Effect of Solvent Extraction and Blanching Pre-Treatment on Phytochemical, Antioxidant Properties, Enzyme Inactivation and Antibacterial Activities of ‘Wonderful’ Pomegranate Peel Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Sample Preparation and Phytochemical Extraction
2.3. Determination of Phytochemicals and Antioxidant Activity
2.3.1. Extract Yield
2.3.2. Total Phenolic Content (TPC)
2.3.3. Total Tannin Content (TTC)
2.3.4. Total Flavonoid Content (TFC)
2.3.5. Total Anthocyanin Content (TAC)
2.3.6. Ascorbic Acid Concentration
2.3.7. Radical-Scavenging Ability (RSA)
2.3.8. Ferric Ion-Reducing Antioxidant Power (FRAP)
2.3.9. 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic Acid) Assay (ABTS)
2.4. Determination of Enzyme Activity
2.4.1. Polyphenol Oxidase (PPO) Assay
2.4.2. Peroxidase (POD) Assay
2.5. Antibacterial Activity Determination
2.6. Liquid Chromatography-Mass Spectrometry
2.7. Statistical Analysis
3. Results
3.1. Influence of Solvent Type and Concentration on Phytochemical Extraction
3.1.1. Phytochemical Analysis of ‘Wonderful’ Pomegranate Peel Extracts
3.1.2. Antioxidant Activities of ‘Wonderful’ Pomegranate Peel Extracts
3.2. Influence of Blanching Temperature and Time on Phytochemical Extraction
3.2.1. Phytochemical Analysis of Blanched ‘Wonderful’ Pomegranate Peel Extracts
3.2.2. Antioxidant Activities of Blanched ‘Wonderful’ Pomegranate Peel Extracts
3.3. Determination of Enzyme Activity (PPO and POD)
3.4. Antibacterial Activity
3.5. Principal Component Analysis (PCA) and Agglomerative Hierarchical Clustering Analysis (AHC)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Magalhães, V.S.M.; Ferreira, L.M.D.F.; Silva, C. Using a methodological approach to model causes of food loss and waste in fruit and vegetable supply chains. J. Clean. Prod. 2020, 283, 124574. [Google Scholar] [CrossRef]
- Banerjee, J.; Singh, R.; Vijayaraghavan, R.; MacFarlane, D.; Patti, A.F.; Arora, A. Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chem. 2017, 225, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Fawole, O.A.; Makunga, N.P.; Opara, U.L. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract. BMC Complement. Altern. Med. 2012, 12, 200–225. [Google Scholar] [CrossRef] [Green Version]
- Nanda, S.; Isen, J.; Dalai, A.K.; Kozinski, J.A. Gasification of fruit wastes and agro-food residues in supercritical water. Energy Convers. Manag. 2016, 110, 296–306. [Google Scholar] [CrossRef]
- Magangana, T.P.; Makunga, N.P.; Fawole, O.A.; Opara, U.L. Processing factors affecting the phytochemical and nutritional properties of pomegranate. Molecules 2020, 25, 4690. [Google Scholar] [CrossRef]
- Mphahlele, R.R.; Fawole, O.A.; Makunga, N.P.; Opara, U.L. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel. BMC Complement. Altern. Med. 2016, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Opara, L.U.; Al-Ani, M.R.; Al-Shuaibi, Y.S. Physico-chemical properties, vitamin C content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food Bioprocess Technol. 2009, 2, 315–321. [Google Scholar] [CrossRef]
- Venkitasamy, C.; Zhao, L.; Zhang, R.; Pan, Z. Pomegranate. Integrated Processing Technologies for Food and Agricultural By-Products, 1st ed.; Pan, Z., Zhang, R., Zicari, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 181–216. [Google Scholar]
- Hortgro; Pomegranate Association of South Africa (POMASA). Pomegranate Industry Overview. 2020. Available online: http://www.hortgro.co.za/portfolia/pomegranates (accessed on 11 November 2020).
