The Suitability of Methylene Blue Discoloration (MB Method) to Investigate the Fe0/MnO2 System
Abstract
:1. Introduction
2. The Fe0/MnO2 System
3. Materials and Methods
3.1. Solutions
3.2. Solid Materials
3.2.1. Metallic Iron (Fe0)
3.2.2. Manganese Dioxide (MnO2)
3.2.3. Sand
3.3. MB Discoloration
3.4. Analytical Methods
3.5. Expression of MB Discoloration Results (E Value)
4. Results and Discussion
4.1. Evidence for the Complexity of the Fe0/MnO2 System
4.2. MB Discoloration
4.3. pH Value
4.4. The Operating Mode of Fe0/MnO2 Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, X.; Sun, Y.; Qin, H.; Li, J.; Lo, I.M.C.; He, D.; Dong, H. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014). Water Res. 2015, 75, 224–248. [Google Scholar] [CrossRef] [PubMed]
- Antia, D.D.J. Water treatment and desalination using the eco-materials n-Fe0 (ZVI), n-Fe3O4, n-FexOyHz[mH2O], and n Fex[Cation]nOyHz[Anion]m [rH2O]. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O.V., Ed.; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Thakur, A.K.; Vithanage, M.; Das, D.B.; Kumar, M. A review on design, material selection, mechanism, and modelling of permeable reactive barrier for community-scale groundwater treatment. Environ. Technol. Innov. 2020, 19, 100917. [Google Scholar] [CrossRef]
- Noubactep, C. Processes of contaminant removal in “Fe0–H2O” systems revisited. The importance of co-precipitation. Open Environ. Sci. 2007, 1, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Bojic, A.L.; Bojic, D.; Andjelkovic, T. Removal of Cu2+ and Zn2+ from model wastewaters by spontaneous reduction–coagulation process in flow conditions. J. Hazard. Mater. 2009, 168, 813–819. [Google Scholar] [CrossRef]
- Ghauch, A. Iron-based metallic systems: An excellent choice for sustainable water treatment. Freib. Online Geosci. 2015, 32, 1–80. [Google Scholar]
- Gheju, M.; Balcu, I. Sustaining the efficiency of the Fe(0)/H2O system for Cr(VI) removal by MnO2 amendment. Chemosphere 2019, 214, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Melchers, R.E.; Petersen, R.B. A reinterpretation of the Romanoff NBS data for corrosion of steels in soils. Corros. Eng. Sci. Technol. 2018, 53, 131–140. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, H. Redox reactions of iron and manganese oxides in complex systems. Front. Environ. Sci. Eng. 2020, 14, 76. [Google Scholar] [CrossRef]
- Michel, M.M.; Reczek, L.; Papciak, D.; Włodarczyk-Makuła, M.; Siwiec, T.; Trach, Y. Mineral materials coated with and consisting of MnOx—Characteristics and application of filter media for groundwater treatment: A review. Materials 2020, 13, 2232. [Google Scholar] [CrossRef] [PubMed]
- Hussam, A.; Munir, A.K.M. A simple and effective arsenic filter based on composite iron matrix: Development and deployment studies for groundwater of Bangladesh. J. Environ. Sci. Health A 2007, 42, 1869–1878. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Min, X.; Chai, L.; Wang, M.; Liyang, W.; Pan, Q.; Okido, M. Stabilization of arsenic sludge with mechanochemically modified zero valent iron. Chemosphere 2017, 168, 1142–1151. [Google Scholar] [CrossRef]
- Burghardt, D.; Kassahun, A. Development of a reactive zone technology for simultaneous in situ immobilisation of radium and uranium. Environ. Geol. 2005, 49, 314–320. [Google Scholar] [CrossRef]
- Dong, G.; Huang, L.; Wu, X.; Wang, C.; Liu, Y.; Liu, G.; Wang, L.; Liu, X.; Xia, H.; Dong, G. Effect and mechanism analysis of MnO2 on permeable reactive barrier (PRB) system for the removal of tetracycline. Chemosphere 2018, 193, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Btatkeu-K, B.D.; Olvera-Vargas, H.; Tchatchueng, J.B.; Noubactep, C.; Caré, S. Characterizing the impact of MnO2 on the efficiency of Fe0-based filtration systems. Chem. Eng. J. 2014, 250, 416–422. [Google Scholar] [CrossRef]
- Miyajima, K.; Noubactep, C. Characterizing the impact of sand addition on the efficiency of granular iron for water treatment. Chem. Eng. J. 2015, 262, 891–896. [Google Scholar] [CrossRef]
- Alyoussef, G. Characterizing the Impact of Contact Time in Investigating Processes in Fe0/H2O Systems. Master’s Thesis, University of Göttingen, Göttingen, Germany, 2016. [Google Scholar]
- Whitney, W.R. The corrosion of iron. J. Am. Chem. Soc. 1903, 25, 394–406. [Google Scholar] [CrossRef]
