Pressure-Driven Membrane Process: A Review of Advanced Technique for Heavy Metals Remediation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ultrafiltration in Heavy Metal Removal
2.2. Nanofiltration for the Removal of Heavy Metals from Wastewater
2.3. Reverse Osmosis in Heavy Metal Removal from Wastewater
Characteristics of Membrane | Heavy Metal Targeted | Initial Metal Concentration (mg/L) | pH | Pressure (bar) | Removal Efficiency (%) | Ref |
---|---|---|---|---|---|---|
Flat organic membranes MWCO = 1000 Da Permeability = 1.6 × 10−3 L m−2 s−1 bar−1 | Ni(II) Cu(II) | 69 | 1.2 | 14 | 76.1 72.6 | [106] |
Polyamide membrane supported by diaminobenzenesulfonic acid (DABSA) MWCO = 500 Da Permeability = 11.8 L m−2 h−1 bar−1 Negative charged | Cr(VI) | 460 | 9 | 4 | >99 | [107] |
Chitosan/polyvinyl alcohol/montmorillonite clay membrane Active area = 0.00385 m2 | Cr(VI) | 50 | 7 | 1 | (84–88.34) | [108] |
PAN/Sulfonated Polyarylene ether benzonitrile MWCO = 300 Da Permeability = 7.62 LMH.bar−1 | Pb(II) Cd(II) | 1000 | (2–5) | 6 | 94.6 95.1 | [109] |
Spiral wound Polymeric membrane (NF270–2540) Active area = 2.6 m2 Negatively charged MWCO = (200–400) Da | Co(II) Ni(II) | 20 | (3.4–5.6) 3.4 | 6 10 | 100 91.94 | [110] |
Polyamide membrane (NF270) Active area = 0.00076 m2. The surface of the membrane is positively charged for pH less than 4 and negatively charged for a higher value. | Cd(II) Mn(II) Pb(II) | 1000 | 1.5 | 4 | 99 89 74 | [111] |
Polyamide membrane Active area = 0.47 m2 Isoelectric point is at pH 3.3–4 | Pb(II) Ni(II) | 1 | 5.5 | 6–8 | 86 93 | [112] |
Polyethersulfone Membrane Area = 0.00001256 m2 Membrane fabricated with 0.5 wt% magnetic graphene based nanocomposites | Cu(II) | 20 | 5 | 4 | 92 | [113] |
Thin-film composite. Area = 0.024 m2 The isoelectric point is 3.6. Membrane surface is negatively charged | Pb(II) | 150 | 5.8 | 25 | 99 | [114] |
Polyamide thin film composite membrane MWCO = 400 Zeta potential = −36.8 mV | Cr(VI) As(V) | 0.1 | 8 | 8.18 | (25–95) | [115] |
NF 300 Active area = 2.5 m2 | As(V) | 0.015 to 0.02 | 5 | 50 | 99.8 | [116] |
Aromatic polyamide membrane MWCO = (200–300) Water permeability = 2.4 × 10−8 m3/(s.m2.kPa) | As(V) | 0.2 | 7.5 | 10 | >94 | [74] |
Thin film composite membrane (NF 2) Active area = 0.01 m2 | As(V) | 0.150–0.252 | 7 | 11.76 | (97–100) | [117] |
NF Hollow fibre membrane MWCO = 520 Da Isoelectric point = 6.6 Pure water flux = 47.5 L/(m2.h) | Ni(II) Cr(VI) Cu(II) | 142.23 121.23 56.55 | 2.31 | 4 | 94.99 95.76 95.33 | [118] |
Polyamide composite membrane MWCO ranges between 150 and 300 Effective area = 0.00572 m2 | Cu(II) | 230 | 4.5 | 6.89 | 98.1 | [119] |
Thin-film Composite membrane Area = 0.0036 m2 | Pb(II) | 400 | 3 | 30 | 97.5 | [120] |
Thin-film composite membrane (AFC 40) Effective area = 0.024 m2 | Co(II) | 100 | 3 | 25 | 97 | [64] |
NF 300 membrane Effective area = 0.015 m2 | Cd(II) Ni(II) | 5 | 5 | 20 | 97.26 98.90 | [121] |
Polyamide membrane (NF270) Membrane surface area = 0.0012 m2 Isoelectric point = 3.3 | Cu(II) | 25,000 | (3–10) | 30 | 99.5 | [122] |
Negatively charged microporous NF, Nanomax50 | Cu(II) | 200 | < 4.5 | 3 | 66 | [123] |
NF spiral-wound membrane | Cu(II) | 50 | 5 | 3.8 | >95 | [124] |
Polyamide membrane (NTR 729HF) MWCO = 700 pH 6.5 Effective membrane area = 0.006 m2 | As(V) As(III) | 0.5 | (5–9) | 0.1–5 | 81 57 | [125] |
Polyamide thin film composite (NF90- 2540) Active surface area = 2.6 m2 MWCO = 200 Da | As(V) | 0.1 | 8 | 6 | >90 | [76] |
Composite polyamide spiral wound membrane(NFI) Membrane area = 0.75 m2 Pure water permeability = 3.20 L/hm2 bar | Cr(VI) | 1000 | 5–8 | 99 | [73] |
Characteristics of Membrane | Heavy Metal Targeted | Initial Metal Concentration (mg/L) | Operating Conditions | Pressure (bar) | Removal Efficiency | Ref |
---|---|---|---|---|---|---|
TFC spiral wound membrane Active area = 1.95 m2 Allowable operating pH range = 4–11 Max operating temperature = 45 °C Max feed turbidity, NTU = 1 Max feed SDI = 5 | Cu(II) Ni(II) | 500 | Na2EDTA was added as a chelating agent at pH 5 | 5.06 | 99.5 | [126] |
Disk membranes Polyamide selective layer is supported on the polysulfone layer | Cu(II) | 20–100 | Addition of Sodium dodecyl sulphate increased the removal efficiency | Low pressure | 70–95 | [127] |
Polyamide thin film composite membrane MWCO = N.A Pure water permeability = 0.75 L m−2 d−1 kPa−1 pH range = 3–10 Zeta potential = −4.5 mV | Cr(VI) As(V) | 0.1 | 8 | 5.13 | >90 | [106] |
Polyamide membrane Active area = 0.014 m2 | As(V) | 0.1 | 10–40 | 99.75 | [128] | |
Brackish water membrane Active surface area = 0.014 m2 | As(III) | pH 9.6 | 40 | 99 | [129] | |
SWHR membrane (Filmtec) | As(V) As(III) | 0.2 | pH 4 pH 9.1 | 10–35 | 96.8 92.5 | [130] |
Polyamide spiral wound membrane Membrane surface area = 2.5 m2 pH range = (4–11) | Cu(II) Cd(II) | 500 | 13 | 98 99 | [131] | |
SE and MPF44 NF membranes Active membrane surface area = 0.0028 m2 | Cu(II) | 2 M | 35 | >95 | [67] |
2.4. Fouling of Membranes
