Multi-Step Subcritical Water Extracts of Fucus vesiculosus L. and Codium tomentosum Stackhouse: Composition, Health-Benefits and Safety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Reagents, Solvents, and Materials
2.3. Seaweed Proximate Composition
2.4. Subcritical Water Extraction (SWE) of Seaweeds
2.5. Chemical Characterization of SWE Extracts
2.5.1. UHPLC-MS/MS Analysis of Drugs and Pesticides
2.5.2. Iodine and Arsenic Determination
2.5.3. Total Phenolic, Total Flavonoid and Total Phlorotannin Content
2.5.4. Determination of pH, Available Free Amino Acids and Reducing Sugars
2.5.5. Maillard Reaction Products and Browning Index
2.6. Bioactivities
2.6.1. ORAC
2.6.2. Antiradical Activity
2.6.3. Enzyme Inhibition
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Characterization of Seaweeds
3.2. SWE of Seaweeds
3.3. UHPLC-MS/MS Analysis of Drugs and Pesticides in Seaweed Extracts
3.4. Iodine and Arsenic Levels in Seaweed Extracts
3.5. Chemical Composition of Seaweed Extracts
3.6. Antioxidant Activity
3.7. CNS Enzymes Inhibition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, L.; Lee, S.G.; Lim, K.T.; Kim, H.-R. Potential anti-aging substances derived from seaweeds. Mar. Drugs 2020, 18, 564. [Google Scholar] [CrossRef]
- Peñalver, R.; Lorenzo, J.M.; Ros, G.; Amarowicz, R.; Pateiro, M.; Nieto, G. Seaweeds as a functional ingredient for a healthy diet. Mar. Drugs 2020, 18, 301. [Google Scholar] [CrossRef]
- Gullón, P.; Astray, G.; Gullón, B.; Franco, D.; Campagnol, P.C.B.; Lorenzo, J.M. Inclusion of seaweeds as healthy approach to formulate new low-salt meat products. Curr. Opin. Food Sci. 2021, 40, 20–25. [Google Scholar] [CrossRef]
- Manandhar, B.; Wagle, A.; Seong, S.H.; Paudel, P.; Kim, H.-R.; Jung, H.A.; Choi, J.S. Phlorotannins with potential anti-tyrosinase and antioxidant activity isolated from the marine seaweed Ecklonia stolonifera. Antioxidants 2019, 8, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olasehinde, T.A.; Olaniran, A.O.; Okoh, A.I. Macroalgae as a valuable source of naturally occurring bioactive compounds for the treatment of Alzheimer’s disease. Mar. Drugs 2019, 17, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, A.D.; Goldfarb, D.; Bollam, P.; Khokher, S. Diagnosing and treating depression in patients with Alzheimer’s disease. Neurol. Ther. 2019, 8, 325–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, P.J.A.; Khan, A.; Uddin, N.; Khaliq, S.; Rasheed, M.; Nawaz, S.; Hanif, M.; Dar, A. Antidepressant-like deliverables from the sea: Evidence on the efficacy of three different brown seaweeds via involvement of monoaminergic system. Biosci. Biotechnol. Biochem. 2017, 81, 1369–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abreu, T.M.; Monteiro, V.S.; Martins, A.B.S.; Teles, F.B.; da Conceição Rivanor, R.L.; Mota, É.F.; Macedo, D.S.; de Vasconcelos, S.M.M.; Júnior, J.E.R.H.; Benevides, N.M.B. Involvement of the dopaminergic system in the antidepressant-like effect of the lectin isolated from the red marine alga Solieria filiformis in mice. Int. J. Biol. Macromol. 2018, 111, 534–541. [Google Scholar] [CrossRef]
- Violle, N.; Rozan, P.; Demais, H.; Nyvall Collen, P.; Bisson, J.-F. Evaluation of the antidepressant- and anxiolytic-like effects of a hydrophilic extract from the green seaweed Ulva sp. in rats. Nutr. Neurosci. 2018, 21, 248–256. [Google Scholar] [CrossRef]
- Bouga, M.; Combet, E. Emergence of seaweed and seaweed-containing foods in the UK: Focus on labeling, iodine content, toxicity and nutrition. Foods 2015, 4, 240–253. [Google Scholar] [CrossRef]
- Murai, U.; Yamagishi, K.; Kishida, R.; Iso, H. Impact of seaweed intake on health. Eur. J. Clin. Nutr. 2020, 1–13. [Google Scholar] [CrossRef]
