Bioaccumulation of Trace Metals in Groenlandia densa Plant Reintroduced in Western Pomerania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Sampling
- site I: Chwalimski Potok flowing into Parsęta River at Storkowo, located in agricultural basin, on areas characterized by extensive agricultural use (humid hay meadows), fed with groundwaters;
- site II: Stara Radew at Rosnowo, site in riverine gallery forests, fed with underground seepages, in an agricultural basin with developed municipal and road infrastructure;
- site III: rocky spring feeding an unnamed creek flowing directly into the Radew River, on areas with silviculture, in acid beech forests and spruce stands.
2.2. Sample Preparation and Analysis
2.3. The Bioconcentration Factor (BCF)
2.4. The Geochemical Index (Igeo) Values and Contamination Factor
- Cm—content of analyzed metal (mg∙kg−1),
- GM—geochemical background (mg∙kg−1).
- Cm—content of analyzed metal (mg∙kg−1),
- GM—geochemical background (mg∙kg−1).
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rozporządzenie Ministra Środowiska z dnia 9 października 2014 r. w Sprawie Ochrony Gatunkowej Roślin. Dz.U. 2014, poz. 1409./Regulation of the Minister of Environment of 9 October 2014 on the Protection of Plant Species. Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20140001409/O/D20141409.pdf (accessed on 15 April 2021).
- Kaźmierczakowa, R.; Bloch-Orłowska, J.; Celka, Z.; Cwener, A.; Dajdok, Z.; Michalska-Hejduk, D.; Pawlikowski, P.; Szczęśniak, E.; Ziarnek, K. Polish Red List of Pteridophytes and Flowering Plants; Institute of Nature Conservation, Polish Academy of Sciences: Krakow, Poland, 2016. [Google Scholar]
- Kaźmierczakowa, R.; Zarzycki, K.; Mirek, Z. Polska Czerwona Księga Roślin; Instytut Ochrony Przyrody, Polska Akademia Nauk: Krakow, Poland, 2014. [Google Scholar]
- Puchalski, W.; Cieślak, E.; Nowak, J.; Żukowski, W. Czy introdukcja Groenlandia densa (Potamogetonaceae) w Polsce ma szanse powodzenia? Fragm. Florist. Geobot. Pol. 2016, 23, 289–304. [Google Scholar]
- Wróbel, M.; Furdyna, A.; Miller, T. Reintroduction of Groenlandia densa (L.) Fourr.—Experiences and suggestions. Biodivers. Res. Conserv. 2020, 60, 1–10. [Google Scholar] [CrossRef]
- Demirezen, D.; Aksoy, A. Common hydrophytes as bioindicators of iron and manganese pollutions. Ecol. Indic. 2006, 6, 388–393. [Google Scholar] [CrossRef]
- Kara, Y.; Zeytunluoglu, A. Bioaccumulation of Toxic Metals (Cd and Cu) by Groenlandia densa (L.) Fourr. Bull. Environ. Contam. Toxicol. 2007, 79, 609–612. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, D.D.; Parlak, K.U. Antioxidative parameters in the opposite-leaved pondweed (Groenlandia densa) in response to nickel stress. Chem. Speciat. Bioavailab. 2011, 23, 71–79. [Google Scholar] [CrossRef]
- Maqbool Geelani, S.; Bhat, S.J.A.; Hanifa Geelani, S.; Haq, S. Pollution Indicators and Their Detection. J. Plant Sci. Res. 2012, 28, 193–197. [Google Scholar]
- Karczewski, A. Morpho- and lithogenetic diversification of the Pomeranian phase in western and central Pomerania. Z. Geomorphol. 1994, 35–48. [Google Scholar]
- Mazurek, M.; Kruszyk, R.; Szpikowska, G. Source-to-mainstream: Hydrochemical water changes in a channel head in the young glacial area (Pomeranian Lakeland, Poland). Geomorphology 2020, 371, 1–15. [Google Scholar] [CrossRef]
- PN-EN ISO 10304-1: 2009E. Water Quality—Determination of Dissolved Anions by Ion Chromatography—Part 1: Determination of Bromides, Chlorides, Fluorides, Nitrates, Nitrites, Phosphates and Sulphates; British Standards Institution: London, UK, 2009.