- Opara, I.K.; Fawole, O.A.; Kelly, C.; Opara, U.L. Quantification of on-farm pomegranate fruit postharvest losses and waste, and implications on sustainability indicators: South African Case Study. Sustainability 2021, 13, 5168. [Google Scholar] [CrossRef]
- Opara, I.K.; Fawole, O.A.; Opara, U.L. Postharvest losses of pomegranate fruit at the packhouse and implications for sustainability indicators. Sustainability 2021, 13, 5187. [Google Scholar] [CrossRef]
- Foujdar, R.; Bera, M.B.; Chopra, H.K. Optimization of process variables of probe ultrasonic-assisted extraction of phenolic compounds from the peel of Punica granatum var. Bhagwa and it’s chemical and bioactivity characterization. J. Food Process. Preserv. 2020, 44, 1–16. [Google Scholar] [CrossRef]
- Mphahlele, R.R.; Fawole, O.A.; Mokwena, L.M.; Opara, U.L. Effect of extraction method on chemical, volatile composition, and antioxidant properties of pomegranate juice. S. Afr. J. Bot. 2016, 103, 135–144. [Google Scholar] [CrossRef]
- Surendhiran, D.; Li, C.; Cui, H.; Lin, L. Fabrication of high stability active nanofibers encapsulated with pomegranate peel extract using chitosan/PEO for meat preservation. Food Packag. Shelf Life 2020, 23, 100439. [Google Scholar] [CrossRef]
- Negi, P.S.; Jayaprakasha, G.K. Antioxidant and antibacterial activities of Punica granatum peel extracts. J. Food Sci. 2003, 68, 1473–1477. [Google Scholar] [CrossRef]
- Al-Daamy, A.A.H.; Ula, B.; Alaaddin, D.; Hasaan, M. Investigation of inhibition efficiency of Punica granatum peel extract against bacteria. J. Contemp. Med. Sci. 2016, 2, 63–66. [Google Scholar]
- Reddy, M.K.; Gupta, S.K.; Jacob, M.R.; Khan, S.I.; Ferreira, D. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L. Planta Med. 2007, 73, 461–467. [Google Scholar] [CrossRef]
- Karray, A.; Krayem, N.; Saad, H.B.; Sayari, A. Spirulina platensis, Punica granatum peel, and moringa leaves extracts in cosmetic formulations: An integrated approach of in vitro biological activities and acceptability studies. Environ. Sci. Pollut. Res. 2020, 28, 8802–8811. [Google Scholar] [CrossRef]
- Boggia, R.; Turrini, F.; Villa, C.; Lacapra, C.; Zunin, P.; Parodi, B. Green extraction from pomegranate marcs for the production of functional foods and cosmetics. Pharmaceuticals 2016, 9, 63. [Google Scholar] [CrossRef]
- Laosirisathian, N.; Saenjum, C.; Sirithunyalug, J.; Eitssayeam, S.; Sirithunyalug, B.; Chaiyana, W. The chemical composition, antioxidant and anti-tyrosinase activities, and irritation properties of Sripanya Punica granatum peel extract. Cosmetics 2020, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Turrini, F.; Malaspina, P.; Giordani, P.; Catena, S.; Zunin, P.; Boggia, R. Traditional decoction and PUAE aqueous extracts of pomegranate peels as potential low-cost anti-tyrosinase ingredients. Appl. Sci. 2020, 10, 2795. [Google Scholar] [CrossRef] [Green Version]
- Tokton, N.; Ounaroon, A.; Panichayupakaranant, P.; Tiyaboonchai, W. Development of ellagic acid rich pomegranate peel extract loaded nanostructured lipid carriers (NLCs). Int. J. Pharm. Pharm. Sci. 2014, 6, 259–265. [Google Scholar]
- Sathianarayanan, M.P.; Bhat, N.V.; Kokate, S.S.; Walunj, V.E. Antibacterial finish for cotton fabric from herbal products. Indian J. Fibre Text. Res. 2010, 35, 50–58. [Google Scholar]
