Chemical Recycling of WEEE Plastics—Production of High Purity Monocyclic Aromatic Chemicals
Abstract
:1. Introduction
- to investigate suitability and potential of thermochemical conversion for the generation of intermediate products for chemical recycling;
- to isolate monocyclic aromatic fractions for application in the chemical industry and plastics synthesis by a combination of filtration and fractional distillation;
- to analyze the opportunities and limitations of the applied process combination for the removal of chlorine and bromine in order to provide virgin grade basic chemicals.
2. Materials and Methods
2.1. Thermochemical Conversion
2.2. Pyrolysis Oil Pretreatment
2.3. Fractional Distillation
- Operated pressure: 1 atm (RT–85 °C); 100 mbar (>85 °C)
- Temperature difference between heating device and oil in the heating flask: ΔT = 100 K
- Off-take time/reflux time/reflux ratio: 4 s/20 s/5
2.4. Analysis of Pyrolysis Oil and Fraction Characterization
2.4.1. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
2.4.2. Energy Dispersive X-ray Fluorescence (EDXRF) Analysis
2.4.3. Water Content Analysis
3. Results
3.1. Thermochemical Conversion
3.2. Pyrolysis Oil Pretreatment
3.3. Fractional Distillation
4. Discussion
- Benzene fraction (88 area% benzene, 12 area% toluene)
- Toluene fraction (3 area% benzene, 96 area% toluene)
- BTEX/styrene fraction (27 area% toluene, 43 area% ethylbenzene, 4 area% xylenes, 25 area% styrene)
- Styrene fraction (17 area% ethylbenzene, 2 area % xylenes, 80 area% styrene)
- Phenol fraction (35 area% phenol, not considered as main product)
5. Conclusions
- Pyrolysis is a promising technology for production of an intermediate oil for chemical upgrading.
- Pretreatment such as filtration and phase separation is capable of removing solids and water, which are undesired for the further upgrading of the oil.
- It was proven that a combination of pyrolysis and subsequent fractional distillation is a suitable method for the isolation of high purity BTEX fractions and concentrated monocyclic aromatic fractions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chagnes, A. WEEE Recycling: Research, Development, and Policies; Elsevier Science: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-803363-0. [Google Scholar]
- Wang, R.; Xu, Z. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review. Waste Manag. 2014, 34, 1455–1469. [Google Scholar] [CrossRef]
- Yang, X.; Sun, L.; Xiang, J.; Hu, S.; Su, S. Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): A review. Waste Manag. 2013, 33, 462–473. [Google Scholar] [CrossRef]
- Hense, P.; Reh, K.; Franke, M.; Aigner, J.; Hornung, A.; Contin, A. Pyrolysis of waste electrical and electronic equipment (WEEE) for recovering meatals and energy: Previous achievements and current approaches. Environ. Eng. Manag. J. (EEMJ) 2015, 14, 1637–1647. [Google Scholar] [CrossRef]
- Bhaskar, T.; Kaneko, J.; Muto, A.; Sakata, Y.; Jakab, E.; Matsui, T.; Uddin, A. Pyrolysis studies of PP/PE/PS/PVC/HIPS-Br plastics mixed with PET and dehalogenation (Br, Cl) of the liquid products. J. Anal. Appl. Pyrolysis 2004, 72, 27–33. [Google Scholar] [CrossRef]
- Alston, S.M.; Clark, A.D.; Arnold, J.C.; Stein, B.K. Environmental Impact of Pyrolysis of Mixed WEEE Plastics Part 1: Experimental Pyrolysis Data. Environ. Sci. Technol. 2011, 45, 9380–9385. [Google Scholar] [CrossRef]
- Martinho, G.; Pires, A.; Saraiva, L.; Ribeiro, R. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling. Waste Manag. 2012, 32, 1213–1217. [Google Scholar] [CrossRef]