- PN-EN ISO 6878: 2006P. Water Quality—Determination of Phosphorus—Ammonium Molybdate Spectrometric Method; Polski Komitet Normalizacyjny: Warsaw, Poland, 2010.
- PN-EN ISO 9963-1: 2001P. Water Quality—Determination of Alkalinity—Part 1: Determination of General Alkalinity and Alkalinity towards Phenolphthalein. Available online: https://www.sis.se/api/document/preview/18779/ (accessed on 15 April 2021).
- Zayed, A.; Gowthaman, S.; Terry, N. Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J. Environ. Qual. 1998, 27, 715–721. [Google Scholar] [CrossRef]
- Rahmani, G.; Stenberg, S. Bioremoval of lead from water using Lemna minor. Bioresour. Technol. 1999, 70, 225–230. [Google Scholar] [CrossRef]
- Müller, G. Die schwermetallbelastung der sedimente des Neckars und Seiner Neben flusse: Eine Bestandsaufnahme. Chem. Ztg. 1981, 105, 157–164. [Google Scholar]
- Haakson, L. An Ecological Risk Index for Aquatic Pollution Control, a Sediment-Ecological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- MacDonald, D.; Ingersoll, C.; Berger, T. Development and evaluation of consensus-based sediment development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef]
- Onaindia, M.; de Bikuña, B.G.; Benito, I. Aquatic Plants in Relation to Environmental Factors in Northern Spain. J. Environ. Manag. 1996, 47, 123–137. [Google Scholar] [CrossRef]
- Šegota, V.; Zlatković, B.; Vukov, D.; Alegro, A.; Koletić, N.; Vuković, N.; Rimac, A. Status assessment of the rare aquatic plant Groenlandia densa (L.) Fourr. (Potamogetonaceae) in the Western Balkans. Bot. Lett. 2019, 166, 125–133. [Google Scholar] [CrossRef]
- Oťaheľová, H.; Valachovic˘, M.; Hrivna´k, R. The impact of environmental factors on the distribution pattern of aquatic plants along the Danube River corridor (Slovakia). Limnologica 2007, 37, 290–302. [Google Scholar] [CrossRef] [Green Version]
- Kohler, A.; Schneider, S. Macrophytes as bioindicators. Arch. Hydrobiol. 2003, 14, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Prasad, M.N.V.; Greger, M.; Aravind, P. Biogeochemical cycling of trace elements by aquatic and wetland plants: Relevance to phytoremediation. In Trace Elements in the Environment; Prasad, M.N.V., Sajwan, K.S., Naidu, R., Eds.; Taylor and Francis, CRC Press: Boca Raton, FL, USA, 2006; pp. 1–451. [Google Scholar]
- Baldantoni, D.; Maisto, G.; Bartoli, G.; Alfami, A. Analyses of three native aquatic plant species to assess spatial gradients of lake trace element contamination. Aquat. Bot. 2005, 83, 48–60. [Google Scholar] [CrossRef]
- Bojakowska, I.; Sokołowska, G. Geochemiczne klasy czystości osadów wodnych. Przegląd Geol. 1998, 46, 49–54. [Google Scholar]
- Bornette, G.; Puijalon, S. Response of aquatic plants to abiotic factors: A review. Aquat. Sci. 2011, 73, 1–14. [Google Scholar] [CrossRef]
- Sela, M.; Garty, J.; Tel-Or, E. The accumulation and the effect of heavy metals on the water fern Azolla filiculoides. New Phytol. 1989, 112, 7. [Google Scholar] [CrossRef]