- Shahid, M.; Islam, S.U.; Rather, L.J.; Manzoor, N.; Mohammad, F. Simultaneous shade development, antibacterial, and antifungal functionalization of wool using Punica granatum L. peel extract as a source of textile dye. J. Nat. Fibers 2019, 16, 555–566. [Google Scholar] [CrossRef]
- Rehman, F.; Sanbhal, N.; Naveed, T.; Farooq, A.; Wang, Y.; Wei, W. Antibacterial performance of Tencel fabric dyed with pomegranate peel extracted via ultrasonic method. Cellulose 2018, 25, 4251–4260. [Google Scholar] [CrossRef]
- Al-gubory, K.H.; Garrel, C. Diet supplementation with pomegranate peel improves embryonic survival in a mouse model of early pregnancy loss diet supplementation with pomegranate peel improves embryonic survival in a mouse model of early pregnancy loss. J. Diet. Suppl. 2020, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kanatt, S.R.; Chander, R.; Sharma, A. Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. Int. J. Food Sci. Technol. 2010, 45, 216–222. [Google Scholar] [CrossRef]
- Padmaja, A.; Prasad, N.B.L. Pomegranate (Punica granatum L.) peel extract as a source of natural antioxidant. J. Food Sci. Eng. 2011, 1, 171–182. [Google Scholar]
- Lansky, E.P.; Newman, R.A. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol. 2007, 109, 177–206. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Fernández-Lóaez, J.; Pérez-álvarez, J.A. Pomegranate and its many functional components as related to human health: A review. Compr. Rev. Food Sci. Food Saf. 2010, 9, 635–654. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, S.; Ismail, T.; Fraternale, D.; Sestili, P. Pomegranate peel and peel extracts: Chemistry and food features. Food Chem. 2015, 174, 417–425. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomas-Barberan, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef]
- Brusselmans, K.; Vrolix, R.; Verhoeven, G.; Swinnen, J.V. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem. 2005, 280, 5636–5645. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Pan, Z.; Ma, H.; Atungulu, G.G. Extract of phenolics from pomegranate peels. Open Food Sci. J. 2011, 5, 17–25. [Google Scholar] [CrossRef]
- Mashkoor, I.M.A.A.L. Total phenol, total flavonoids, and antioxidant activity of pomegranate peel. Int. J. Chem. Tech Res. 2014, 6, 4656–4661. [Google Scholar]
- Malviya, S.; Jha, A.; Hettiarachchy, N. Antioxidant and antibacterial potential of pomegranate peel extracts. J. Food Sci. Technol. 2014, 51, 4132–4137. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, M.; Sultana, B.; Anwar, F.; Adnan, A.; Rizvi, S.S.H. Enzyme-assisted supercritical fluid extraction of phenolic antioxidants from pomegranate peel. J. Supercrit. Fluids 2015, 104, 122–131. [Google Scholar] [CrossRef]
- Sharayei, P.; Azarpazhooh, E.; Zomorodi, S.; Ramaswamy, H.S. Ultrasound assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. LWT 2019, 101, 342–350. [Google Scholar] [CrossRef]
- Chen, J.; Liao, C.; Ouyang, X.; Kahramanoğlu, I.; Gan, Y.; Li, M. Antimicrobial activity of pomegranate peel and its applications on food preservation. J. Food Qual. 2020, 1–8. [Google Scholar] [CrossRef]
