.00 | 1.13 ± 0.05 | 1.25 ± 0.13 | 1.34 ± 0.21 | 2.03 ± 0.85 | 0.43 ± 0.10 | 0.81 ± 0.00 |
SLAP100 | 1.07 ± 0.00 | 1.21 ± 0.17 | 1.35 ± 0.34 | 1.61 ± 0.04 | 2.17 ± 0.35 | 0.44 ± 0.00 | 0.88 ± 0..23 |
SLAP150 | 1.06 ± 0.01 | 1.20 ± 0.16 | 1.34 ± 0.18 | 1.60 ± 0.06 | 2.15 ± 0.80 | 0.43 ± 0.00 | 0.88 ± 0.01 |
SLBK100 | 2.08 ± 0.00 | 1.36 ± 0.31 | 1.95 ± 0.19 | 4.31 ± 1.80 | 10.82 ± 2.11 | 2.45 ± 0.06 | 0.61 ± 0.02 |
SLBK150 | 2.07 ± 0.01 | 1.34 ± 0.05 | 1.94 ± 0.28 | 4.32 ± 0.04 | 10.82 ± 2.6 | 2.44 ± 0.04 | 0.61 ± 0.06 |
RB0 | 0.92 ± 0.02 | 1.12 ± 0.05 | 1.20 ± 0.00 | 1.29 ± 0.02 | 2.01 ± 0.08 | 0.40 ± 0.04 | 0.80 ± 0.01 |
RBAP100 | 0.92 ± 0.08 | 1.12 ± 0.00 | 1.18 ± 0.03 | 1.24 ± 0.05 | 1.94 ± 0.03 | 0.35 ± 0.00 | 0.83 ± 0.01 |
RBAP150 | 0.91 ± 0.2 | 1.10 ± 0.08 | 1.17 ± 0.03 | 1.22 ± 0.00 | 1.93 ± 0.11 | 0.33 ± 0.01 | 0.82 ± 0.01 |
RBBK100 | 2.01 ± 0.6 | 1.22 ± 0.16 | 1.82 ± 0.12 | 3.92 ± 0.94 | 9.87 ± 1.34 | 2.20 ± 0.12 | 0.46 ± 0.00 |
RBBK150 | 2.01 ± 0.08 | 1.21 ± 0.08 | 1.83 ± 0.17 | 3.10 ± 0.11 | 9.85 ± 0.98 | 2.20 ± 0.43 | 0.46 ± 0.01 |
BG0 | 0.84 ± 0.10 | 1.10 ± 0.11 | 1.12 ± 0.08 | 1.20 ± 0.11 | 1.93 ± 0.25 | 0.32 ± 0.00 | 0.72 ± 0.08 |
BGAP100 | 0.75 ± 0.23 | 0.84 ± 0.13 | 1.01 ± 0.03 | 1.11 ± 0.02 | 1.72 ± 0.44 | 0.25 ± 0.00 | 0.64 ± 0.09 |
BGAP150 | 0.73 ± 0.11 | 0.83 ± 0.20 | 1.00 ± 0.00 | 1.10 ± 0.07 | 0.72 ± 0.35 | 0.24 ± 0.02 | 0.64 ± 0.11 |
BGBK100 | 1.63 ± 0.21 | 1.04 ± 0.00 | 1.63 ± 0.01 | 3.62 ± 1.1 | 8.68 ± 2.87 | 2.02 ± 0.50 | 0.40 ± 0.05 |
BGBK150 | 1.64 ± 0.10 | 1.02 ± 0.02 | 1.62 ± 0.02 | 3.61 ± 0.03 | 8.66 ± 2.08 | 2.00 ± 0.42 | 0.40 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndukwu, M.C.; Onwude, D.I.; Ehiem, J.; Abada, U.C.; Ekop, I.E.; Chen, G. The Effectiveness of Different Household Storage Strategies and Plant-Based Preservatives for Dehulled and Sun-Dried Breadfruit Seeds. Processes 2021, 9, 380. https://doi.org/10.3390/pr9020380
Ndukwu MC, Onwude DI, Ehiem J, Abada UC, Ekop IE, Chen G. The Effectiveness of Different Household Storage Strategies and Plant-Based Preservatives for Dehulled and Sun-Dried Breadfruit Seeds. Processes. 2021; 9(2):380. https://doi.org/10.3390/pr9020380
Chicago/Turabian StyleNdukwu, Macmanus C., Daniel I. Onwude, James Ehiem, Ugochukwu C. Abada, Inemesit E. Ekop, and Guangnan Chen. 2021. "The Effectiveness of Different Household Storage Strategies and Plant-Based Preservatives for Dehulled and Sun-Dried Breadfruit Seeds" Processes 9, no. 2: 380. https://doi.org/10.3390/pr9020380
APA StyleNdukwu, M. C., Onwude, D. I., Ehiem, J., Abada, U. C., Ekop, I. E., & Chen, G. (2021). The Effectiveness of Different Household Storage Strategies and Plant-Based Preservatives for Dehulled and Sun-Dried Breadfruit Seeds. Processes, 9(2), 380. https://doi.org/10.3390/pr9020380