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bolisetty, S.; Peydayesh, M.; Mezzenga, R. Sustainable technologies for water purification from heavy metals: Review and analysis. Chem. Soc. Rev. 2019, 48, 463–487. [Google Scholar] [CrossRef]
- Ihsanullah; Abbas, A.; Al-Amer, A.M.; Laoui, T.; Al-Marri, M.J.; Nasser, M.S.; Khraisheh, M.; Atieh, M.A. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016, 157, 141–161. [Google Scholar] [CrossRef]
- Hong, M.; Yu, L.; Wang, Y.; Zhang, J.; Chen, Z.; Dong, L.; Zan, Q.; Li, R. Heavy metal adsorption with zeolites: The role of hierarchical pore architecture. Chem. Eng. J. 2019, 359, 363–372. [Google Scholar] [CrossRef]
- Taseidifar, M.; Ziaee, M.; Pashley, R.M.; Ninham, B.W. Ion flotation removal of a range of contaminant ions from drinking water. J. Environ. Chem. Eng. 2019, 7, 103263. [Google Scholar] [CrossRef]
- Jaafari, J.; Yaghmaeian, K. Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere 2019, 217, 447–455. [Google Scholar] [CrossRef]
- Ahmed, M.J.K.; Ahmaruzzaman, M. A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. J. Water Process Eng. 2016, 10, 39–47. [Google Scholar] [CrossRef]
- Patil, D.S.; Chavan, S.M.; Oubagaranadin, J.U.K. A review of technologies for manganese removal from wastewaters. J. Environ. Chem. Eng. 2016, 4, 468–487. [Google Scholar] [CrossRef]
- Aslam, A.; Thomas-Hall, S.R.; Mughal, T.; Zaman, Q.U.; Ehsan, N.; Javied, S.; Schenk, P.M. Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO2 concentrations. J. Environ. Manag. 2019, 241, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Kirkelund, G.M.; Jensen, P.E.; Ottosen, L.M.; Pedersen, K.B. Comparison of two- and three-compartment cells for electrodialytic removal of heavy metals from contaminated material suspensions. J. Hazard. Mater. 2019, 367, 68–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendergast, M.T.; Hoek, E.M.V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.S.; Baek, K.; Yang, J.W. Crossflow ultrafiltration of surfactant solutions. Desalination 2005, 184, 385–394. [Google Scholar] [CrossRef]
- Mungray, A.A.; Kulkarni, S.V.; Mungray, A.K. Removal of heavy metals from wastewater using micellar enhanced ultrafiltration technique: A review. Cent. Eur. J. Chem. 2012, 10, 27–46. [Google Scholar] [CrossRef]
- Chhatre, A.J.; Marathe, K.V. Dynamic analysis and optimization of surfactant dosage in micellar enhanced ultrafiltration of nickel from aqueous streams. Sep. Sci. Technol. 2006, 41, 2755–2770. [Google Scholar] [CrossRef]
- Nura, C.S.; Chattree, A.; Singh, R.P.; Nath, S. Removal of hexavalent chromium by mixed micelles of cetyl trimethyl ammonium bromide using micellar enhanced ultrafiltration. IJCS 2017, 5, 627–631. [Google Scholar]
- Landaburu-Aguirre, J.; García, V.; Pongrácz, E.; Keiski, R.L. The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: Statistical design of experiments. Desalination 2009, 240, 262–269. [Google Scholar] [CrossRef]
- Samper, E.; Rodríguez, M.; De la Rubia, M.A.; Prats, D. Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Sep. Purif. Technol. 2009, 65, 337–342. [Google Scholar] [CrossRef]
- Ghosh, G.; Bhattacharya, P.K. Hexavalent chromium ion removal through micellar enhanced ultrafiltration. Chem. Eng. J. 2006, 119, 45–53. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Chang, W.S.; Nguyen, N.C.; Chen, S.S.; Chang, H.M. Influence of micelle properties on micellar-Enhanced ultrafiltration for chromium recovery. Water Sci. Technol. 2015, 72, 2045–2051. [Google Scholar] [CrossRef]
- Rafique, R.F.; Lee, S. Micellar Enhanced Ultrafiltration (MEUF) and activated carbon fiber (ACF) hybrid processes for the removal of cadmium from an aqueous solution. Korean Chem. Eng. Res. 2014, 52, 775–780. [Google Scholar] [CrossRef] [Green Version]
- Tortora, F.; Innocenzi, V.; Prisciandaro, M.; Mazziotti di Celso, G.; Vegliò, F. Analysis of membrane performance in Ni and Co removal from liquid wastes by means of micellar-enhanced ultrafiltration. Desalin. Water Treat. 2016, 57, 22860–22867. [Google Scholar] [CrossRef]
- Bahmani, P.; Maleki, A.; Rezaee, R.; Khamforosh, M.; Yetilmezsoy, K.; Dehestani Athar, S.; Gharibi, F. Simultaneous removal of arsenate and nitrate from aqueous solutions using micellar-enhanced ultrafiltration process. J. Water Process Eng. 2019, 27, 24–31. [Google Scholar] [CrossRef]
- Huang, J.H.; Zeng, G.M.; Zhou, C.F.; Li, X.; Shi, L.J.; He, S.B. Adsorption of surfactant micelles and Cd2+/Zn2+ in micellar-enhanced ultrafiltration. J. Hazard. Mater. 2010, 183, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Landaburu-Aguirre, J.; Pongrácz, E.; Perämäki, P.; Keiski, R.L. Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: Use of response surface methodology to improve understanding of process performance and optimisation. J. Hazard. Mater. 2010, 180, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Danis, U.; Aydiner, C. Investigation of process performance and fouling mechanisms in micellar-enhanced ultrafiltration of nickel-contaminated waters. J. Hazard. Mater. 2009, 162, 577–587. [Google Scholar] [CrossRef]