- Beccagutti, B.; Cafiero, L.; Pietrantonio, M.; Pucciarmati, S.; Tuffi, R.; Ciprioti, S.V. Characterization of Some Real Mixed Plastics from WEEE: A Focus on Chlorine and Bromine Determination by Different Analytical Methods. Sustainability 2016, 8, 1107. [Google Scholar] [CrossRef] [Green Version]
- Buekens, A.; Yang, J. Recycling of WEEE plastics: A review. J. Mater. Cycles Waste Manag. 2014, 16, 415–434. [Google Scholar] [CrossRef]
- Blazsó, M.; Czégény, Z.; Csoma, C. Pyrolysis and debromination of flame retarded polymers of electronic scrap studied by analytical pyrolysis. J. Anal. Appl. Pyrolysis 2002, 64, 249–261. [Google Scholar] [CrossRef]
- Nnorom, I.C.; Osibanjo, O. Sound management of brominated flame retarded (BFR) plastics from electronic wastes: State of the art and options in Nigeria. Resour. Conserv. Recycl. 2008, 52, 1362–1372. [Google Scholar] [CrossRef]
- Charitopoulou, M.A.; Kalogiannis, K.G.; Lappas, A.A.; Achilias, D.S. Novel trends in the thermo-chemical recycling of plastics from WEEE containing brominated flame retardants. Environ. Sci. Pollut. Res. 2020, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Hornung, A.; Balabanovich, A.; Donner, S.; Seifert, H. Detoxification of brominated pyrolysis oils. J. Anal. Appl. Pyrolysis 2003, 70, 723–733. [Google Scholar] [CrossRef]
- Kowalska, E.; Radomska, J.; Konarski, P.; Diduszko, R.; Oszczudłowski, J.; Opalińska, T.; Więch, M.; Duszyc, Z. Thermogravimetric investigation ofwastes from electrical and electronic equipment (WEEE). J. Therm. Anal. Calorim. 2006, 86, 137–140. [Google Scholar] [CrossRef]
- De Marco, I.; Caballero, B.; Chomón, M.; Laresgoiti, M.; Torres, A.; Fernández, G.; Arnaiz, S. Pyrolysis of electrical and electronic wastes. J. Anal. Appl. Pyrolysis 2008, 82, 179–183. [Google Scholar] [CrossRef]
- Moltó, J.; Font, R.; Gálvez, A.; Conesa, J. Pyrolysis and combustion of electronic wastes. J. Anal. Appl. Pyrolysis 2009, 84, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Acomb, J.C.; Nahil, M.A.; Williams, P.T. Thermal processing of plastics from waste electrical and electronic equipment for hydrogen production. J. Anal. Appl. Pyrolysis 2013, 103, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Caballero, B.; De Marco, I.; Adrados, A.; López-Urionabarrenechea, A.; Solar, J.; Gastelu, N. Possibilities and limits of pyrolysis for recycling plastic rich waste streams rejected from phones recycling plants. Waste Manag. 2016, 57, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Dias, P.; Javimczik, S.; Benevit, M.; Veit, H. Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules. Waste Manag. 2017, 60, 716–722. [Google Scholar] [CrossRef]
- Esposito, L.; Cafiero, L.; De Angelis, D.; Tuffi, R.; Ciprioti, S.V. Valorization of the plastic residue from a WEEE treatment plant by pyrolysis. Waste Manag. 2020, 112, 1–10. [Google Scholar] [CrossRef]
- Evangelopoulos, P.; Kantarelis, E.; Yang, W. Investigation of the thermal decomposition of printed circuit boards (PCBs) via thermogravimetric analysis (TGA) and analytical pyrolysis (Py–GC/MS). J. Anal. Appl. Pyrolysis 2015, 115, 337–343. [Google Scholar] [CrossRef]
- Hall, W.J.; Williams, P.T. Pyrolysis of brominated feedstock plastic in a fluidised bed reactor. J. Anal. Appl. Pyrolysis 2006, 77, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Hall, W.J.; Williams, P.T. Removal of organobromine compounds from the pyrolysis oils of flame retarded plastics using zeolite catalysts. J. Anal. Appl. Pyrolysis 2008, 81, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Yu, J.; Wang, B.; Song, Z.; Xiang, J.; Hu, S.; Su, S.; Sun, L. Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: A review. Renew. Sustain. Energy Rev. 2016, 61, 433–450. [Google Scholar] [CrossRef]