- Stratmann, M.; Müller, J. The mechanism of the oxygen reduction on rust-covered metal substrates. Corros. Sci. 1994, 36, 327–359. [Google Scholar] [CrossRef]
- Xiao, M.; Cui, X.; Hu, R.; Gwenzi, W.; Noubactep, C. Validating the Efficiency of the FeS2 Method for Elucidating the Mechanisms of Contaminant Removal Using Fe0/H2O Systems. Processes 2020, 8, 1162. [Google Scholar] [CrossRef]
- Appelo, C.A.J.; Postma, D. A consistent model for surface complexation on birnessite (-MnO2) and its application to a column experiment. Geochim. Cosmochim. Acta 1999, 63, 3039–3048. [Google Scholar] [CrossRef] [Green Version]
- Post, J.E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA 1999, 96, 3447–3454. [Google Scholar] [CrossRef] [Green Version]
- Varlikli, C.; Bekiari, V.; Kus, M.; Boduroglu, N.; Oner, I.; Lianos, P.; Lyberatos, G.; Icli, S. Adsorption of dyes on Sahara desert sand. J. Hazard. Mater. 2009, 170, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Ndé-Tchoupé, A.I.; Makota, S.; Nassi, A.; Hu, R.; Noubactep, C. The Suitability of Pozzolan as Admixing Aggregate for Fe0-Based Filters. Water 2018, 10, 417. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, G.; Poole, P.; Segrove, H.D. Adsorption of methylene blue by high-silica sands. Nature 1955, 176, 1025–1026. [Google Scholar] [CrossRef]
- Bui, T.H.; Kim, C.; Hong, S.P.; Yoon, J. Effective adsorbent for arsenic removal: Core/shell structural nano zero-valent iron/manganese oxide. Environ. Sci. Pollut. Res. 2017, 24, 24235–24242. [Google Scholar] [CrossRef]
- Qin, H.; Sun, Y.; Yang, H.; Fan, P.; Qiao, J.; Guan, X. Unexpected effect of buffer solution on removal of selenite and selenate by zerovalent iron. Chem. Eng. J. 2018, 334, 296–304. [Google Scholar] [CrossRef]
- Sanjeev, B.; Malay, C. Removal of arsenic from ground water by manganese dioxide-coated sand. J. Environ. Eng. 1999, 125, 782–784. [Google Scholar]
- Noubactep, C. Metallic iron for environmental remediation: A review of reviews. Water Res. 2015, 85, 114–123. [Google Scholar] [CrossRef]
- Brock, S.L.; Duan, N.; Tian, Z.R.; Giraldo, O.; Zhou, H.; Suib, S.L. A review of porous manganese oxide materials. Chem. Mater. 1998, 10, 2619–2628. [Google Scholar] [CrossRef]
- Dong, G.; Han, R.; Pan, Y.; Zhang, C.; Liu, Y.; Wang, H.; Ji, X.; Dahlgren, R.A.; Shang, X.; Chen, Z.; et al. Role of MnO2 in controlling iron and arsenic mobilization from illuminated flooded arsenic-enriched soils. J. Hazard. Mater. 2021, 401, 123362. [Google Scholar] [CrossRef]
Reaction | E0 (V) | Number |
---|---|---|
Fe2+ + 2 e− ⇔ Fe0 | −0.44 | (1) |
2 H+ + 2 e− ⇔ H2 | 0.00 | (2) |
MB+ + 2 e− + H+ ⇔ LMB | 0.01 | (3) |
Fe3+ + e− ⇔ Fe2+ | 0.77 | (4) |
O2 + 2H2O + 4 e− ⇔ 4OH- | 0.81 | (5) |
MnO2 + 4H+ + 2 e− ⇔ Mn2+ + 2H2O | 1.23 | (6) |
System | Fe0 (g L−1) | Sand (g L−1) | MnO2 (g L−1) | Materials | Comments |
---|---|---|---|---|---|
Reference | 0.0 | 0.0 | 0.0 | None | Blank experiment |
System 1 | 4.5 | 0.0 | 0.0 | Fe0 alone | Blank for Fe0 |
System 2 | 0.0 | 45.0 | 0.0 | Sand alone | Blank for sand |
System 3 | 0.0 | 0.0 | 2.3 | MnO2 alone | Blank for MnO2 |
System 4 | 4.5 | 45.0 | 0.0 | Fe0/sand | Reference system |
System 5 | 4.5 | 0.0 | 4.5 | Fe0/MnO2 | Reference system |
System 6 | 4.5 to 45 | 45.0 | 4.5 | Fe0/sand/MnO2 | Fe0 loading as variable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, V.; Alyoussef, G.; Gatcha-Bandjun, N.; Gwenzi, W.; Noubactep, C. The Suitability of Methylene Blue Discoloration (MB Method) to Investigate the Fe0/MnO2 System. Processes 2021, 9, 548. https://doi.org/10.3390/pr9030548
Cao V, Alyoussef G, Gatcha-Bandjun N, Gwenzi W, Noubactep C. The Suitability of Methylene Blue Discoloration (MB Method) to Investigate the Fe0/MnO2 System. Processes. 2021; 9(3):548. https://doi.org/10.3390/pr9030548
Chicago/Turabian StyleCao, Viet, Ghinwa Alyoussef, Nadège Gatcha-Bandjun, Willis Gwenzi, and Chicgoua Noubactep. 2021. "The Suitability of Methylene Blue Discoloration (MB Method) to Investigate the Fe0/MnO2 System" Processes 9, no. 3: 548. https://doi.org/10.3390/pr9030548
APA StyleCao, V., Alyoussef, G., Gatcha-Bandjun, N., Gwenzi, W., & Noubactep, C. (2021). The Suitability of Methylene Blue Discoloration (MB Method) to Investigate the Fe0/MnO2 System. Processes, 9(3), 548. https://doi.org/10.3390/pr9030548