- Huang, J.; Yuan, F.; Zeng, G.; Li, X.; Gu, Y.; Shi, L.; Liu, W.; Shi, Y. Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere 2017, 173, 199–206. [Google Scholar] [CrossRef]
- Verma, S.P.; Sarkar, B. Simultaneous removal of Cd (II) and p-cresol from wastewater by micellar-enhanced ultrafiltration using rhamnolipid: Flux decline, adsorption kinetics and isotherm studies. J. Environ. Manag. 2018, 213, 217–235. [Google Scholar] [CrossRef]
- Innocenzi, V.; Prisciandaro, M.; Tortora, F.; Mazziotti di Celso, G.; Vegliò, F. Treatment of WEEE industrial wastewaters: Removal of yttrium and zinc by means of micellar enhanced ultra filtration. Waste Manag. 2018, 74, 393–403. [Google Scholar] [CrossRef]
- Lee, S.H.; Shrestha, S. Application of micellar enhanced ultrafiltration (MEUF) process for zinc (II) removal in synthetic wastewater: Kinetics and two-parameter isotherm models. Int. Biodeterior. Biodegrad. 2014, 95, 241–250. [Google Scholar] [CrossRef]
- Häyrynen, P.; Landaburu-Aguirre, J.; Pongrácz, E.; Keiski, R.L. Study of permeate flux in micellar-enhanced ultrafiltration on a semi-pilot scale: Simultaneous removal of heavy metals from phosphorous rich real wastewaters. Sep. Purif. Technol. 2012, 93, 59–66. [Google Scholar] [CrossRef]
- Abbasi-Garravand, E.; Mulligan, C.N. Using micellar enhanced ultrafiltration and reduction techniques for removal of Cr(VI) and Cr(III) from water. Sep. Purif. Technol. 2014, 132, 505–512. [Google Scholar] [CrossRef]
- Schwarze, M.; Groß, M.; Moritz, M.; Buchner, G.; Kapitzki, L.; Chiappisi, L.; Gradzielski, M. Micellar enhanced ultrafiltration (MEUF) of metal cations with oleylethoxycarboxylate. J. Membr. Sci. 2015, 478, 140–147. [Google Scholar] [CrossRef]
- Tanhaei, B.; Pourafshari Chenar, M.; Saghatoleslami, N.; Hesampour, M.; Laakso, T.; Kallioinen, M.; Sillanpää, M.; Mänttäri, M. Simultaneous removal of aniline and nickel from water by micellar-enhanced ultrafiltration with different molecular weight cut-off membranes. Sep. Purif. Technol. 2014, 124, 26–35. [Google Scholar] [CrossRef]
- Channarong, B.; Lee, S.H.; Bade, R.; Shipin, O.V. Simultaneous removal of nickel and zinc from aqueous solution by micellar-enhanced ultrafiltration and activated carbon fiber hybrid process. Desalination 2010, 262, 221–227. [Google Scholar] [CrossRef]
- Tanhaei, B.; Pourafshari Chenar, M.; Saghatoleslami, N.; Hesampour, M.; Kallioinen, M.; Sillanpää, M.; Mänttäri, M. Removal of nickel ions from aqueous solution by micellar-enhanced ultrafiltration, using mixed anionic-non-ionic surfactants. Sep. Purif. Technol. 2014, 138, 169–176. [Google Scholar] [CrossRef]
- Li, X.; Zeng, G.M.; Huang, J.H.; Zhang, D.M.; Shi, L.J.; He, S.B.; Ruan, M. Simultaneous removal of cadmium ions and phenol with MEUF using SDS and mixed surfactants. Desalination 2011, 276, 136–141. [Google Scholar] [CrossRef]
- Huang, J.; Shi, L.; Zeng, G.; Li, H.; Huang, H.; Gu, Y.; Shi, Y.; Yi, K.; Li, X. Removal of Cd(Ⅱ) by micellar enhanced ultrafiltration: Role of SDS behaviors on membrane with low concentration. J. Clean. Prod. 2019, 209, 53–61. [Google Scholar] [CrossRef]
- Huang, J.; Li, H.; Zeng, G.; Shi, L.; Gu, Y.; Shi, Y.; Tang, B.; Li, X. Removal of Cd(II) by MEUF-FF with anionic-nonionic mixture at low concentration. Sep. Purif. Technol. 2018, 207, 199–205. [Google Scholar] [CrossRef]
- Li, C.W.; Liu, C.K.; Yen, W.S. Micellar-enhanced ultrafiltration (MEUF) with mixed surfactants for removing Cu(II) ions. Chemosphere 2006, 63, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Ennigrou, D.J.; Sik Ali, M.B.; Dhahbi, M.; Ferid, M. Removal of heavy metals from aqueous solution by polyacrylic acid enhanced ultrafiltration. Desalin. Water Treat. 2015, 56, 2682–2688. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, D.; Wang, X.; Huang, W.; Lawless, D.; Feng, X. Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation. Sep. Purif. Technol. 2016, 158, 124–136. [Google Scholar] [CrossRef]
- Aroua, M.K.; Zuki, F.M.; Sulaiman, N.M. Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. J. Hazard. Mater. 2007, 147, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.R.; Mao, L.J. Removal of heavy metal ions from aqueous solution by ultrafiltration assisted with copolymer of maleic acid and acrylic acid. Desalination 2013, 329, 78–85. [Google Scholar] [CrossRef]
- Kim, H.J.; Baek, K.; Kim, B.K.; Yang, J.W. Humic substance-enhanced ultrafiltration for removal of cobalt. J. Hazard. Mater. 2005, 122, 31–36. [Google Scholar] [CrossRef]
- Muthumareeswaran, M.R.; Alhoshan, M.; Agarwal, G.P. Ultrafiltration membrane for effective removal of chromium ions from potable water. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Molinari, R.; Poerio, T.; Argurio, P. Selective separation of copper(II) and nickel(II) from aqueous media using the complexation-ultrafiltration process. Chemosphere 2008, 70, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Gao, J.; Qiu, Y.R. Removal of Ni (II) and Cr (III) by complexation-ultrafiltration using rotating disk membrane and the selective separation by shear induced dissociation. Chem. Eng. Process. Process Intensif. 2019, 135, 236–244. [Google Scholar] [CrossRef]
