Development and Evaluation of Fluoxetine Fast Dissolving Films: An Alternative for Noncompliance in Pediatric Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Orodispersible Films Preparation
2.2.2. Physical Appearance
2.2.3. Thickness
2.2.4. Weight Uniformity
2.2.5. Tensile Strength
- M—the weight at which the sample cracked;
- g—gravitational acceleration (9.81 N·kg−1);
- W—sample width (mm);
- T—sample thickness (mm).
2.2.6. Folding Endurance
2.2.7. Disintegration Behavior
2.2.8. Orodispersible Films Behavior in the Controlled Humidity and Temperature Conditions
2.2.9. Adhesiveness Capacity
- m—the applied mass that was needed for detachment;
- g—gravitational acceleration (9.81 N·kg−1);
- A—ODFs films surface (surface: 3.14 cm2).
2.2.10. ODF Fluoxetine Dosing
2.2.11. Fluoxetine In Vitro Release
2.2.12. Statistical Analysis
3. Results
3.1. Physical Appearance
3.2. Thickness and Weight Uniformity
3.3. Tensile Strength
3.4. Folding Endurance
3.5. Disintegration Behavior
3.6. Orodispersible Films Behavior in the Controlled Humidity and Temperature Conditions
3.7. Adhesiveness Capacity
3.8. Fluoxetine ODF Dosing
3.9. Statistical Analysis to Establish the Influence of Composition Variables on the ODFs Characteristics
3.10. Drug Release Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Model List of Essential Medicines for Children 7th list 2019. Available online: https://apps.who.int/iris/bitstream/handle/10665/325772/WHO-MVP-EMP-IAU-2019.07-eng.pdf?sequence=1&isAllowed=y (accessed on 28 February 2021).
- Arun, A.; Amrish, C.; Vijay, S.; Pathak, K. Fast dissolving oral films: An innovative drug delivery system and dosage form. Int. J. ChemTech Res. 2010, 2, 576–583. [Google Scholar]
- Borges, A.F.; Silva, C.; Coelho, J.F.; Simões, S. Oral films: Current status and future perspectives. J. Control Release 2015, 206, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Yang, L.; Luo, C.; Wang, Y.; Wang, H.; Chen, F.; Xiang, X. Development, in vitro and in vivo evaluation of racecadotril orodispersible films for pediatric use. AAPS PharmSciTech 2021, 22, 15. [Google Scholar] [CrossRef] [PubMed]
- Harini, C.; Sowjanya, C.H.; Sudheer Kumar, H. Formulation and evaluation of mouth dissolving film containing cetirizine hydrochloride. Int. J. Adv. Res. Med. Pharm. Sci. 2016, 1, 20–25. [Google Scholar]
- Sagar, A.K.; Prafulla, S.C.; Rajesh, J.O.; Sandip, S.K.; Rishikesh, V.A.; Trushal, V.C. Mouth dissolving tablets an innovative technology. Int. J. Appl. Biol. Pharm. Technol. 2011, 2, 496–503. Available online: www.ijabpt.com (accessed on 28 February 2021).