- Arora, A.; Saxena, S.; Sharma, D.K. Tolerance and phytoaccumulation of chromium by three Azolla species. World J. Microbiol. Biotechnol. 2006, 22, 97. [Google Scholar] [CrossRef]
- Lu, J.; Fu, Z.; Yin, Z. Performance of Water Hyacinth (Eichhornia crassipes) System in the Treatment of Wastewater from a Duck Farm and the Effects of Using Water Hyacinth as Duck Feed. J. Environ. Sci. 2008, 20, 513–519. [Google Scholar] [CrossRef]
- Prasad, B.; Maiti, D. Comparative study of metal uptake by Eichhornia crassipes growing in ponds from mining and nonmining areas—A field study. Bioremediat. J. 2016, 20, 144–152. [Google Scholar] [CrossRef]
- Younis, A.M.; Nafea, E.M.A. Heavy metals and nutritional composition of some naturally growing aquatic macrophytes of Northern Egyptian Lakes. J. Biol. Environ. Sci. 2015, 6, 16–23. [Google Scholar]
- Wang, M.; Liu, J.; Lai, J. Metals Pollution and Ecological Risk Assessment of Sediments in the Poyang Lake, China. Bull. Environ. Contam. Toxicol. 2019, 102, 511–518. [Google Scholar] [CrossRef]
- Cardwell, A.J.; Hawker, D.W.; Greenway, M. Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere 2002, 48, 653. [Google Scholar] [CrossRef]
- Rai, U.N.; Tripathi, R.D.; Vajpayee, P.; Pandey, N.; Ali, M.B.; Gupta, D.K. Cadmium accumulation and its phytotoxicity in Potamogeton pectinatus (Potamogetonaceae). Bull. Environ. Contam. Toxicol. 2003, 70, 566. [Google Scholar] [CrossRef]
Tested Feature | Site I Agricultural Water Shed | Site II Urbanized Water Shed | Site III Forest Water Shed |
---|---|---|---|
The surface of the patch with G. densa (m2) | 4 | 6 | 1 |
Share of G. densa according to Braun-Blanquet scale | 5 | 4 | 1 |
Bottom structure | sandy | gravel and stone | pebble and stone |
Organic sediments | negligible | much | average |
Depth of watercourse (m) | 0.1–0.15 | 0.5–0.6 | 0.1–0.15 |
In-stream water temperature (°C) | 10.9 | 10.8 | 10.3 |
pH | 8.15 | 7.80 | 7.66 |
Electrical conductivity [µS·cm−2] | 404 | 397 | 392 |
Dissolved oxygen [mg O2] | 8.10 | 7.81 | 8.61 |
Oxygenation [%] | 68.2 | 68.4 | 76.6 |
Flow rate (m/s) | 0.02 | 0.71 | 0.20 |
Bicarbonates (mg/dm3 HCO3-) | 187.32 | 200.14 | 167.19 |
Nitrates (mg/dm3 NO3-) | 27.23 | 1.03 | 1.14 |
Nitrites (mg/dm3 NO2-) | 0.010 | 0.020 | 0.005 |
Phosphates (mg/dm3 PO43) | 0.24 | 0.25 | 0.10 |
Sampling Site | Blade Length 1 (mm) | Width of Leaf Blade 1 (mm) | Internode Length 1 (mm) |
---|---|---|---|
Site I Chwalimski Potok | 12–19 | 5–8 | 2–5 |
Site II Stara Radew | 16–24 | 7–12 | 3–10 |
Site III Kurowo 1 | 14–20 | 6–9 | 3–13 |
Site | Medium | Cd | Cu | Cr | Hg | Mn | Zn |
---|---|---|---|---|---|---|---|
I | Plant | 0.096 ± 0.004 | 5.55 ± 0.28 | 1.71 ± 0.08 | 0.0243 ± 0.0010 | 67.3 ± 1.74 | 37.2 ± 1.24 |
Sediment | 0.231 | 2.87 | 2.13 | 0.035 | 175.8 | 9.41 | |
Water | 0.0001 | 0.003 | 0.01 | 0.0008 | 0.0032 | 0.0027 | |
II | Plant | 3.219 ± 0.17 | 26.46 ± 0.79 | 8.00 ± 0.16 | 0.0429 ± 0.0019 | 502.4 ± 5.12 | 90.1 ± 0.45 |
Sediment | 0.409 | 15.81 | 14.95 | 0.0666 | 49,921 | 137.29 | |