- Sánchez, J.; Espinosa, C.; Pooch, F.; Tenhu, H.; Pizarro, G.D.C.; Oyarzún, D.P. Poly(N,N-dimethylaminoethyl methacrylate) for removing chromium (VI) through polymer-enhanced ultrafiltration technique. React. Funct. Polym. 2018, 127, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Camarillo, R.; Pérez, Á.; Cañizares, P.; de Lucas, A. Removal of heavy metal ions by polymer enhanced ultrafiltration. Batch process modeling and thermodynamics of complexation reactions. Desalination 2012, 286, 193–199. [Google Scholar] [CrossRef]
- Labanda, J.; Khaidar, M.S.; Llorens, J. Feasibility study on the recovery of chromium (III) by polymer enhanced ultrafiltration. Desalination 2009, 249, 577–581. [Google Scholar] [CrossRef]
- Camarillo, R.; Llanos, J.; García-Fernández, L.; Pérez, Á.; Cañizares, P. Treatment of copper (II)-loaded aqueous nitrate solutions by polymer enhanced ultrafiltration and electrodeposition. Sep. Purif. Technol. 2010, 70, 320–328. [Google Scholar] [CrossRef]
- Llanos, J.; Camarillo, R.; Pérez, Á.; Cañizares, P. Polymer supported ultrafiltration as a technique for selective heavy metal separation and complex formation constants prediction. Sep. Purif. Technol. 2010, 73, 126–134. [Google Scholar] [CrossRef]
- Jellouli Ennigrou, D.; Gzara, L.; Ramzi Ben Romdhane, M.; Dhahbi, M. Cadmium removal from aqueous solutions by polyelectrolyte enhanced ultrafiltration. Desalination 2009, 246, 363–369. [Google Scholar] [CrossRef]
- Ennigrou, D.J.; Ben Sik Ali, M.; Dhahbi, M. Copper and Zinc removal from aqueous solutions by polyacrylic acid assisted-ultrafiltration. Desalination 2014, 343, 82–87. [Google Scholar] [CrossRef]
- Lam, B.; Déon, S.; Morin-Crini, N.; Crini, G.; Fievet, P. Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. J. Clean. Prod. 2018, 171, 927–933. [Google Scholar] [CrossRef]
- Huang, Y.; Du, J.; Zhang, Y.; Lawless, D.; Feng, X. Batch process of polymer-enhanced ultrafiltration to recover mercury (II) from wastewater. J. Membr. Sci. 2016, 514, 229–240. [Google Scholar] [CrossRef]
- Chou, Y.H.; Choo, K.H.; Chen, S.S.; Yu, J.H.; Peng, C.Y.; Li, C.W. Copper recovery via polyelectrolyte enhanced ultrafiltration followed by dithionite based chemical reduction: Effects of solution pH and polyelectrolyte type. Sep. Purif. Technol. 2018, 198, 113–120. [Google Scholar] [CrossRef]
- Ennigrou, D.J.; Gzara, L.; Romdhane, M.R.B.; Dhahbi, M. Retention of cadmium ions from aqueous solutions by poly(ammonium acrylate) enhanced ultrafiltration. Chem. Eng. J. 2009, 155, 138–143. [Google Scholar] [CrossRef]
- Cañizares, P.; Pérez, Á.; Llanos, J.; Rubio, G. Preliminary design and optimisation of a PEUF process for Cr(VI) removal. Desalination 2008, 223, 229–237. [Google Scholar] [CrossRef]
- Barakat, M.A.; Schmidt, E. Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination 2010, 256, 90–93. [Google Scholar] [CrossRef]
- Huang, Y.; Du, J.R.; Zhang, Y.; Lawless, D.; Feng, X. Removal of mercury (II) from wastewater by polyvinylamine-enhanced ultrafiltration. Sep. Purif. Technol. 2015, 154, 1–10. [Google Scholar] [CrossRef]
- Llanos, J.; Pérez, Á.; Cañizares, P. Copper recovery by polymer enhanced ultrafiltration (PEUF) and electrochemical regeneration. J. Membr. Sci. 2008, 323, 28–36. [Google Scholar] [CrossRef]
- Cañizares, P.; Pérez, Á.; Camarillo, R.; Llanos, J.; López, M.L. Selective separation of Pb from hard water by a semi-continuous polymer-enhanced ultrafiltration process (PEUF). Desalination 2007, 206, 602–613. [Google Scholar] [CrossRef]
- Tajuddin, M.H.; Yusof, N.; Wan Azelee, I.; Wan Salleh, W.N.; Ismail, A.F.; Jaafar, J.; Aziz, F.; Nagai, K.; Razali, N.F. Development of copper-aluminum layered double hydroxide in thin film nanocomposite nanofiltration membrane for water purification process. Front. Chem. 2019, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.C.; An, Q.F.; Wu, J.K.; Zhao, F.Y.; Zheng, P.Y.; Wang, N.X. Nanofiltration membranes consisting of quaternized polyelectrolyte complex nanoparticles for heavy metal removal. Chem. Eng. J. 2019, 359, 994–1005. [Google Scholar] [CrossRef]
- Yaroshchuk, A.E. Non-steric mechanisms of nanofiltration: Superposition of Donnan and dielectric exclusion. Sep. Purif. Technol. 2001, 22–23, 143–158. [Google Scholar] [CrossRef]
- Yaroshchuk, A.E. Dielectric exclusion of ions from membranes. Adv. Colloid Interface Sci. 2000, 85, 193–230. [Google Scholar] [CrossRef]
- Cséfalvay, E.; Pauer, V.; Mizsey, P. Recovery of copper from process waters by nanofiltration and reverse osmosis. Desalination 2009, 240, 132–142. [Google Scholar] [CrossRef]
- Gherasim, C.V.; Hancková, K.; Palarčík, J.; Mikulášek, P. Investigation of cobalt(II) retention from aqueous solutions by a polyamide nanofiltration membrane. J. Membr. Sci. 2015, 490, 46–56. [Google Scholar] [CrossRef]