- Battaglin, W.A.; Bradley, P.M.; Iwanowicz, L.; Journey, C.A.; Walsh, H.L.; Blazer, V.S. Pharmaceuticals, hormones, pesticides, and other bioactive contaminants in water, sediment, and tissue from Rocky Mountain National Park, 2012–2013. Sci. Total Environ. 2018, 643, 651–673. [Google Scholar] [CrossRef]
- Focazio, M.J.; Kolpin, D.W.; Barnes, K.K.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Barber, L.B.; Thurman, M.E. A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States—II) Untreated drinking water sources. Sci. Total Environ. 2008, 402, 201–216. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999−2000: A National Reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef] [Green Version]
- Barnes, K.K.; Kolpin, D.W.; Furlong, E.T.; Zaugg, S.D.; Meyer, M.T.; Barber, L.B. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I) Groundwater. Sci. Total Environ. 2008, 402, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Özkara, A.; Akyıl, D.; Konuk, M. Pesticides, environmental pollution, and health. In Environmental Health Risk—Hazardous Factors to Living Species; Larramendy, M., Soloneski, S., Eds.; Interchopen: London, UK, 2016. [Google Scholar]
- Mezzelani, M.; Gorbi, S.; Regoli, F. Pharmaceuticals in the aquatic environments: Evidence of emerged threat and future challenges for marine organisms. Mar. Environ. Res. 2018, 140, 41–60. [Google Scholar] [CrossRef] [PubMed]
- Christensen, F.M. Pharmaceuticals in the environment—A human risk? Regul. Toxicol. Pharmacol. 1998, 28, 212–221. [Google Scholar] [CrossRef]
- Daughton, C.G.; Ternes, T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect. 1999, 107 (Suppl. S6), 907–938. [Google Scholar] [CrossRef] [PubMed]
- Ternes, T.A. Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 1998, 32, 3245–3260. [Google Scholar] [CrossRef]
- Hughes, S.R.; Kay, P.; Brown, L.E. Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ. Sci. Technol. 2013, 47, 661–677. [Google Scholar] [CrossRef]
- Daughton, C.G. Cradle-to-cradle stewardship of drugs for minimizing their environmental disposition while promoting human health. I. Rationale for and avenues toward a green pharmacy. Environ. Health Perspect. 2003, 111, 757–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieno, N.; Hallgren, P.; Wallberg, P.; Pyhälä, M.; Zandaryaa, S.; Baltic Marine Environment Protection Commission. Pharmaceuticals in the Aquatic Environment of the Baltic Sea Region: A Status Report (Vol. 1); UNESCO: Paris, France, 2017. [Google Scholar]
- Besada, V.; Andrade, J.M.; Schultze, F.; González, J.J. Heavy metals in edible seaweeds commercialised for human consumption. J. Mar. Syst. 2009, 75, 305–313. [Google Scholar] [CrossRef]
- Camurati, J.R.; Salomone, V.N. Arsenic in edible macroalgae: An integrated approach. J. Toxicol. Environ. Health B 2020, 23, 1–12. [Google Scholar] [CrossRef]
- Ma, Z.; Lin, L.; Wu, M.; Yu, H.; Shang, T.; Zhang, T.; Zhao, M. Total and inorganic arsenic contents in seaweeds: Absorption, accumulation, transformation and toxicity. Aquaculture 2018, 497, 49–55. [Google Scholar] [CrossRef]
- Aakre, I.; Tveito Evensen, L.; Kjellevold, M.; Dahl, L.; Henjum, S.; Alexander, J.; Madsen, L.; Markhus, M.W. Iodine status and thyroid function in a group of seaweed consumers in Norway. Nutrients 2020, 12, 3483. [Google Scholar] [CrossRef]
- Bordoloi, A.; Goosen, N.J. A greener alternative using subcritical water extraction to valorize the brown macroalgae Ecklonia maxima for bioactive compounds. J. Appl. Phycol. 2020, 32, 2307–2319. [Google Scholar] [CrossRef]