- Hao, J.; Wang, Y.; Wu, Y.; Guo, F. Metal recovery from waste printed circuit boards: A review for current status and perspectives. Resour. Conserv. Recycl. 2020, 157, 104787. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, Y.; Wang, W.; Li, B.; Zhang, Y.; Zuo, T. Recycling indium from waste LCDs: A review. Resour. Conserv. Recycl. 2015, 104, 276–290. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. J. Clean. Prod. 2016, 127, 19–36. [Google Scholar] [CrossRef]
- Vinu, R.; Ojha, D.; Nair, V. Polymer Pyrolysis for Resource Recovery. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier BV: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Evangelopoulos, P.; Arato, S.; Persson, H.; Kantarelis, E.; Yang, W. Reduction of brominated flame retardants (BFRs) in plastics from waste electrical and electronic equipment (WEEE) by solvent extraction and the influence on their thermal decomposition. Waste Manag. 2019, 94, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Evangelopoulos, P.; Persson, H.; Kantarelis, E.; Yang, W. Performance analysis and fate of bromine in a single screw reactor for pyrolysis of waste electrical and electronic equipment (WEEE). Process. Saf. Environ. Prot. 2020, 143, 313–321. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, R.; Wang, J.; Chen, X.; Ge, X.; Chen, M. Waste-to-energy: Dehalogenation of plastic-containing wastes. Waste Manag. 2016, 49, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Hall, W.J.; Williams, P.T. Fast Pyrolysis of Halogenated Plastics Recovered from Waste Computers. Energy Fuels 2006, 20, 1536–1549. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Sun, L.; Jin, L.; Zhou, C.; Xiang, J.; Hu, S.; Su, S. Effect of polypropylene on the pyrolysis of flame retarded high impact polystyrene. Fuel Process. Technol. 2015, 135, 150–156. [Google Scholar] [CrossRef]
- Terakado, O.; Ohhashi, R.; Hirasawa, M. Bromine fixation by metal oxide in pyrolysis of printed circuit board containing brominated flame retardant. J. Anal. Appl. Pyrolysis 2013, 103, 216–221. [Google Scholar] [CrossRef]
- Hlaing, Z.; Wajima, T.; Uchiyama, S.; Nakagome, H. Reduction of Bromine Compounds in the Pyrolysis Oil of Computer Casing Plastics Using Shell, Ca(OH)2 and NaOH. APCBEE Procedia 2014, 10, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-H.; Kim, S.-J.; Kim, J.-S. Fast pyrolysis of a waste fraction of high impact polystyrene (HIPS) containing brominated flame retardants in a fluidized bed reactor: The effects of various Ca-based additives (CaO, Ca(OH)2 and oyster shells) on the removal of bromine. Fuel 2012, 95, 514–520. [Google Scholar] [CrossRef]
- Bhaskar, T.; Hall, W.J.; Mitan, N.M.M.; Muto, A.; Williams, P.T.; Sakata, Y. Controlled pyrolysis of polyethylene/polypropylene/polystyrene mixed plastics with high impact polystyrene containing flame retardant: Effect of decabromo diphenylethane (DDE). Polym. Degrad. Stab. 2007, 92, 211–221. [Google Scholar] [CrossRef]
- Miandad, R.; Barakat, M.; Aburiazaiza, A.S.; Rehan, M.; Nizami, A. Catalytic pyrolysis of plastic waste: A review. Process. Saf. Environ. Prot. 2016, 102, 822–838. [Google Scholar] [CrossRef]