- Yasoubi, P.; Barzegar, M.; Sahari, M.A.; Azizi, M.H. Total phenolic contents and antioxidant activity of pomegranate (Punica granatum L.) peel extracts. J. Agric. Sci. Technol. 2007, 9, 35–42. [Google Scholar]
- Xiao, H.W.; Pan, Z.; Deng, L.Z.; El-Mashad, H.M.; Yang, X.H.; Mujumdar, A.S.; Gao, Z.J.; Zhang, Q. Recent developments and trends in thermal blanching—A comprehensive review. Inf. Process. Agric. 2017, 4, 101–127. [Google Scholar] [CrossRef]
- Nurhuda, H.H.; Maskat, M.Y.; Mamot, S.; Afiq, J.; Aminah, A. Effect of blanching on enzyme and antioxidant activities of rambutan (Nephelium lappaceum) peel. Int. Food Res. J. 2013, 20, 1725–1730. [Google Scholar]
- Duarte, Y.; Chaux, A.; Lopez, N.; Largo, E.; Ramírez, C.; Nuñez, H.; Simpson, R.; Vega, O. Effects of blanching and hot air-drying conditions on the physicochemical and technological properties of yellow passion fruit (Passiflora edulis var. Flavicarpa) by-products. J. Food Process Eng. 2017, 40, 1–10. [Google Scholar] [CrossRef]
- Geerkens, C.H.; Nagel, A.; Just, K.M.; Miller-Rostek, P.; Kammerer, D.R.; Schweiggert, R.M.; Carle, R. Mango pectin quality as influenced by cultivar, ripeness, peel particle size, blanching, drying, and irradiation. Food Hydrocoll. 2015, 51, 241–251. [Google Scholar] [CrossRef]
- Zid, B.M.; Dhuique-Mayer, C.; Bellagha, S.; Sanier, C.; Collignan, A.; Servent, A.; Dornier, M. Effects of blanching on flavanones and microstructure of Citrus aurantium peels. Food Bioprocess Technol. 2015, 8, 2246–2255. [Google Scholar] [CrossRef]
- Akter, M.S.; Ahmed, M.; Eun, J.B. Effect of blanching and drying temperatures on the physicochemical characteristics, dietary fiber composition and antioxidant-related parameters of dried persimmons peel powder. Int. J. Food Sci. Nutr. 2010, 61, 702–712. [Google Scholar] [CrossRef]
- Cano, P.; Marín, M.A.; Fúster, C. Effects of some thermal treatments on polyphenol oxidase and peroxidase activities of banana (Musa cavendishii, var Enana). J. Sci. Food Agric. 1990, 51, 223–231. [Google Scholar] [CrossRef]
- Ma, Y.; Ye, X.; Hao, Y.; Xu, G.; Xu, G.; Liu, D. Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel. Ultrason. Sonochem. 2008, 15, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Qu, W.; Ma, H.; Atungulu, G.G.; Mchugh, T.H. Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrason. Sonochem. 2012, 19, 365–372. [Google Scholar] [CrossRef]
- Makkar, P.S.M. Quantification of Tannins in Tree Foliage. Laboratory Manual. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. 2000. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:33048138 (accessed on 21 April 2021).
- Yang, J.; Martinson, T.E.; Liu, R.H. Phytochemical profiles and antioxidant activities of wine grapes. Food Chem. 2009, 116, 332–339. [Google Scholar] [CrossRef]
- Wrolstad, R.E. Color and Pigment Analyses in Fruit Products; Agricultural Experiment Station, Oregon State University: Corvallis, OR, USA, 1993. [Google Scholar]
- Karioti, A.; Hadjipavlou-Litina, D.; Mensah, M.L.K.; Fleischer, T.C.; Skaltsa, H. Composition and antioxidant activity of the essential oils of Xylopia aethiopica (Dun) a. rich. (Annonaceae) leaves, stem bark, root bark, and fresh and dried fruits, growing in Ghana. J. Agric. Food Chem. 2004, 52, 8094–8098. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. Determination of optimal extraction conditions for phenolic compounds from: Pistacia atlantica leaves using the response surface methodology. Anal. Methods 2016, 8, 6107–6114. [Google Scholar] [CrossRef]