- Soares, C.; Švarc-Gajić, J.; Oliva-Teles, M.T.; Pinto, E.; Nastić, N.; Savić, S.; Almeida, A.; Delerue-Matos, C. Mineral composition of subcritical water extracts of Saccorhiza Polyschides, a brown seaweed used as fertilizer in the north of portugal. J. Mar. Sci. Eng 2020, 8, 244. [Google Scholar] [CrossRef] [Green Version]
- Plaza, M.; Amigo-Benavent, M.; del Castillo, M.D.; Ibáñez, E.; Herrero, M. Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Res. Int. 2010, 43, 2341–2348. [Google Scholar] [CrossRef] [Green Version]
- Hames, B.; Scarlata, C.; Sluiter, A. Determination of Protein Content in Biomass; Laboratory Analytical Procedure (LAP), Technical Report NREL/TP-510-42625; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass; Laboratory Analytical Procedure (LAP), Technical Report NREL/TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.-I.; Lee, Y.C. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 2005, 339, 69–72. [Google Scholar] [CrossRef]
- Pedras, B.; Salema-Oom, M.; Sá-Nogueira, I.; Simões, P.; Paiva, A.; Barreiros, S. Valorization of white wine grape pomace through application of subcritical water: Analysis of extraction, hydrolysis, and biological activity of the extracts obtained. J. Supercrit. Fluids 2017, 128, 138–144. [Google Scholar] [CrossRef]
- Paíga, P.; Lolić, A.; Hellebuyck, F.; Santos, L.H.M.L.M.; Correia, M.; Delerue-Matos, C. Development of a SPE–UHPLC–MS/MS methodology for the determination of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawater. J. Pharm. Biomed. Anal. 2015, 106, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paíga, P.; Correia, M.; Fernandes, M.J.; Silva, A.; Carvalho, M.; Vieira, J.; Jorge, S.; Silva, J.G.; Freire, C.; Delerue-Matos, C. Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation. Sci. Total Environ. 2019, 648, 582–600. [Google Scholar] [CrossRef]
- Lolić, A.; Paíga, P.; Santos, L.H.M.L.M.; Ramos, S.; Correia, M.; Delerue-Matos, C. Assessment of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawaters of North of Portugal: Occurrence and environmental risk. Sci. Total Environ. 2015, 508, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Costa Leite, J.; Keating, E.; Pestana, D.; Cruz Fernandes, V.; Maia, M.L.; Norberto, S.; Pinto, E.; Moreira-Rosário, A.; Sintra, D.; Moreira, B.; et al. Iodine status and iodised salt consumption in portuguese school-aged children: The iogeneration study. Nutrients 2017, 9, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrita, A.R.J.; Maia, M.R.G.; Oliveira, H.M.; Sousa-Pinto, I.; Almeida, A.A.; Pinto, E.; Fonseca, A.J.M. Tracing seaweeds as mineral sources for farm-animals. J. Appl. Phycol. 2016, 28, 3135–3150. [Google Scholar] [CrossRef]
- Barroso, M.F.; Ramalhosa, M.J.; Alves, R.C.; Dias, A.; Soares, C.M.D.; Oliva-Teles, M.T.; Delerue-Matos, C. Total antioxidant capacity of plant infusions: Assessment using electrochemical DNA-based biosensor and spectrophotometric methods. Food Control 2016, 68, 153–161. [Google Scholar] [CrossRef]
- Çam, M.; Hışıl, Y. Pressurised water extraction of polyphenols from pomegranate peels. Food Chem. 2010, 123, 878–885. [Google Scholar] [CrossRef]
- Stern, J.L.; Hagerman, A.E.; Steinberg, P.D.; Winter, F.C.; Estes, J.A. A new assay for quantifying brown algal phlorotannins and comparisons to previous methods. J. Chem. Ecol. 1996, 22, 1273–1293. [Google Scholar] [CrossRef]
- Lopes, G.; Sousa, C.; Silva, L.R.; Pinto, E.; Andrade, P.B.; Bernardo, J.; Mouga, T.; Valentão, P. Can phlorotannins purified extracts constitute a novel pharmacological alternative for microbial infections with associated inflammatory conditions? PLoS ONE 2012, 7, e31145. [Google Scholar] [CrossRef] [PubMed]