- Speer, I.; Preis, M.; Breitkreutz, J. Prolonged drug release properties for orodispersible films by combining hot-melt extrusion and solvent casting methods. Eur. J. Pharm. Biopharm. 2018, 129, 66–73. [Google Scholar] [CrossRef]
- Senta-Loys, Z.; Bourgeois, S.; Pailler-Mattei, C.; Agusti, G.; Briançon, S.; Fessi, H. Formulation of orodispersible films for paediatric therapy: Investigation of feasibility and stability for tetrabenazine as drug model. J. Pharm. Pharmacol. 2017, 69, 582–592. [Google Scholar] [CrossRef]
- Sharma, D.; Kaur, D.; Verma, S.; Singh, D.; Singh, M.; Singh, G.; Garg, R. Fast dissolving oral films technology: A recent trend for an innovative oral drug delivery system. Int. J. Drug Deliv. 2015, 7, 60–75. [Google Scholar]
- Irfan, M.; Rabel, S.; Bukhtar, Q.; Qadir, M.I.; Jabeen, F.; Khan, A. Orally disintegrating films: A modern expansion in drug delivery system. Saudi Pharm. J. 2016, 24, 537–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, E.M.; Breitenbach, A.; Breitkreutz, J. Advances in orodispersible films for drug delivery. Expert Opin. Drug Deliv. 2011, 8, 299–316. [Google Scholar] [CrossRef]
- Kushwaha, V.; Akhtar, J.; Usmani, S.; Singh, S.P. A review on fast dissolving formulation tehnologies. World J. Pharm. Pharm. Sci. 2015, 4, 575–585. [Google Scholar]
- Naik, T.S.; Khale, A.; Kanekar, H. Evaluation of mouth dissolving films: Physical and chemical methods. Int. J. Pharm. Phytopharmacol. Res. 2014, 4, 62–65. [Google Scholar]
- Lopez, F.L.; Ernest, T.B.; Tuleu, C.; Gul, M.O. Formulation approaches to pediatric oral drug delivery: Benefits and limitations of current platforms. Expert Opin. Drug Deliv. 2015, 12, 1727–1740. [Google Scholar] [CrossRef]
- Emslie, G.J.; Heiligenstein, J.H.; Wagner, K.D.; Hoog, S.L.; Ernest, D.E.; Brown, E.; Nilsson, M.; Jacobson, J.G. Fluoxetine for acute treatment of depression in children and adolescents: A placebo-controlled, randomized clinical trial. J. Am. Acad. Child Adolesc. Psychiatry 2002, 41, 1205–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Fluoxetine (accessed on 23 February 2021).
- Available online: https://go.drugbank.com/drugs/DB00472 (accessed on 23 February 2021).
- Available online: https://www.chemicalbook.com/ProductChemicalPropertiesCB3361058_EN.htm#Chemical%20proper-tis (accessed on 23 February 2021).
- Stokes, P.E. Fluoxetine: A five-year review. Clin. Ther. 1993, 15, 216–243. [Google Scholar]
- Available online: https://www.anm.ro/_/_RCP/RCP_7425_20.12.06.pdf (accessed on 22 February 2021).
- Available online: http://www.sussexpartnership.nhs.uk/sites/default/files/documents/camhs_ad_guidance_v2_final_-_01140.pdf (accessed on 2 March 2021).
- Available online: https://www.cms.gov/Medicare-Medicaid-Coordination/Fraud-Prevention/Medicaid-Integrity-Education/Pharmacy-Education-Materials/Downloads/ad-pediatric-dosingchart11-14.pdf (accessed on 2 March 2021).
- Zhang, L.; Aloia, M.; Pielecha-Safira, B.; Lin, H.; Rajai, P.M.; Kunnath, K.; Davé, R.N. Impact of superdisintegrants and film thickness on disintegration time of strip films loaded with poorly water-soluble drug microparticles. J. Pharm. Sci. 2018, 107, 2107–2118. [Google Scholar] [CrossRef] [PubMed]
- Oromucosal Preparations. In Pharmacopoeia Europea, 10th ed.; European Directorate for the Quality of Medicines (EDQM): Strasbourg, France, 2016.