- Murthy, Z.V.P.; Chaudhari, L.B. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. J. Hazard. Mater. 2008, 160, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Boricha, A.G.; Murthy, Z.V.P. Preparation, characterization and performance of nanofiltration membranes for the treatment of electroplating industry effluent. Sep. Purif. Technol. 2009, 65, 282–289. [Google Scholar] [CrossRef]
- Gherasim, C.V.; Cuhorka, J.; Mikulášek, P. Analysis of lead(II) retention from single salt and binary aqueous solutions by a polyamide nanofiltration membrane: Experimental results and modelling. J. Membr. Sci. 2013, 436, 132–144. [Google Scholar] [CrossRef]
- Gao, J.; Sun, S.P.; Zhu, W.P.; Chung, T.S. Green modification of outer selective P84 nanofiltration (NF) hollow fiber membranes for cadmium removal. J. Membr. Sci. 2016, 499, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Muthukrishnan, M.; Guha, B.K. Effect of pH on rejection of hexavalent chromium by nanofiltration. Desalination 2008, 219, 171–178. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, C.; Wang, Y.; Fan, W.; Luan, Z. Effects of ion concentration and natural organic matter on arsenic(V) removal by nanofiltration under different transmembrane pressures. J. Environ. Sci. 2013, 25, 302–307. [Google Scholar] [CrossRef]
- Urgun-Demirtas, M.; Benda, P.L.; Gillenwater, P.S.; Negri, M.C.; Xiong, H.; Snyder, S.W. Achieving very low mercury levels in refinery wastewater by membrane filtration. J. Hazard. Mater. 2012, 215–216, 98–107. [Google Scholar] [CrossRef]
- Figoli, A.; Cassano, A.; Criscuoli, A.; Mozumder, M.S.I.; Uddin, M.T.; Islam, M.A.; Drioli, E. Influence of operating parameters on the arsenic removal by nanofiltration. Water Res. 2010, 44, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Murthy, Z.V.P.; Chaudhari, L.B. Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using Spiegler-Kedem model. Chem. Eng. J. 2009, 150, 181–187. [Google Scholar] [CrossRef]
- Koseoglu, H.; Kitis, M. The recovery of silver from mining wastewaters using hybrid cyanidation and high-pressure membrane process. Miner. Eng. 2009, 22, 440–444. [Google Scholar] [CrossRef]
- Zeng, G.; He, Y.; Zhan, Y.; Zhang, L.; Pan, Y.; Zhang, C.; Yu, Z. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. J. Hazard. Mater. 2016, 317, 60–72. [Google Scholar] [CrossRef]
- Zhu, W.P.; Gao, J.; Sun, S.P.; Zhang, S.; Chung, T.S. Poly(amidoamine) dendrimer (PAMAM) grafted on thin film composite (TFC) nanofiltration (NF) hollow fiber membranes for heavy metal removal. J. Membr. Sci. 2015, 487, 117–126. [Google Scholar] [CrossRef]
- Gao, J.; Sun, S.P.; Zhu, W.P.; Chung, T.S. Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal. Water Res. 2014, 63, 252–261. [Google Scholar] [CrossRef]
- Wang, K.Y.; Chung, T.S. Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate. J. Membr. Sci. 2006, 281, 307–315. [Google Scholar] [CrossRef]
- Ren, X.; Zhao, C.; Du, S.; Wang, T.; Luan, Z.; Wang, J.; Hou, D. Fabrication of asymmetric poly (m-phenylene isophthalamide) nanofiltration membrane for chromium(VI) removal. J. Environ. Sci. 2010, 22, 1335–1341. [Google Scholar] [CrossRef]
- Nedzarek, A.; Drost, A.; Harasimiuk, F.B.; Tórz, A. The influence of pH and BSA on the retention of selected heavy metals in the nanofiltration process using ceramic membrane. Desalination 2015, 369, 62–67. [Google Scholar] [CrossRef]
- Sayed, S.; Tarek, S.; Dijkstra, I.; Moerman, C. Optimum operation conditions of direct capillary nanofiltration for wastewater treatment. Desalination 2007, 214, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Zolfaghari, G.; Kargar, M. Nanofiltration and microfiltration for the removal of chromium, total dissolved solids, and sulfate from water. MethodsX 2019, 6, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.P.; Sun, S.P.; Gao, J.; Fu, F.J.; Chung, T.S. Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. J. Membr. Sci. 2014, 456, 117–127. [Google Scholar] [CrossRef]
- Lv, J.; Wang, K.Y.; Chung, T.S. Investigation of amphoteric polybenzimidazole (PBI) nanofiltration hollow fiber membrane for both cation and anions removal. J. Membr. Sci. 2008, 310, 557–566. [Google Scholar] [CrossRef]
- Gao, J.; Sun, S.P.; Zhu, W.P.; Chung, T.S. Polyethyleneimine (PEI) cross-linked P84 nanofiltration (NF) hollow fiber membranes for Pb2+ removal. J. Membr. Sci. 2014, 452, 300–310. [Google Scholar] [CrossRef]
- Qi, Y.; Zhu, L.; Shen, X.; Sotto, A.; Gao, C.; Shen, J. Polythyleneimine-modified original positive charged nanofiltration membrane: Removal of heavy metal ions and dyes. Sep. Purif. Technol. 2019, 222, 117–124. [Google Scholar] [CrossRef]
- Zareei, F.; Hosseini, S.M. A new type of polyethersulfone based composite nanofiltration membrane decorated by cobalt ferrite-copper oxide nanoparticles with enhanced performance and antifouling property. Sep. Purif. Technol. 2019, 226, 48–58. [Google Scholar] [CrossRef]
- Rafieian, F.; Jonoobi, M.; Yu, Q. A novel nanocomposite membrane containing modified cellulose nanocrystals for copper ion removal and dye adsorption from water. Cellulose 2019, 26, 3359–3373. [Google Scholar] [CrossRef]