- Pinho, O.v.; Ferreira, I.M.P.L.V.O.; Mendes, E.; Oliveira, B.M.; Ferreira, M. Effect of temperature on evolution of free amino acid and biogenic amine contents during storage of Azeitão cheese. Food Chem. 2001, 75, 287–291. [Google Scholar] [CrossRef]
- Dygert, S.; Li, L.H.; Florida, D.; Thoma, J.A. Determination of reducing sugar with improved precision. Anal. Biochem. 1965, 13, 367–374. [Google Scholar] [CrossRef]
- Benjakul, S.; Lertittikul, W.; Bauer, F. Antioxidant activity of Maillard reaction products from a porcine plasma protein–sugar model system. Food Chem. 2005, 93, 189–196. [Google Scholar] [CrossRef]
- Matiacevich, S.B.; Pilar Buera, M. A critical evaluation of fluorescence as a potential marker for the Maillard reaction. Food Chem. 2006, 95, 423–430. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Hampsch-Woodill, M.; Flanagan, J.A.; Prior, R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002, 50, 4437–4444. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.P.; Valentão, P.; Pereira, J.A.; Silva, B.M.; Tavares, F.; Andrade, P.B. Ficus carica L.: Metabolic and biological screening. Food Chem. Toxicol. 2009, 47, 2841–2846. [Google Scholar] [CrossRef] [PubMed]
- Weissbach, H.; Smith, T.E.; Daly, J.W.; Witkop, B.; Udenfriend, S. A rapid spectrophotometric assay of monoamine oxidase based on the rate of disappearance of kynuramine. J. Biol. Chem. 1960, 235, 1160–1163. [Google Scholar] [CrossRef]
- Dittmann, K.; Riese, U.; Hamburger, M. HPLC-based bioactivity profiling of plant extracts: A kinetic assay for the identification of monoamine oxidase-A inhibitors using human recombinant monoamine oxidase-A. Phytochemistry 2004, 65, 2885–2891. [Google Scholar] [CrossRef] [PubMed]
- Novaroli, L.; Reist, M.; Favre, E.; Carotti, A.; Catto, M.; Carrupt, P.-A. Human recombinant monoamine oxidase B as reliable and efficient enzyme source for inhibitor screening. Bioorg. Med. Chem. 2005, 13, 6212–6217. [Google Scholar] [CrossRef]
- Ingkaninan, K.; de Best, C.M.; van der Heijden, R.; Hofte, A.J.P.; Karabatak, B.; Irth, H.; Tjaden, U.R.; van der Greef, J.; Verpoorte, R. High-performance liquid chromatography with on-line coupled UV, mass spectrometric and biochemical detection for identification of acetylcholinesterase inhibitors from natural products. J. Chromatogr. A 2000, 872, 61–73. [Google Scholar] [CrossRef]
- Vinholes, J.; Grosso, C.; Andrade, P.B.; Gil-Izquierdo, A.; Valentão, P.; Pinho, P.G.d.; Ferreres, F. In vitro studies to assess the antidiabetic, anti-cholinesterase and antioxidant potential of Spergularia rubra. Food Chem. 2011, 129, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Yamashita, D.; Takeda, Y.; Yonemori, S. Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. BioSci. BioTechnol. Biochem. 2005, 69, 197–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, D.; Freitas, A.C.; Pereira, L.; Rocha-Santos, T.A.P.; Vasconcelos, M.W.; Roriz, M.; Rodríguez-Alcalá, L.M.; Gomes, A.M.P.; Duarte, A.C. Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem. 2015, 183, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Agregán, R.; Munekata, P.E.S.; Franco, D.; Carballo, J.; Şahin, S.; Lacomba, R.; Barba, F.J. Proximate composition and nutritional value of three macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Mar. Drugs 2017, 15, 360. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L. A review of the nutrient composition of selected edible seaweeds. In Seaweed: Ecology, Nutrient Composition and Medicinal Uses; Pomin, V.H., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2011; pp. 15–47. [Google Scholar]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Catarino, M.D.; Silva, A.M.S.; Cardoso, S.M. Phycochemical constituents and biological activities of Fucus spp. Mar. Drugs 2018, 16, 249. [Google Scholar] [CrossRef] [Green Version]