- Takeuchi, Y.; Ikeda, N.; Tahara, K.; Takeuchi, H. Mechanical characteristics of orally disintegrating films: Comparison of folding endurance and tensile properties. Int. J. Pharm. 2020, 589, 119876. [Google Scholar] [CrossRef]
- Devi, A.S.; Jyothi, P.N.; Raju, P.C.; Kumar, P.K.; Prasad, K.A.; Sultana, S.M. Formualtion and evaluation of fast dissolving oral films of fluoxetine hydrochloride. J. Glob. Trends Pharm. Sci. 2016, 7, 3394–3400. [Google Scholar]
- Jadhav, J.K.; Sreenivas, S.A. Formulation and in vitro evaluation of indomethacin transdermal patches using polymers HPMC E5 and Ethyl cellulose. Int. J. Pharm. Sci. 2012, 4, 550–556. [Google Scholar]
- Patel, K.N.; Patel, H.K.; Patel, V.A. Formulation and characterization of drug in adhesive transdermal patches of diclofenac acid. Int. J. Pharm. Sci. 2012, 4, 296–299. [Google Scholar]
- Ibrahim, Y.H.-E.; Regdon, G., Jr.; Kristó, K.; Kelemen, A.; Adam, M.E.; Hamedelniel, E.I.; Sovány, T. Design and characterization of chitosan/citrate films as carrier for oral macromolecule delivery. Eur. J. Pharm. Sci. 2020, 146, 105270. [Google Scholar] [CrossRef]
- Tablets. In Pharmacopoeia Europea, 10th ed.; European Directorate for the Quality of Medicines (EDQM): Strasbourg, France, 2016.
- Speer, I.; Steiner, D.; Thabet, Y.; Breitkreutz, J.; Kwade, A. Comparative study on disintegration methods for oral film preparations. Eur. J. Pharm. Biopharm. 2018, 132, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, M.; Paudel, A.; Kloprogge, F.; Hsiao, W.K.; Bresciani, M.; Gaisford, S.; Orlu, M. Key acceptability attributes of orodispersible films. Eur. J. Pharm. Biopharm. 2018, 125, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bîrsan, M.; Apostu, M.; Todoran, N.; Antonoaea, P.; Rusu, A.; Ciurba, A. Development of dermal films containing miconazole nitrate. Molecules 2018, 23, 1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delevery systems. Acta Pol. Pharm. Drug Res. 2010, 67, 217–223. [Google Scholar]
- Ciurba, A.; Todoran, N.; Tăurean, A.; Antonoaea, P.; Hancu, G.; Moisei, A.; Sipos, E. Kinetic analysis of in vitro drug release from valproic acid and sodium valproate suppositories. Farmacia 2014, 62, 1143–1156. [Google Scholar]
- Bîrsan, M.; Cristofor, A.C.; Antonoaea, P.; Todoran, N.; Bibire, N.; Panainte, A.D.; Vlad, R.A.; Grigore, M.; Ciurba, A. Evaluation of miconazole nitrate permeability through biological membrane from dermal systems. Farmacia 2020, 68, 111–115. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Loveleen, A.; Tanushree, C. A review on new generation orodispersible films and its novel approaches. Indo Am. J. Pharm. Res. 2017, 7, 7451–7470. [Google Scholar]
- Karki, S.; Kim, H.; Na, S.-J.; Shin, D.; Jo, K.; Lee, J. Thin films as an emerging platform for drug delivery. Asian J. Pharm. Sci. 2016, 11, 559–574. [Google Scholar] [CrossRef] [Green Version]