- Gomes, S.; Cavaco, S.A.; Quina, M.J.; Gando-Ferreira, L.M. Nanofiltration process for separating Cr(III) from acid solutions: Experimental and modelling analysis. Desalination. 2010, 254, 80–89. [Google Scholar] [CrossRef]
- López, J.; Reig, M.; Gibert, O.; Cortina, J.L. Increasing sustainability on the metallurgical industry by integration of membrane nanofiltration processes: Acid recovery. Sep. Purif. Technol. 2019, 226, 267–277. [Google Scholar] [CrossRef]
- López, J.; Gibert, O.; Cortina, J.L. Evaluation of an extreme acid-resistant sulphonamide based nanofiltration membrane for the valorisation of copper acidic effluents. Chem. Eng. J. 2020, 127015. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; González-Melgoza, L.L.; García-Depraect, O. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water. Chemosphere 2021, 270, 129421. [Google Scholar] [CrossRef]
- Shahalamqb, A.M.; Al-harthyb, A.; Al-zawhryb, A. Feed water pretreatment in RO systems in the Middle East. Desalination 2015, 37, 16–24. [Google Scholar]
- Rodrigues Pires da Silva, J.; Merçon, F.; Guimarães Costa, C.M.; Radoman Benjo, D. Application of reverse osmosis process associated with EDTA complexation for nickel and copper removal from wastewater. Desalin. Water Treat. 2016, 57, 19466–19474. [Google Scholar] [CrossRef]
- Petrinic, I.; Korenak, J.; Povodnik, D.; Hélix-Nielsen, C. A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry. J. Clean. Prod. 2015, 101, 292–300. [Google Scholar] [CrossRef]
- Mnif, A.; Bejaoui, I.; Mouelhi, M.; Hamrouni, B. Hexavalent Chromium Removal from Model Water and Car Shock Absorber Factory Effluent by Nanofiltration and Reverse Osmosis Membrane. Int. J. Anal. Chem. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Çimen, A. Removal of chromium from wastewater by reverse osmosis. Russ. J. Phys. Chem. A 2015, 89, 1238–1243. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.H.; Babel, S. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Zhong, C.-M.; Xu, Z.-L.; Fang, X.-H.; Cheng, L. Treatment of Acid Mine Drainage (AMD) by Ultra-Low-Pressure Reverse Osmosis and Nanofiltration. Environ. Eng. Sci. 2007, 24, 1297–1306. [Google Scholar] [CrossRef]
- Ricci, B.C.; Ferreira, C.D.; Aguiar, A.O.; Amaral, M.C.S. Integration of nanofiltration and reverse osmosis for metal separation and sulfuric acid recovery from gold mining effluent. Sep. Purif. Technol. 2015, 154, 11–21. [Google Scholar] [CrossRef]
- Choi, J.; Im, S.J.; Jang, A. Application of volume retarded osmosis—Low pressure membrane hybrid process for recovery of heavy metals in acid mine drainage. Chemosphere 2019, 232, 264–272. [Google Scholar] [CrossRef]
- Balanyà, T.; Labanda, J.; Llorens, J.; Sabaté, J. Influence of chemical speciation on the separation of metal ions from chelating agents by nanofiltration membranes. Sep. Sci. Technol. 2019, 54, 143–152. [Google Scholar] [CrossRef]
- Wei, X.Z.; Gan, Z.Q.; Shen, Y.J.; Qiu, Z.L.; Fang, L.F.; Zhu, B.K. Negatively-charged nanofiltration membrane and its hexavalent chromium removal performance. J. Colloid Interface Sci. 2019, 553, 475–483. [Google Scholar] [CrossRef]
- Sangeetha, K.; Sudha, P.N.; Faleh, A.A.; Sukumaran, A. Novel chitosan based thin sheet nanofiltration membrane for rejection of heavy metal chromium. Int. J. Biol. Macromol. 2019, 132, 939–953. [Google Scholar] [CrossRef]
- Jia, T.Z.; Lu, J.P.; Cheng, X.Y.; Xia, Q.C.; Cao, X.L.; Wang, Y.; Xing, W.; Sun, S.P. Surface enriched sulfonated polyarylene ether benzonitrile (SPEB) that enhances heavy metal removal from polyacrylonitrile (PAN) thin-film composite nanofiltration membranes. J. Membr. Sci. 2019, 580, 214–223. [Google Scholar] [CrossRef]
- Belkhouche, N.-E.; Merad, N.S.; Mesli, M.; Sefrou, Z. Separation of cobalt and nickel by nanofiltration using a FilmTec membrane. Euro-Mediterr. J. Environ. Integr. 2018, 3, 1–11. [Google Scholar] [CrossRef]
- Al-Rashdi, B.A.M.; Johnson, D.J.; Hilal, N. Removal of heavy metal ions by nanofiltration. Desalination 2013, 315, 2–17. [Google Scholar] [CrossRef]
- Maher, A.; Sadeghi, M.; Moheb, A. Heavy metal elimination from drinking water using nanofiltration membrane technology and process optimization using response surface methodology. Desalination 2014, 352, 166–173. [Google Scholar] [CrossRef]
- Abdi, G.; Alizadeh, A.; Zinadini, S.; Moradi, G. Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid. J. Membr. Sci. 2018, 552, 326–335. [Google Scholar] [CrossRef]
- Gherasim, C.V.; Mikulášek, P. Influence of operating variables on the removal of heavy metal ions from aqueous solutions by nanofiltration. Desalination 2014, 343, 67–74. [Google Scholar] [CrossRef]
- Yoon, J.; Amy, G.; Chung, J.; Sohn, J.; Yoon, Y. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes. Chemosphere 2009, 77, 228–235. [Google Scholar] [CrossRef]
- Harisha, R.S.; Hosamani, K.M.; Keri, R.S.; Nataraj, S.K.; Aminabhavi, T.M. Arsenic removal from drinking water using thin film composite nanofiltration membrane. Desalination 2010, 252, 75–80. [Google Scholar] [CrossRef]
- Sen, M.; Manna, A.; Pal, P. Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system. J. Membr. Sci. 2010, 354, 108–113. [Google Scholar] [CrossRef]