- Olsson, J.; Toth, G.B.; Albers, E. Biochemical composition of red, green and brown seaweeds on the Swedish west coast. J. Appl. Phycol. 2020, 32, 3305–3317. [Google Scholar] [CrossRef]
- Manivannan, K.; Thirumaran, G.; Karthikai Devi, G.; Hemalatha, A.; Anantharaman, P. Biochemical composition of seaweeds from Mandapam coastal regions along southeast coast of India. Am. Eurasian J. Bot 2008, 1, 32–37. [Google Scholar]
- Sudhakar, M.P.; Kumar, B.R.; Mathimani, T.; Arunkumar, K. A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J. Clean Prod. 2019, 228, 1320–1333. [Google Scholar] [CrossRef]
- Ito, K.; Hori, K. Seaweed: Chemical composition and potential food uses. Food Rev. Int. 1989, 5, 101–144. [Google Scholar] [CrossRef]
- Díaz-Rubio, M.E.; Pérez-Jiménez, J.; Saura-Calixto, F. Dietary fiber and antioxidant capacity in Fucus vesiculosus products. Int. J. Food Sci. Nutr. 2008, 60 (Suppl. S2), 23–34. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Escrig, A.; Jiménez-Jiménez, I.; Pulido, R.; Saura-Calixto, F. Antioxidant activity of fresh and processed edible seaweeds. J. Sci. Food Agric. 2001, 81, 530–534. [Google Scholar] [CrossRef]
- Rupérez, P.; Toledano, G. Indigestible fraction of edible marine seaweeds. J. Sci. Food Agric. 2003, 83, 1267–1272. [Google Scholar] [CrossRef] [Green Version]
- Rupérez, P.; Saura-Calixto, F. Dietary fibre and physicochemical properties of edible Spanish seaweeds. Eur. Food Res. Technol. 2001, 212, 349–354. [Google Scholar]
- Ortiz, J.; Uquiche, E.; Robert, P.; Romero, N.; Quitral, V.; Llantén, C. Functional and nutritional value of the Chilean seaweeds Codium fragile, Gracilaria chilensis and Macrocystis pyrifera. Eur. J. Lipid Sci. Technol. 2009, 111, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Turan, F.; Ozgun, S.; Sayın, S.; Ozyılmaz, G. Biochemical composition of some red and green seaweeds from Iskenderun Bay, the northeastern Mediterranean coast of Turkey. J. Black Sea/Medit. Environ. 2015, 21, 239–249. [Google Scholar]
- Arguelles, E.D. Evaluation of nutritional composition and in vitro antioxidant and antibacterial activities of Codium intricatum Okamura from Ilocos Norte (Philippines). Jordan J. Biol. Sci. 2020, 13, 375–382. [Google Scholar]
- Garcia, J.; Palacios, V.; Roldán, A. Nutritional potential of four seaweed species collected in the barbate estuary (Gulf of Cadiz, Spain). J. Nutr. Food Sci. 2016, 6, 1000505. [Google Scholar]
- Bayu, A.; Handayani, T. High-Value Chemicals from Marine Macroalgae: Opportunities and Challenges for Marine-Based Bioenergy Development; IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 209, p. 012046. [Google Scholar] [CrossRef]
- Brunner, G. Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J. Supercrit. Fluids 2009, 47, 373–381. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Ramalho Ribeiro, A.; Patinha, C.; Silva, A.M.S.; Cardoso, S.M.; Costa, R. Water extraction kinetics of bioactive compounds of Fucus vesiculosus. Molecules 2019, 24, 3408. [Google Scholar] [CrossRef] [Green Version]
- Nitschke, U.; Walsh, P.; McDaid, J.; Stengel, D.B. Variability in iodine in temperate seaweeds and iodine accumulation kinetics of Fucus vesiculosus and Laminaria digitata (Phaeophyceae, Ochrophyta). J. Phycol. 2018, 54, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, M.E.; Ngu, T.; Stillman, M.J. Arsenic binding to Fucus vesiculosus metallothionein. Biochem. Biophys. Res. Commun. 2004, 324, 127–132. [Google Scholar] [CrossRef]