- Chirinos, R.; Pedreschi, R.; Rogez, H.; Larondelle, Y.; Campos, D. Phenolic compound contents and antioxidant activity in plants with nutritional and/or medicinal properties from the Peruvian Andean region. Ind. Crops Prod. 2013, 47, 145–152. [Google Scholar] [CrossRef]
- González, E.M.; De Ancos, B.; Cano, M.P. Partial characterization of polyphenol oxidase activity in raspberry fruits. J. Agric. Food Chem. 1999, 47, 4068–4072. [Google Scholar] [CrossRef] [Green Version]
- Meighani, H.; Ghasemnezhad, M.; Bakshi, D. Evaluation of biochemical composition and enzyme activities in browned arils of pomegranate fruits. Int. J. Hortic. Sci. Technol. 2014, 1, 53–65. [Google Scholar] [CrossRef]
- Arendse, E.; Fawole, O.A.; Magwaza, L.S.; Nieuwoudt, H.; Opara, U.L. Evaluation of biochemical markers associated with the development of husk scald and the use of diffuse reflectance NIR spectroscopy to predict husk scald in pomegranate fruit. Sci. Hortic. 2018, 232, 240–249. [Google Scholar] [CrossRef]
- Tabaraki, R.; Heidarizadi, E.; Benvidi, A. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) peel antioxidants by response surface methodology. Sep. Purif. Technol. 2012, 98, 16–23. [Google Scholar] [CrossRef]
- Živković, J.; Šavikin, K.; Janković, T.; Ćujić, N.; Menković, N. Optimization of ultrasound-assisted extraction of polyphenolic compounds from pomegranate peel using response surface methodology. Sep. Purif. Technol. 2018, 194, 40–47. [Google Scholar] [CrossRef]
- Jung, J.S. Analysis of volatile compounds in the root peel, stem peel, and fruit peel of pomegranate (Punica granatum) by TD GC/MS. Int. J. Bio-Sci. Bio-Technol. 2014, 6, 169–181. [Google Scholar] [CrossRef]
- Stojanović, I.; Šavikin, K.; Đedović, N.; Živković, J.; Saksida, T.; Momčilović, M.; Koprivica, I.; Vujičić, M.; Stanisavljević, S.; Miljković, Đ.; et al. Pomegranate peel extract ameliorates autoimmunity in animal models of multiple sclerosis and type 1 diabetes. J. Funct. Foods 2017, 35, 522–530. [Google Scholar] [CrossRef]
- Huang, J.; He, W.; Yan, C.; Du, X.; Shi, X. Microwave assisted extraction of flavonoids from pomegranate peel and its antioxidant activity. Bio Web Conf. 2017, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Murthy, C.K.N.; Jayaprakasha, G.K. Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J. Agric. Food Chem. 2002, 50, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Fourati, M.; Smaoui, S.; Ennouri, K.; Ben Hlima, H.; Elhadef, K.; Chakchouk-Mtibaa, A.; Sellem, I.; Mellouli, L. Multiresponse optimization of pomegranate peel extraction by statistical versus artificial intelligence: Predictive approach for foodborne bacterial pathogen inactivation. Evid. Based Complement. Altern. Med. 2019, 2019, 1542615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiban, M.S.; Al-otaibi, M.M.; Al-zoreky, N.S. Antioxidant activity of pomegranate (Punica granatum L.) fruit peels. Food Nutr. Sci. 2012, 3, 991–996. [Google Scholar]