- Panda, A.K.; Singh, R.; Mishra, D. Thermolysis of waste plastics to liquid fuelA suitable method for plastic waste management and manufacture of value added products—A world prospective. Renew. Sustain. Energy Rev. 2010, 14, 233–248. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S.; Yang, F.; Li, S.; Wu, J.; Liu, J.; Zhong, S.; Zeng, J. The effects of activated Al2O3 on the recycling of light oil from the catalytic pyrolysis of waste printed circuit boards. Process. Saf. Environ. Prot. 2015, 98, 276–284. [Google Scholar] [CrossRef]
- Brebu, M.; Bhaskar, T.; Murai, K.; Muto, A.; Sakata, Y.; Uddin, A. Thermal degradation of PE and PS mixed with ABS-Br and debromination of pyrolysis oil by Fe- and Ca-based catalysts. Polym. Degrad. Stab. 2004, 84, 459–467. [Google Scholar] [CrossRef]
- Bhaskar, T.; Matsui, T.; Uddin, A.; Kaneko, J.; Muto, A.; Sakata, Y. Effect of Sb2O3 in brominated heating impact polystyrene (HIPS-Br) on thermal degradation and debromination by iron oxide carbon composite catalyst (Fe-C). Appl. Catal. B Environ. 2003, 43, 229–241. [Google Scholar] [CrossRef]
- Wu, H.; Shen, Y.; Harada, N.; An, Q.; Yoshikawa, K. Production of Pyrolysis Oil with Low Bromine and Antimony Contents from Plastic Material Containing Brominated Flame Retardants and Antimony Trioxide. Energy Environ. Res. 2014, 4, 105. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Kamo, T. Enhanced debromination by Fe particles during the catalytic pyrolysis of non-metallic fractions of printed circuit boards over ZSM-5 and Ni/SiO2-Al2O3 catalyst. J. Anal. Appl. Pyrolysis 2019, 138, 170–177. [Google Scholar] [CrossRef]
- Park, Y.-K.; Han, T.U.; Jeong, J.; Kim, Y.-M. Debrominated high quality oil production by the two-step catalytic pyrolysis of phenolic printed circuit boards (PPCB) using natural clays and HY. J. Hazard. Mater. 2019, 367, 50–58. [Google Scholar] [CrossRef]
- Lam, S.S.; Chase, H.A. A Review on Waste to Energy Processes Using Microwave Pyrolysis. Energies 2012, 5, 4209–4232. [Google Scholar] [CrossRef]
- Sharuddin, S.D.A.; Abnisa, F.; Daud, W.M.A.W.; Aroua, M.K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Liu, W.-J.; Tian, K.; Jiang, H.; Yu, H.-Q. Lab-scale thermal analysis of electronic waste plastics. J. Hazard. Mater. 2016, 310, 217–225. [Google Scholar] [CrossRef]
- Vilaplana, F.; Ribes-Greus, A.; Karlsson, S. Microwave-assisted extraction for qualitative and quantitative determination of brominated flame retardants in styrenic plastic fractions from waste electrical and electronic equipment (WEEE). Talanta 2009, 78, 33–39. [Google Scholar] [CrossRef]
- Zhang, C.-C.; Zhang, F.-S. Removal of brominated flame retardant from electrical and electronic waste plastic by solvothermal technique. J. Hazard. Mater. 2012, 221–222, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Peng, P.; Yu, Z.; Deng, H. Effects of metals on the transformation of hexabromocyclododecane (HBCD) in solvents: Implications for solvent-based recycling of brominated flame retardants. Chemosphere 2010, 81, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, F.-S. Degradation of brominated flame retardant in computer housing plastic by supercritical fluids. J. Hazard. Mater. 2012, 205–206, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Onwudili, J.A.; Williams, P.T. Degradation of brominated flame-retarded plastics (Br-ABS and Br-HIPS) in supercritical water. J. Supercrit. Fluids 2009, 49, 356–368. [Google Scholar] [CrossRef]