- Powell, T.; Bowra, S.; Cooper, H.J. Subcritical water processing of proteins: An alternative to enzymatic digestion? Anal. Chem. 2016, 88, 6425–6432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truus, K.; Vaher, M.; Taure, I. Algal biomass from Fucus vesiculosus (Phaeophyta): Investigation of the mineral and alginate components. Proc. Estonian Acad. Sci. Chem. 2001, 50, 95–103. [Google Scholar]
- Tukai, R.; Maher, W.A.; McNaught, I.J.; Ellwood, M.J.; Coleman, M. Occurrence and chemical form of arsenic in marine macroalgae from the east coast of Australia. Mar. Freshw Res. 2002, 53, 971–980. [Google Scholar] [CrossRef]
- Pérez-Martínez, M.; Caemmerer, B.; De Peña, M.P.; Cid, C.; Kroh, L.W. Influence of brewing method and acidity regulators on the antioxidant capacity of coffee brews. J. Agric. Food Chem. 2010, 58, 2958–2965. [Google Scholar] [CrossRef]
- Silva, K.D.R.R.; Sirasa, M.S.F. Antioxidant properties of selected fruit cultivars grown in Sri Lanka. Food Chem. 2018, 238, 203–208. [Google Scholar] [CrossRef]
- Melgosa, R.; Trigueros, E.; Sanz, M.T.; Cardeira, M.; Rodrigues, L.; Fernández, N.; Matias, A.A.; Bronze, M.R.; Marques, M.; Paiva, A.; et al. Supercritical CO2 and subcritical water technologies for the production of bioactive extracts from sardine (Sardina pilchardus) waste. J. Supercrit. Fluids 2020, 164, 104943. [Google Scholar] [CrossRef]
- Tamanna, N.; Mahmood, N. Food processing and Maillard reaction products: Effect on human health and nutrition. Int. J. Food Sci. 2015, 2015, 526762. [Google Scholar] [CrossRef] [PubMed]
- Aalaei, K.; Rayner, M.; Sjöholm, I. Chemical methods and techniques to monitor early Maillard reaction in milk products; A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1829–1839. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Liu, P.; Xia, S.; Jia, C.; Mukunzi, D.; Zhang, X.; Xia, W.; Tian, H.; Xiao, Z. Temperature effect on the non-volatile compounds of Maillard reaction products derived from xylose–soybean peptide system: Further insights into thermal degradation and cross-linking. Food Chem. 2010, 120, 967–972. [Google Scholar] [CrossRef]
- Liu, S.-C.; Yang, D.-J.; Jin, S.-Y.; Hsu, C.-H.; Chen, S.-L. Kinetics of color development, pH decreasing, and anti-oxidative activity reduction of Maillard reaction in galactose/glycine model systems. Food Chem. 2008, 108, 533–541. [Google Scholar] [CrossRef]
- Zhou, Y.-Y.; Li, Y.; Yu, A.-N. The effects of reactants ratios, reaction temperatures and times on Maillard reaction products of the L-ascorbic acid/L-glutamic acid system. Food Sci. Technol. 2016, 36, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.P.; Paíga, P.; Ribeiro, I.; Pedras, B.; Craveiro, R.; Mano, F.; Simões, P.; Delerue-Matos, C. Assessment of functional properties and determination of pharmaceuticals in subcritical water extracts from two seaweeds. In Proceedings of the 14° Encontro de Química dos Alimentos, Viana do Castelo, Portugal, 6–9 November 2018. [Google Scholar]
- Pinteus, S.; Silva, J.; Alves, C.; Horta, A.; Fino, N.; Rodrigues, A.I.; Mendes, S.; Pedrosa, R. Cytoprotective effect of seaweeds with high antioxidant activity from the Peniche coast (Portugal). Food Chem. 2017, 218, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Corsetto, P.A.; Montorfano, G.; Zava, S.; Colombo, I.; Ingadottir, B.; Jonsdottir, R.; Sveinsdottir, K.; Rizzo, A.M. Characterization of antioxidant potential of seaweed extracts for enrichment of convenience food. Antioxidants 2020, 9, 249. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.; Martins, A.; Alves, C.; Pinteus, S.; Gaspar, H.; Alfonso, A.; Pedrosa, R. Natural approaches for neurological disorders—The neuroprotective potential of Codium tomentosum. Molecules 2020, 25, 5478. [Google Scholar] [CrossRef] [PubMed]