- Wei, X.; Kong, X.; Wang, S.; Xiang, H.; Wang, J.; Chen, J. Removal of heavy metals from electroplating wastewater by thin-film composite nanofiltration hollow-fiber membranes. Ind. Eng. Chem. Res. 2013, 52, 17583–17590. [Google Scholar] [CrossRef]
- Ku, Y.; Chen, S.W.; Wang, W.Y. Effect of solution composition on the removal of copper ions by nanofiltration. Sep. Purif. Technol. 2005, 43, 135–142. [Google Scholar] [CrossRef]
- Mehdipour, S.; Vatanpour, V.; Kariminia, H.R. Influence of ion interaction on lead removal by a polyamide nanofiltration membrane. Desalination 2015, 362, 84–92. [Google Scholar] [CrossRef]
- Chaudhari, L.B.; Murthy, Z.V.P. Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model. J. Hazard. Mater. 2010, 180, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Tanninen, J.; Platt, S.; Weis, A.; Nyström, M. Long-term acid resistance and selectivity of NF membranes in very acidic conditions. J. Membr. Sci. 2004, 240, 11–18. [Google Scholar] [CrossRef]
- Chaabane, T.; Taha, S.; Taleb Ahmed, M.; Maachi, R.; Dorange, G. Removal of copper from industrial effluent using a spiral wound module—Film theory and hydrodynamic approach. Desalination 2006, 200, 403–405. [Google Scholar] [CrossRef]
- Sudilovskiy, P.S.; Kagramanov, G.G.; Kolesnikov, V.A. Use of RO and NF for treatment of copper containing wastewaters in combination with flotation. Desalination 2008, 221, 192–201. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Vigneswaran, S.; Ngo, H.H.; Shon, H.K.; Kandasamy, J. Arsenic removal by a membrane hybrid filtration system. Desalination 2009, 236, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Mohsen-Nia, M.; Montazeri, P.; Modarress, H. Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination 2007, 217, 276–281. [Google Scholar] [CrossRef]
- ZHANG, L.; WU, Y.; QU, X.; LI, Z.; NI, J. Mechanism of combination membrane and electro-winning process on treatment and remediation of Cu2+ polluted water body. J. Environ. Sci. 2009, 21, 764–769. [Google Scholar] [CrossRef]
- Abejón, A.; Garea, A.; Irabien, A. Arsenic removal from drinking water by reverse osmosis: Minimization of costs and energy consumption. Sep. Purif. Technol. 2015, 144, 46–53. [Google Scholar] [CrossRef]
- Teychene, B.; Collet, G.; Gallard, H.; Croue, J.P. A comparative study of boron and arsenic (III) rejection from brackish water by reverse osmosis membranes. Desalination 2013, 310, 109–114. [Google Scholar] [CrossRef]
- Akin, I.; Arslan, G.; Tor, A.; Cengeloglu, Y.; Ersoz, M. Removal of arsenate [As(V)] and arsenite [As(III)] from water by SWHR and BW-30 reverse osmosis. Desalination 2011, 281, 88–92. [Google Scholar] [CrossRef]
- Qdais, H.A.; Moussa, H. Removal of heavy metals from wastewater by membrane processes: A comparative study. Desalination 2004, 164, 105–110. [Google Scholar] [CrossRef]
- Shirazi, S.; Lin, C.J.; Chen, D. Inorganic fouling of pressure-driven membrane processes—A critical review. Desalination 2010, 250, 236–248. [Google Scholar] [CrossRef]
- Tu, K.L.; Chivas, A.R.; Nghiem, L.D. Effects of membrane fouling and scaling on boron rejection by nano fi ltration and reverse osmosis membranes. Desalination 2011, 279, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Jafari, M.; Vanoppen, M.; van Agtmaal, J.M.C.; Cornelissen, E.R.; Vrouwenvelder, J.S.; Verliefde, A.; van Loosdrecht, M.C.M.; Picioreanu, C. Cost of fouling in full-scale reverse osmosis and nanofiltration installations in the Netherlands. Desalination. 2021, 500, 114865. [Google Scholar] [CrossRef]
- Lyu, Z.; Ng, T.C.A.; Duc, T.T.; Lim, G.J.H.; Gu, Q.; Zhang, L.; Zhang, Z.; Ding, J.; Thien, N.P.; Wang, J.; et al. 3D-printed surface-patterned ceramic membrane with enhanced performance in crossflow filtration. J. Membr. Sci. 2020, 606, 118138. [Google Scholar] [CrossRef]
- Ng, T.C.A.; Lyu, Z.; Gu, Q.; Zhang, L.; Poh, W.J.; Zhang, Z.; Wang, J.; Ng, H.W. Effect of gradient profile in ceramic membranes on filtration characteristics: Implications for membrane development. J. Membr. Sci. 2020, 595, 117576. [Google Scholar] [CrossRef]
- Zhang, L.; Ng, T.C.A.; Liu, X.; Gu, Q.; Pang, Y.; Zhang, Z.; Lyu, Z.; He, Z.; Ng, H.Y.; Wang, J. Hydrogenated TiO2 membrane with photocatalytically enhanced anti-fouling for ultrafiltration of surface water. Appl. Catal. 2020, 264, 118528. [Google Scholar] [CrossRef]
Membrane Material | Characteristic of Membrane | Heavy Metal Targeted | Surfactant/Complexing Agent Used | Optimum Pressure (Bar) | Surfactant Concentration (mM) | Initial Concentration (mg/L) | pH | % Removal | Reference |
---|---|---|---|---|---|---|---|---|---|
Ceramic | MWCO = 210 kDa | Ni(II) Co(II) | Sodium dodecyl sulphate | 2.8 | 0.025 | 10 | 7 | 53 51 | [20] |
PAN Membrane | Area = 0.00124 m2 | As(V) | Cetyl Pyridinium Chloride (CPC) | 1 | 5 | 1 | 7–8 | 96.9 | [21] |
Polyether sulphone | MWCO = 6000 g mol−1 Area = 0.3 m2 TMP <= 0.15 MPa | Cd(II) Zn(II) | Sodium dodecyl sulphate | 0.7 | 2.15 | 50 | 92–98 | [22] | |