- Xiu, F.-R.; Qi, Y.; Wang, S.; Nie, W.; Weng, H.; Chen, M. Application of critical water-alcohol composite medium to treat waste printed circuit boards: Oil phase products characteristic and debromination. J. Hazard. Mater. 2018, 344, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Xiu, F.-R.; Li, Y.; Qi, Y.; Yu, X.; He, J.; Lu, Y.; Gao, X.; Deng, Y.; Song, Z. A novel treatment of waste printed circuit boards by low-temperature near-critical aqueous ammonia: Debromination and preparation of nitrogen-containing fine chemicals. Waste Manag. 2019, 84, 355–363. [Google Scholar] [CrossRef]
- Grause, G.; Fonseca, J.D.; Tanaka, H.; Bhaskar, T.; Kameda, T.; Yoshioka, T. A novel process for the removal of bromine from styrene polymers containing brominated flame retardant. Polym. Degrad. Stab. 2015, 112, 86–93. [Google Scholar] [CrossRef]
- Mcnamara, D. Conversion of Waste Plastics Material to Fuel. International Patent 2011,077,419, 30 June 2011. [Google Scholar]
- Yamaguchi, K. Pyrolysis Apparatus for Waste Plastic. Japanese Patent 2004,300,186, 28 October 2004. [Google Scholar]
- Peltekis, K.; Kumble, B.; Astill, C. Plant and Process for Pyrolysis of Mixed Plastic Waste. International Patent 2018,000,050, 4 January 2018. [Google Scholar]
- Ward, A.M.; Oprins, A.J.M.; Narayanasway, R. Process for Converting Mixed Waste Plastic (mwp) into Valuable Petrochemicals. European Patent 3,110,912, 4 January 2017. [Google Scholar]
- Stankevitch, V. Process for the Conversion of Waste Plastics to Produce Hydrocarbon Oils. U.S. Patent 6,534,689, 13 March 2003. [Google Scholar]
- Pajala, T. Pyrolysis Apparatus. International Patent 2017,198,896, 23 November 2017. [Google Scholar]
- Csokai, V.; Szinay, Z.; Boday, A. Process for Termical Degradation of pvc and Other Wastes Containing Halogen-Containing Polymer Waste. International Patent 2012,025,771, 1 March 2012. [Google Scholar]
- Riedewald, F. Process and System for Whole Tyres and Plastic Composites Pyrolysis to Fuel Conversion and Compound Recovery. U.S. Patent 2015,0,184,079, 2 July 2015. [Google Scholar]
- Thomas, C.; Menuet, J.; Vanhelle, G. Method for Recovering Metals from Electronic Waste Containing Plastics Materials. U.S. Patent 8,800,775, 15 September 2014. [Google Scholar]
- Menad, N.-E.; Guignot, S.; Göklap, I.; Bostyn, S.; Graz, Y.; Poirier, J. Method for Recycling Waste Electrical and Electronic Equipment. U.S. Patent 15,539,570, 21 December 2017. [Google Scholar]
- Sun, S.; Long, L.; Zhong, S. The Separation of Each Component Material and Recovery Method in a Kind of Waste and Old Printed Circuit Board. Chinese Patent 1,01,612,628, 30 December 2009. [Google Scholar]
- Riedewald, F. Process for the Recycling of Waste Batteries and Waste Printed Circuit Boards in Molten Salts or Molten Metals. International Patent 2014,167,139, 16 October 2015. [Google Scholar]
- Brandhorst, H.W.; Engel, U.H., Jr.; Ludwig, C.T.; Zavoral, E.J. Multistage Thermolysis Method for Safe and Efficient Conversion of E-Waste Materials. U.S. Patent 9,850,433, 6 July 2017. [Google Scholar]
- Hornung, A.; Hense, P.; Aigner, J.; Reh, K.; Franke, M. Rohrofen und Verfahren zur Chemischen Umsetzung International Patent 2016,189,138, 1 December 2017.
- Bientinesi, M.; Petarca, L. Comparative environmental analysis of waste brominated plastic thermal treatments. Waste Manag. 2009, 29, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Alaee, M. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ. Int. 2003, 29, 683–689. [Google Scholar] [CrossRef]
- Birnbaum, L.S. Health effects of polybrominated dibenzo-p-dioxins (PBDDs) and dibenzofurans (PBDFs). Environ. Int. 2003, 29, 855–860. [Google Scholar] [CrossRef]
- Tan, P.; Neuschütz, D. Study on polychlorinated dibenzo-p-dioxin/furan formation in iron ore sintering process. Metallurg. Mater. Transact. B. 2004, 35, 983–991. [Google Scholar] [CrossRef]