- Valentão, P.; Trindade, P.; Gomes, D.; Guedes de Pinho, P.; Mouga, T.; Andrade, P.B. Codium tomentosum and Plocamium cartilagineum: Chemistry and antioxidant potential. Food Chem. 2010, 119, 1359–1368. [Google Scholar] [CrossRef]
- Andrade, P.B.; Barbosa, M.; Matos, R.P.; Lopes, G.; Vinholes, J.; Mouga, T.; Valentão, P. Valuable compounds in macroalgae extracts. Food Chem. 2013, 138, 1819–1828. [Google Scholar] [CrossRef]
- André, R.; Guedes, L.; Melo, R.; Ascensão, L.; Pacheco, R.; Vaz, P.D.; Serralheiro, M.L. Effect of food preparations on in vitro bioactivities and chemical components of Fucus vesiculosus. Foods 2020, 9, 955. [Google Scholar] [CrossRef] [PubMed]
- Finberg, J.P.M.; Rabey, J.M. Inhibitors of MAO-A and MAO-B in psychiatry and neurology. Front. Med. 2016, 7, 340. [Google Scholar] [CrossRef] [Green Version]
- Mazzio, E.; Deiab, S.; Park, K.; Soliman, K.F.A. High throughput screening to identify natural human monoamine oxidase B inhibitors. Phytother. Res. 2013, 27, 818–828. [Google Scholar] [CrossRef]
- Barbosa, M.; Valentão, P.; Ferreres, F.; Gil-Izquierdo, Á.; Andrade, P.B. In vitro multifunctionality of phlorotannin extracts from edible Fucus species on targets underpinning neurodegeneration. Food Chem. 2020, 333, 127456. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.; Sousa, E.; Kijjoa, A.; Pinto, M. Marine-derived compounds with potential use as cosmeceuticals and nutricosmetics. Molecules 2020, 25, 2536. [Google Scholar] [CrossRef] [PubMed]
- Carballo-Carbajal, I.; Laguna, A.; Romero-Giménez, J.; Cuadros, T.; Bové, J.; Martinez-Vicente, M.; Parent, A.; Gonzalez-Sepulveda, M.; Peñuelas, N.; Torra, A.; et al. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson’s disease pathogenesis. Nat. Commun. 2019, 10, 973. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Zhang, Q.; Wang, S.; Qiu, C.; Liu, Y.; Su, G.; Zhao, M. Effects of Maillard reaction on bioactivities promotion of anchovy protein hydrolysate: The key role of MRPs and newly formed peptides with basic and aromatic amino acids. LWT Food Sci. Technol. 2018, 97, 245–253. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, X.; Karangwa, E. Inhibition effects of Maillard reaction products derived from l-cysteine and glucose on enzymatic browning catalyzed by mushroom tyrosinase and characterization of active compounds by partial least squares regression analysis. RSC Adv. 2016, 6, 65825–65836. [Google Scholar] [CrossRef]
Component | F. vesiculosus | C. tomentosum |
---|---|---|
Moisture (g/100 g seaweed) | 4.5 ± 0.4 a | 8.0 ± 0.2 b |
Ash (g/100 g dw) | 17.3 ± 0.1 a | 24.0 ± 0.1 b |
Lipids (g/100 g dw) | 3.4 ± 0.5 a | 2.2 ± 0.6 a |
Protein (g/100 g dw) | 3.1 ± 0.6 a | 25.3 ± 0.9 b |
Total carbohydrate content (g GE/100 g dw) | 17.7 ± 0.12 a | 28.5 ± 2.5 b |
Carbohydrates, soluble (g/100 g dw) | 0.5 ± 0.02 a | 0.7 ± 0.1 b |
Carbohydrates, insoluble (g/100 g dw) | 17.2 ± 0.1 a | 27.8 ± 2.4 b |
Lignin (g/100 g dw) | 21.9 ± 1.1 a | 2.1 ± 0.1 b |
Temperature Range (°C) | Cumulative Extraction Yield (g/100 g dw) | ||
---|---|---|---|
Fractions | F. vesiculosus | C. tomentosum | |
E1 | 20–90 | 20.5 | 4.1 |
E2 | 90–140 | 56.0 | 7.0 |
E3 | 140–190 | 65.9 | 33.6 |
E4 | 190–250 | 73.7 | 51.4 |
F. vesiculosus | C. tomentosum | |||
---|---|---|---|---|
Fraction | I * (µg/g dw) | As ** (µg/g dw) | I * (µg/g dw) | As ** (µg/g dw) |
E1 | 14600 ± 500 a | 144 ± 4 a | 42.0 ± 1.2 a | 23.1 ± 1.7 a |
E2 | 5000 ± 70 b | 8.75 ± 0.30 b | 14.5 ± 0.2 b | 14.8 ± 0.4 b |
E3 | 2850 ± 100 c | 32.3 ± 2.7 c | 8.08 ± 0.37 c | 8.51 ± 0.11 c |