Amicon regenerated cellulose | MWCO = 10 kDa | Cd(II) Zn(II) | Sodium dodecyl sulphate | 3 | 13.9 14.2 | 23 | 99 | [23] | |
Polycarbonate | TMP = 250 kPa | Ni(II) | Sodium lauryl ether sulphate | 2 | 9.2 | 98.6 | [24] | ||
Polyether sulphone | MWCO = 10 kDa Area = 9.6 cm2 Permeate flux = 150 L.m2/h at 0.35 MPa | Cu(II) Cd(II) Zn(II) Pb(II) | Sodium dodecyl sulphate | 8 | (50–300) | >3 >3 3–10 3–10 | 99 | [25] | |
Polyether sulphone | MCO = 10 kDa Area = 32.15 × 10−4 m2 | Cd(II) | Rhamnolipid | 2.76 | 8.04 | 60 | 7.8 | 92 | [26] |
Ceramic | MWCO = 1 kDa | Zn(II) | Sodium dodecyl sulphate | 0.8 | 10 | 2 | 99 | [27] | |
Polyacrylonitrile (PAN) | MWCO = 300,000 Area = 4.8 m2 | Zn(II) | Sodium dodecyl sulphate | 2 | 0.21 | 19.32 | 7 | 84.67 | [28] |
Polyether sulphone | MWCO = 10 kDa Area = 1.6 m2 | Cd(II) Cu(II) | Sodium dodecyl sulphate | 3 | 60 | 0.37 0.41 | 85 81 | [29] | |
Polysulphone | MWCO =10 k Da Area = 0.014 m2 | Cr(VI) Cr(III) | Rhamnolipid | 0.7 | 0.02 | 10 | 6 | 98.7 96.2 | [30] |
Regenerated Cellulose | MWCO = 10 kDa Are a= 0.0013 m2 | Cu(II) Cd(II) Zn(II) Ni(II) Mg(II) | nonaoxyethylene oleylether carboxylic acid (RO90) | 3 | 30.43 | 920 | 6.5 | >95% | [31] |
Polysulphone | MWCO = 1 kDa Area = 0.004 m2 | Ni(II) | Sodium dodecyl sulphate | 2.5 | 16 | 10 | 7 | 97% | [32] |
Polyacrylonitrile (PAN) | MWCO = 100 kDa Area = 0.07 m2 | Ni(II) Zn(II) | Sodium dodecyl sulphate | 1 | 12.75 | 23 | 7 | 96.3 96.7 | [33] |
Polysulphone | MWCO = 10 kDa Area = 0.004 m2 | Ni(II) | Sodium dodecyl sulphate | 1 | 8 | 10 | 11 | 99 | [34] |
Polysulphone | MWCO = 10 kDa Area = 0.3 m2 | Cd(II) | Sodium dodecyl sulphate | 0.3 | 8 | 0.45 | 97 | [35] | |
Polyether sulphone | MWCO = 5 kDa, 10 kDa, 30 kDa Area = 0.00096 m2 | Cd(II) | Sodium dodecyl sulphate | 1 | 4 | 10 | 90 | [36] | |
Polyether sulphone | MWCO = 8 kDa Area = −0.005 m2 | Cd(II) | Sodium dodecyl sulphate | 7.33 | 50 | 98.4 | [37] | ||
Hydrophilic | MWCO = 10 kDa | Cu(II) | polyoxyethylene Octyl phenyl ether (Triton-X) plus Sodium dodecyl sulphate | 2.096 | 1.29 5.67 | 9.2 | 5 | 92 | [38] |
Polyether sulfone | MWCO = 10 kDa Area = 0.003019 m2 | Cd(II) Cu(II) Pb(II) Zn(II) | Sodium dodecyl sulphate | 1 | 9 | 10 | >90 | [16] |
Membrane | Characteristic of Membrane (MWCO) | Heavy Metal | Surfactant/Complexing Agent Used | Optimum Pressure (bar) | Surfactant Concentration | Initial Concentration (mg/L) | pH | % Removal | Ref |
---|---|---|---|---|---|---|---|---|---|
Ceramic | 15 kDa | Cu(II) | Poly (acrylic acid) sodium | 3 | 1 wt% | 160 | 4–5 | 99.5 | [48] |
Ceramic | 15,000 g/mol | Cr(III) | Polyvinyl alcohol (PVA) | 1 wt% | 92 | 5 | >90% | [49] | |
Polyether sulphone | 10 kDa | Pb(II) Cu(II) Fe(III) | Polyvinylamine | 2 | 0.1 wt% | 25 | 7 | 99 97 99 | [40] |
Ceramic | 10 kDa | Cu(II) | Poly (acrylic acid) | 0.4 wt% | 160 | 5.5 | 99.5 | [50] | |
Ceramic | 10 kDa | Cu(II) Zn(II) | Partially ethoxylated polyethyleneimine (PEPEI) | 3 | 0.06 wt% | 90.62 | 6 | Selectivity ratio Cu(II)/Zn(II) = 12.31 | [51] |
Polyether sulphone | 10 kDa | Cd(II) | Poly (ammonium acrylate) | 2 | 3.71 × 10−4 mol/L | 46 | 6.32 | 99 | [52] |
Cellulose | 10 kDa | Cu(II) Zn(II) | Poly (acrylic acid) | 3 | 2 × 10−3 mol/L | 46 | 5 | 97 75 | [53] |
Thin Film Composite | 3.5 kDa | Ni(II) | Chitosan | 28 | 2 × 10−2 mol/L | 0.072 | 5.4 | 90 | [54] |
Polyether sulphone | 10 kDa | Hg(II) | Polyvinylamine | 2 | 0.05 wt% | 10 | >90 | [55] | |
Polyether sulphone | 60 kDa | Cu(II) | Polyethylenimine (PEI) | 1.7 | 25 mM | 230 | 3 | 94 | [56] |
Polysulphone | 8 kDa, 15 kDa | Cd(II) | Poly(ammonium) acrylate | 2 | 46 | 4 | 98 | [57] | |
Ceramic | 10 kDa | Cr(VI) | poly(diallyldimethylammonium chloride) (PDADMAC) | 4 | 0.1 wt% | 50 | 9 | 99 | [58] |
Polyethersulphone | 10 kDa | Cu(II) Ni(II) Cr(III) | Carboxy methyl cellulose | 1 | 1 g/L | 10 | 7 | 97.6 99.1 99.5 | [59] |
Polyether sulphone | 10 kDa | Hg(II) | Polyvinylamine | 2 | 0.1 wt% | 10 | 6–7 | 99 | [60] |
Ceramic | 10 kDa | Cu(II) | Partially ethoxylated polyethylenimine (PEPEI) | 4 | 0.06 wt% | 208 mg Cu/g PEPEI | 6 | 97 | [61] |
Ceramic | 10 kDa | Pb(II) | Poly(acrylic) acid (PAA) | 4 | 0.036% | 100 | 6 | 100 | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, B.; Balomajumder, C.; Sabapathy, M.; Gumfekar, S.P. Pressure-Driven Membrane Process: A Review of Advanced Technique for Heavy Metals Remediation. Processes 2021, 9, 752. https://doi.org/10.3390/pr9050752
Verma B, Balomajumder C, Sabapathy M, Gumfekar SP. Pressure-Driven Membrane Process: A Review of Advanced Technique for Heavy Metals Remediation. Processes. 2021; 9(5):752. https://doi.org/10.3390/pr9050752
Chicago/Turabian StyleVerma, Bharti, Chandrajit Balomajumder, Manigandan Sabapathy, and Sarang P. Gumfekar. 2021. "Pressure-Driven Membrane Process: A Review of Advanced Technique for Heavy Metals Remediation" Processes 9, no. 5: 752. https://doi.org/10.3390/pr9050752
APA StyleVerma, B., Balomajumder, C., Sabapathy, M., & Gumfekar, S. P. (2021). Pressure-Driven Membrane Process: A Review of Advanced Technique for Heavy Metals Remediation. Processes, 9(5), 752. https://doi.org/10.3390/pr9050752