- ElMeshad, A.N.; El Hagrasy, A.S. Characterization and optimization of orodispersible mosapride film formulations. AAPS PharmSciTech 2011, 12, 1384–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bin Liew, K.; Tan, Y.T.F.; Peh, K.-K. Effect of polymer, plasticizer and filler on orally disintegrating film. Drug Dev. Ind. Pharm. 2014, 40, 110–119. [Google Scholar] [CrossRef]
Composition % (w/w) | FO1 | FO2 | FO3 | FO4 | FO5 | FO6 |
---|---|---|---|---|---|---|
HPMC | 10 | 10 | 8 | 8 | 12 | 12 |
PVP | 3 | 3 | 3 | 3 | 3 | 3 |
MDX | 1 | 1 | 1 | 1 | 1 | 1 |
PG | 10 | 12 | 10 | 12 | 10 | 12 |
TW | 1 | 1 | 1 | 1 | 1 | 1 |
Water | 75 | 73 | 77 | 75 | 73 | 71 |
Composition % (w/w) | FX1 | FX2 | FX3 | FX4 | FX5 | FX6 |
---|---|---|---|---|---|---|
FX | 3 | 3 | 3 | 3 | 3 | 3 |
HPMC | 10 | 10 | 8 | 8 | 12 | 12 |
PVP | 3 | 3 | 3 | 3 | 3 | 3 |
MDX | 1 | 1 | 1 | 1 | 1 | 1 |
PG | 10 | 12 | 10 | 12 | 10 | 12 |
TW | 1 | 1 | 1 | 1 | 1 | 1 |
Water | 72 | 70 | 74 | 72 | 70 | 68 |
Formula | FO1 | FO2 | FO3 | FO4 | FO5 | FO6 |
Thickness (mm) ± SD | 0.41 ± 0.01 | 0.35 ± 0.03 | 0.19 ± 0.02 | 0.33 ± 0.08 | 0.45 ± 0.05 | 0.42 ± 0.02 |
Weight (mg) ± SD | 120 ± 13 | 110 ± 16 | 80 ± 10 | 130 ± 12 | 130 ± 5 | 160 ± 4 |
Formula | FX1 | FX2 | FX3 | FX4 | FX5 | FX6 |
Thickness (mm) ± SD | 0.44 ± 0.02 | 0.47 ± 0.05 | 0.25 ± 0.01 | 0.40 ± 0.01 | 0.48 ± 0.01 | 0.43 ± 0.01 |
Weight (mg) ± SD | 140 ± 8 | 180 ± 6 | 100 ± 10 | 140 ± 5 | 180 ± 7 | 170 ± 5 |
Formula | FO1 | FO2 | FO3 | FO4 | FO5 | FO6 |
Folding endurance (x) | 65 x | 50 x | 45 x | 40 x | 70 x | 50 x |
Formula | FX1 | FX2 | FX3 | FX4 | FX5 | FX6 |
Folding endurance (x) | 70 x | 60 x | 50 x | 48 x | 77 x | 60 x |
Formula | FO1 | FO2 | FO3 | FO4 | FO5 | FO6 |
Disintegration time (seconds) ± SD | 110 ± 3 | 170 ± 2 | 140 ± 5 | 170 ± 4 | 175 ± 3 | 170 ± 3 |
Formula | FX1 | FX2 | FX3 | FX4 | FX5 | FX6 |
Disintegration time (seconds) ± SD | 87 ± 5 | 88 ± 2 | 48 ± 3 | 54 ± 3 | 65 ± 4 | 69 ± 5 |
Formula | FO1 | FO2 | FO3 | FO4 | FO5 | FO6 |
Adhesiveness (dyne·cm−2) | 1.62 × 10−2 | 1.92 × 10−2 | 2.13 × 10−2 | 1.92 × 10−2 | 2.85 × 10−2 | 2.95 × 10−2 |
Formula | FX1 | FX2 | FX3 | FX4 | FX5 | FX6 |
Adhesiveness (dyne·cm−2) | 1.41 × 10−2 | 1.86 × 10−2 | 1.84 × 10−2 | 1.82 × 10−2 | 2.6 × 10−2 | 2.55 × 10−2 |
Formulation | FX1 | FX2 | FX3 | FX4 | FX5 | FX6 |
---|---|---|---|---|---|---|
Drug content (mg/ODF) ± SD | 9.90 ± 0.11 | 9.95 ± 0.08 | 10.07 ± 0.12 | 9.88 ± 0.05 | 9.97 ± 0.08 | 10.02 ± 0.06 |
Equation of the calibration curve of FX in phosphate buffer pH 6.8 | ||||||
y = 0.0019x + 0.0033; R2 = 0.9992 |
Parameter | Thickness (mm) | Weight (mg) | Tensile Strength (N⋅mm−2) | Disintegration Time (s) | Adhesiveness (dyne⋅cm−2) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Matrix type | FO | FX | FO | FX | FO | FX | FO | FX | FO | FX |