E4 | 1250 ± 10 d | 11.9 ± 1.0 b | 1.16 ± 0.13 d | 0.511 0.033 d |
TPC (g GAE/100 g dw) | Phlorotannin Content (g PhloE/100 g dw) | TFC (g CE/100 g dw) | ||||
---|---|---|---|---|---|---|
Fractions | F. vesiculosus | C. tomentosum | F. vesiculosus | C. tomentosum | F. vesiculosus | C. tomentosum |
E1 | 16.4 ±0.7 a | 0.5 ± 0.02 a | 0.8 ± 0.1 a | - | n.t. | n.t. |
E2 | 6.4 ± 0.6 b | 1.0 ± 0.1 a | 0.1 ± 0.01 b | - | n.t. | n.t. |
E3 | 6.4 ± 0.3 b | 1.7 ± 0.1 b | - | - | 1.5 ± 0.1 a | 0.2 ± 0.1 a |
E4 | 6.0 ± 0.3 b | 4.7 ± 0.5 c | - | - | 2.0 ± 0.1 b | 0.7 ± 0.1 b |
Reducing Sugar Content (g GE/100 g dw) | Protein Content (g/100 g dw) | Free Amino Groups (mg LE/100 g dw) | Browning Index % | Maillard Reaction Intermediate Products (Abs = 294 nm) | Browning (Abs = 360 nm) | Browning (Abs = 420 nm) | Fluorescent AGEs (λexc 360/40; λem 460/40) | pH | |
---|---|---|---|---|---|---|---|---|---|
F. vesiculosus | |||||||||
Raw material | 0.3 ± 0.03 a | 1.9 ± 0.1 a | |||||||
E1 | 0.5 ± 0.02 b | 2.9 ± 0.4 a | 130.1 ± 7.3 b | 42.2 ± 1.0 a | 4.9 ±0.02 a | 1.7 ±0.02 a | 0.7 ±0.01 a | 435.0 ± 23.8 a | 6.0 ± 0.1 a,c |
E2 | 1.0 ± 0.1 c | 1.6 ± 0.5 b | 9.1 ± 0.7 a | 29.7 ± 0.5 b | 10.0 ±0.1 b | 0.9 ±0.01 b | 0.5 ± 0.01 a | 155.0 ± 7.1 b | 5.8 ± 0.1 a |
E3 | 1.1 ± 0.1 c | 7.2 ± 0.6 c | 144.5 ± 5.0 b | 36.3 ± 0.4 a,b | 15.9 ± 0.3 c | 1.9 ± 0.02 c | 0.8 ± 0.01 a | 2052.5 ± 77.6 c | 5.2 ± 0.1 b |
E4 | 1.0 ± 0.02 c | 9.8 ± 0.5 d | 1428.6 ± 63.8 c | 73.2 ± 7.8 c | 6.2 ± 0.1 d | 3.0 ±0.04 d | 1.9 ±0.03 b | 1632.5 ± 22.2 d | 6.2 ± 0.1 c |
C. tomentosum | |||||||||
Raw material | 0.1 ± 0.01 a | 10.9 ± 1.0 a | |||||||
E1 | 1.3 ± 0.1 b | 10.3 ± 0.3 a | 81.3 ± 3.5 b | 8.4 ± 0.5 a | 0.8 ± 0.03 a | 0.4 ± 0.02 a | 0.3 ± 0.02 a | 133.0 ± 4.8 a | 6.8 ±0.01 a |
E2 | 1.8 ± 0.1 c | 21.5 ± 0.3 b | 99.8 ± 4.7 b | 13.2 ± 0.4 b | 1.0 ± 0.01 b | 0.7 ± 0.01 b | 0.4 ± <0.01 b | 364.0 ± 8.5 a | 6.5 ±0.04 b |
E3 | 1.2 ± 0.1 b | 22.9 ± 0.4 c | 341.8 ±23.8 c | 19.0 ± 0.3 c | 4.7 ± 0.1 c | 0.9 ±0.02 c | 0.5 ±0.01 c | 903.8 ± 21.7 b | 5.0 ±0.1 c |
E4 | 1.4 ± 0.1 b | 31.4 ± 0.4 d | 1196.8 ± 41.8 c | 60.6 ± 0.9 d | 7.0 ± 0.1 d | 3.4 ±0.1 d | 1.7 ± 0.03 d | 6915.0 ± 196.7 c | 4.9 ± 0.1 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, C.; Paíga, P.; Marques, M.; Neto, T.; Carvalho, A.P.; Paiva, A.; Simões, P.; Costa, L.; Bernardo, A.; Fernández, N.; et al. Multi-Step Subcritical Water Extracts of Fucus vesiculosus L. and Codium tomentosum Stackhouse: Composition, Health-Benefits and Safety. Processes 2021, 9, 893. https://doi.org/10.3390/pr9050893
Soares C, Paíga P, Marques M, Neto T, Carvalho AP, Paiva A, Simões P, Costa L, Bernardo A, Fernández N, et al. Multi-Step Subcritical Water Extracts of Fucus vesiculosus L. and Codium tomentosum Stackhouse: Composition, Health-Benefits and Safety. Processes. 2021; 9(5):893. https://doi.org/10.3390/pr9050893
Chicago/Turabian StyleSoares, Cristina, Paula Paíga, Marta Marques, Tânia Neto, Ana Paula Carvalho, Alexandre Paiva, Pedro Simões, Leonor Costa, Ana Bernardo, Naiara Fernández, and et al. 2021. "Multi-Step Subcritical Water Extracts of Fucus vesiculosus L. and Codium tomentosum Stackhouse: Composition, Health-Benefits and Safety" Processes 9, no. 5: 893. https://doi.org/10.3390/pr9050893
APA StyleSoares, C., Paíga, P., Marques, M., Neto, T., Carvalho, A. P., Paiva, A., Simões, P., Costa, L., Bernardo, A., Fernández, N., Pinto, E., Almeida, A., Bronze, M. R., Delerue-Matos, C., & Grosso, C. (2021). Multi-Step Subcritical Water Extracts of Fucus vesiculosus L. and Codium tomentosum Stackhouse: Composition, Health-Benefits and Safety. Processes, 9(5), 893. https://doi.org/10.3390/pr9050893