Water | 0.00027 | 0.005 | 0.012 | 0.0011 | 0.0259 | 0.0034 | |
III | Plant | 0.259 ± 0.004 | 5.18 ± 0.25 | 3.15 ± 0.20 | 0.0270 ± 0.0021 | 86.3 ± 1.30 | 68.8 ± 0.78 |
Sediment | 0.400 | 8.14 | 4.84 | 0.0287 | 1390.9 | 44.42 | |
Water | 0.0008 | 0.005 | 0.01 | 0.0009 | 0.0091 | 0.0050 |
Site | Indicator | Cd | Cr | Cu | Hg | Mn | Zn |
---|---|---|---|---|---|---|---|
I | Igeo | 0 | 0 | 0 | 0 | 0 | |
CF | 1 | 1 | 1 | 1 | - | 1 | |
ecotoxicological criteria indices | <TEC | <TEC | <TEC | <TEC | <TEC | <TEC | |
II | Igeo | 0 | 1 | 1 | 0 | - | 1 |
CF | 1 | 2 | 2 | 2 | - | 2 | |
ecotoxicological criteria indices | <TEC | <TEC | <TEC | <TEC | >PEC | >TEC < MEC | |
III | Igeo | 0 | 0 | 0 | 0 | - | 0 |
CF | 1 | 1 | 2 | 1 | - | 1 | |
ecotoxicological criteria indices | <TEC | <TEC | <TEC | <TEC | >PEC | <TEC |
Plant | Element | Content | Reference |
---|---|---|---|
Groenlandia densa | Cd, Cu, Ni, | 20 µg Cd·g−1 d.w. 26 µg Cu·g−1 d.w. 14.39 mg Ni ·kg−1 d.w. | [7,8] |
Azolla filiculoides | Cd, Cr, Cu, Zn | 2600–10,441 mg Cd ·kg−1 d.w. 21.9–12,383 µg Cr·g−1 d.w. 9224 mg Cu kg−1 d.w. 6408 mg Zn g−1 d.w. | [28,29] |
Eichhornia crassipes | Cu | 6.41–34.3 mg Cu ·kg−1 62.9–67.9 mg Mn ·kg−1 0.037–0.13 mg Cd ·kg−1 | [30,31] |
Lemna minor | Cr | 2870 g Cr·kg−1 d.w. | [15] |
Lemna gibba | Cu, Cd, Zn | 10.9 μg Cu g d.w. 92.0 μg Zn g d.w. 4.4 μg Cd g d.w. | [32] |
Myriophyllum spicatum | Cd | 2800 mg Cd g−1 d.w. | [33] |
Myriophyllum aquaticum | Cd, Zn | 4300 µg Zn g−1 d.w. 6.5 μg Cd g−1 d.w. | [34] |
Potamogeton pectinatus | Cd, Cu, Mn, Zn | 4.8–266 µg Cd g−1 d.w. 10.0 µg Cu·g−1 d.w. 60.0 μg Zn g−1 d. w. | [32,35] |
Element | Sediments | Water | Length of Leaf Blade | Width of Leaf Blade | Internode Length |
---|---|---|---|---|---|
Cd | 0.577 | −0.240 | 0.989 | 0.981 | 0.189 |
Cu | 0.872 | 0.417 | 0.960 | 0.944 | 0.050 |
Cr | 0.928 | 0.835 | 0.924 | 0.942 | 0.664 |
Hg | 0.958 | 0.980 | 0.998 1 | 0.994 | 0.274 |
Mn | 0.999 1 | 0.977 | 0.988 | 0.979 | 0.181 |
Zn | 0.933 | 0.402 | 0.902 | 0.924 | 0.702 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podlasińska, J.; Wróbel, M.; Szpikowski, J.; Szpikowska, G. Bioaccumulation of Trace Metals in Groenlandia densa Plant Reintroduced in Western Pomerania. Processes 2021, 9, 808. https://doi.org/10.3390/pr9050808
Podlasińska J, Wróbel M, Szpikowski J, Szpikowska G. Bioaccumulation of Trace Metals in Groenlandia densa Plant Reintroduced in Western Pomerania. Processes. 2021; 9(5):808. https://doi.org/10.3390/pr9050808
Chicago/Turabian StylePodlasińska, Joanna, Mariola Wróbel, Józef Szpikowski, and Grażyna Szpikowska. 2021. "Bioaccumulation of Trace Metals in Groenlandia densa Plant Reintroduced in Western Pomerania" Processes 9, no. 5: 808. https://doi.org/10.3390/pr9050808
APA StylePodlasińska, J., Wróbel, M., Szpikowski, J., & Szpikowska, G. (2021). Bioaccumulation of Trace Metals in Groenlandia densa Plant Reintroduced in Western Pomerania. Processes, 9(5), 808. https://doi.org/10.3390/pr9050808