- Mei, J.; Wang, X.; Xiao, X.; Cai, Y.; Tang, Y.; Chen, P. Characterization and inventory of PBDD/F emissions from deca-BDE, polyethylene (PE) and metal blends during the pyrolysis process. Waste Manag. 2017, 62, 84–90. [Google Scholar] [CrossRef]
- Santella, C.; Cafiero, L.; De Angelis, D.; La Marca, F.; Tuffi, R.; Ciprioti, S.V. Thermal and catalytic pyrolysis of a mixture of plastics from small waste electrical and electronic equipment (WEEE). Waste Manag. 2016, 54, 143–152. [Google Scholar] [CrossRef]
- Vasile, C.; Brebu, M.A.; Karayildirim, T.; Yanik, J.; Darie, H. Feedstock recycling from plastic and thermoset fractions of used computers (I): Pyrolysis. J. Mater. Cycles Waste Manag. 2006, 8, 99–108. [Google Scholar] [CrossRef]
- Hall, W.J.; Williams, P.T. Analysis of products from the pyrolysis of plastics recovered from the commercial scale recycling of waste electrical and electronic equipment. J. Anal. Appl. Pyrolysis 2007, 79, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Alston, S.M.; Arnold, J.C. Environmental Impact of Pyrolysis of Mixed WEEE Plastics Part 2: Life Cycle Assessment. Environ. Sci. Technol. 2011, 45, 9386–9392. [Google Scholar] [CrossRef]
- Meys, R.; Frick, F.; Westhues, S.; Sternberg, A.; Klankermayer, J.; Bardow, A. Towards a circular economy for plastic packaging wastes–the environmental potential of chemical recycling. Resour. Conserv. Recycl. 2020, 162, 105010. [Google Scholar] [CrossRef]
Fraction | Pressure | Temperature Interval |
---|---|---|
[-] | [-] | [°C] |
1 | 1 atm | RT–85 |
2 | 100 mbar | 85–115 (AET 1) |
3 | 100 mbar | 115–140 (AET 1) |
4 | 100 mbar | 140–150 (AET 1) |
5 | 100 mbar | 150–190 (AET 1) |
6 | 100 mbar | 190–205 (AET 1) |
7 | 100 mbar | 205–225 (AET 1) |
Material | Mass | Mass Fraction |
---|---|---|
[-] | [kg] | [wt.%] |
Initial | 231 | 100 |
Solid (solid residue) | 74 | 32 |
Liquid (condensate) | 67 | 29 |
Gas | 90 | 39 |
Material | Mass | Mass Fraction |
---|---|---|
[-] | [kg] | [wt.%] |
Crude condensate | 14.8477 | 100.00 |
Filtrate (<40 µm) | 13.5219 | 91.07 |
Solids (>40 µm) | 0.3846 | 2.59 |
Loss (filtration 1) | 0.9412 | 6.34 |
Filtrate (oil) (<2 µm) | 11.7514 | 79.15 |
Solids (2–40 µm) | 0.6125 | 4.12 |
Loss (filtration 2) | 1.1580 | 7.80 |
Aqueous phase | 0.4739 | 3.19 |
Fraction | Temperature Interval | Mass | Mass Fraction |
---|---|---|---|
[-] | [°C] | [kg] | [wt.%] |
Initial | - | 5.3830 | 100 |
1 | RT–85 | 0.4800 | 8.92 |
2 | 85–115 | 0.7690 | 14.29 |
3 | 115–140 | 0.3205 | 5.95 |
4 | 140–150 | 0.9430 | 17.52 |
5 | 150–190 | 0.5835 | 10.84 |
6 | 190–205 | 0.3360 | 6.24 |
7 | 205–225 | 0.2050 | 3.81 |
Residue | >225 | 1.4890 | 27.66 |
Cold trap 1 | - | 0.0540 | 1.00 |
Cold trap 2 | - | 0.0561 | 1.04 |
Loss | - | 0.1469 | 2.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rieger, T.; Oey, J.C.; Palchyk, V.; Hofmann, A.; Franke, M.; Hornung, A. Chemical Recycling of WEEE Plastics—Production of High Purity Monocyclic Aromatic Chemicals. Processes 2021, 9, 530. https://doi.org/10.3390/pr9030530
Rieger T, Oey JC, Palchyk V, Hofmann A, Franke M, Hornung A. Chemical Recycling of WEEE Plastics—Production of High Purity Monocyclic Aromatic Chemicals. Processes. 2021; 9(3):530. https://doi.org/10.3390/pr9030530
Chicago/Turabian StyleRieger, Tobias, Jessen C. Oey, Volodymyr Palchyk, Alexander Hofmann, Matthias Franke, and Andreas Hornung. 2021. "Chemical Recycling of WEEE Plastics—Production of High Purity Monocyclic Aromatic Chemicals" Processes 9, no. 3: 530. https://doi.org/10.3390/pr9030530