Descriptive Statistics (n = 6; n—number of samples F1–F6) | ||||||||||
Mean | 0.3583 | 0.4117 | 121.70 | 151.70 | 0.3075 | 0.4463 | 155.80 | 68.50 | 0.02232 | 0.02013 |
SD | 0.0939 | 0.0842 | 26.39 | 31.25 | 0.1126 | 0.1254 | 25.77 | 16.53 | 0.00544 | 0.00466 |
Std. Error of Mean | 0.0383 | 0.0344 | 10.78 | 12.76 | 0.0460 | 0.0512 | 10.52 | 6.747 | 0.00222 | 0.00190 |
Coefficient of variation (%) | 26.20 | 20.46 | 21.69 | 20.61 | 36.62 | 28.10 | 16.54 | 24.13 | 24.36 | 23.16 |
Influence of formulation factors FX vs. FO (% of total variation; two-way ANOVA, α = 0.05) | ||||||||||
Fluoxetine 3% | 8.55 * p < 0.0001 | 22.67 * p < 0.0001 | 28.93 * p < 0.0001 | 82.60 * p < 0.0001 | 5.24 * p < 0.0001 | |||||
HPMC ± 2%/PG ± 2% | 75.88 * p < 0.0001 | 57.67 * p < 0.0001 | 50.95 * p < 0.0001 | 6.61 * p < 0.0001 | 92.56 * p < 0.0001 | |||||
Interaction | 3.88 * p = 0.0035 | 12.60 * p < 0.0001 | 20.12 * p < 0.0001 | 10.31 * p < 0.0001 | 1.44 * p < 0.0001 |
Formulation | FX1 | FX2 | FX3 | FX4 | FX5 | FX6 |
---|---|---|---|---|---|---|
Kinetic parameters | Dissolution Data Modeling of Zero-order Model | |||||
k0 | 7.94 | 7.58 | 4.41 | 4.05 | 3.86 | 3.76 |
AIC | 42.51 | 42.54 | 72.20 | 70.06 | 64.17 | 64.57 |
R2adj | 0.8896 | 0.8660 | 0.1911 | 0.2605 | 0.6747 | 0.6475 |
Dissolution Data Modeling of First-order Model | ||||||
k1 | 0.17 | 0.16 | 0.16 | 0.12 | 0.09 | 0.08 |
AIC | 34.54 | 25.24 | 43.57 | 49.42 | 34.63 | 40.80 |
R2adj | 0.9707 | 0.9925 | 0.9774 | 0.9440 | 0.9919 | 0.9819 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rédai, E.-M.; Antonoaea, P.; Todoran, N.; Vlad, R.A.; Bîrsan, M.; Tătaru, A.; Ciurba, A. Development and Evaluation of Fluoxetine Fast Dissolving Films: An Alternative for Noncompliance in Pediatric Patients. Processes 2021, 9, 778. https://doi.org/10.3390/pr9050778
Rédai E-M, Antonoaea P, Todoran N, Vlad RA, Bîrsan M, Tătaru A, Ciurba A. Development and Evaluation of Fluoxetine Fast Dissolving Films: An Alternative for Noncompliance in Pediatric Patients. Processes. 2021; 9(5):778. https://doi.org/10.3390/pr9050778
Chicago/Turabian StyleRédai, Emőke-Margit, Paula Antonoaea, Nicoleta Todoran, Robert Alexandru Vlad, Magdalena Bîrsan, Anamaria Tătaru, and Adriana Ciurba. 2021. "Development and Evaluation of Fluoxetine Fast Dissolving Films: An Alternative for Noncompliance in Pediatric Patients" Processes 9, no. 5: 778. https://doi.org/10.3390/pr9050778
APA StyleRédai, E.-M., Antonoaea, P., Todoran, N., Vlad, R. A., Bîrsan, M., Tătaru, A., & Ciurba, A. (2021). Development and Evaluation of Fluoxetine Fast Dissolving Films: An Alternative for Noncompliance in Pediatric Patients. Processes, 9(5), 778. https://doi.org/10.3390/pr9050778