- Zhang, Q.; Jia, D.; Yao, K. Antiliperoxidant activity of pomegranate peel extracts on lard. Nat. Prod. Res. 2007, 21, 211–216. [Google Scholar] [CrossRef]
- Deylami, Z.M.; Rahman, A.R.; Tan, C.P.; Bakar, J.; Olusegun, L. Effect of blanching on enzyme activity, color changes, anthocyanin stability and extractability of mangosteen pericarp: A kinetic study. J. Food Eng. 2016, 178, 12–19. [Google Scholar] [CrossRef]
- Mokapane, F.M.; Fawole, O.A.; Opara, U.L. Strategies to preserve quality and extend shelf life of dried fruits and vegetables: A review. Acta Hortic. 2018, 1201, 99–106. [Google Scholar] [CrossRef]
- Chung, Y.C.; Chiang, B.H.; Wei, J.H.; Wang, C.K.; Chen, P.C.; Hsu, C.K. Effects of blanching, drying and extraction processes on the antioxidant activity of yam (Dioscorea alata). Int. J. Food Sci. Technol. 2008, 43, 859–864. [Google Scholar] [CrossRef]
- Rosas-Burgos, E.C.; Burgos-Hernández, A.; Noguera-Artiaga, L.; Kačániová, M.; Hernández-García, F.; Cárdenas-López, J.L.; Carbonell-Barrachina, Á.A. Antimicrobial activity of pomegranate peel extracts as affected by cultivar. J. Sci. Food Agric. 2017, 97, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Yaich, H.; Cheikhrouhou, S.; Khemakhem, I.; Bouaziz, M.; Attia, H.; Ayadi, M.A. Antioxidant properties and phenolic profile characterization by LC–MS/MS of selected Tunisian pomegranate peels. J. Food Sci. Technol. 2017, 54, 2890–2901. [Google Scholar] [CrossRef]
- Fischer, U.A.; Carle, R.; Kammerer, D.R. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MSn. Food Chem. 2011, 127, 807–821. [Google Scholar] [CrossRef]
- Nuncio-Jáuregui, N.; Nowicka, P.; Munera-Picazo, S.; Hernández, F.; Carbonell-Barrachina, Á.A.; Wojdyło, A. Identification and quantification of major derivatives of ellagic acid and antioxidant properties of thinning and ripe Spanish pomegranates. J. Funct. Foods 2015, 12, 354–364. [Google Scholar] [CrossRef]
Solvent | * Concentration, % (v/v) | Extract Yield (%) | TPC | TTC | DPPH | FRAP | ABTS |
---|---|---|---|---|---|---|---|
Methanol | 50 | 19.79 ± 1.54 c | 8.76 ± 0.04 c | 0.45 ± 0.04 bc | 203.95 ± 4.85 c | 354.34 ± 4.85 bc | 562.94 ± 3.64 d |
70 | 22.94 ± 0.95 b | 8.97 ± 0.02 b | 0.54 ± 0.04 b | 218.50 ± 2.43 b | 394.36 ± 33.96 ab | 708.48 ± 1.05 b | |
100 | 17.11 ± 0.36 d | 7.60 ± 0.04 d | 0.31 ± 0.09 de | 182.12 ± 0.61 d | 302.79 ± 6.39 c | 512.01 ± 1.05 f | |
Ethanol | 50 | 23.52 ± 0.74 b | 9.08 ± 0.05 b | 0.50 ± 0.04 bc | 219.71 ± 1.21 b | 409.52 ± 4.25 ab | 591.45 ± 3.03 c |
70 | 29.46 ± 0.75 a | 10.61 ± 0.15 a | 0.76 ± 0.02 a | 243.97 ± 2.43 a | 478.04 ± 73.98 a | 718.79 ± 2.42 a | |
100 | 18.19 ± 0.44 cd | 8.76 ± 0.04 c | 0.38 ± 0.03 cd | 188.18 ± 5.46 d | 339.18 ± 10.02 bc | 541.72 ± 1.60 e | |
Acetone | 50 | 16.32 ± 0.57 de | 5.93 ± 0.04 f | 0.31 ± 0.04 de | 111.17 ± 1.21 f | 216.08 ± 1.21 de | 420.44 ± 1.21 h |
70 | 18.23 ± 0.62 cd | 6.79 ± 0.04 e | 0.22 ± 0.03 ef | 127.55 ± 0.61 e | 267.01 ± 2.43 cd | 478.05 ± 1.60 g | |
100 | 14.45 ± 0.63 e | 5.45 ± 0.05 g | 0.14 ± 0.02 f | 95.41 ± 1.82 g | 159.69 ± 0.61 e | 385.87 ± 2.43 i | |
Solvent (A) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Concentration (B) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
A*B | 0.0035 | <0.0001 | 0.0047 | 0.0059 | <0.0001 | <0.0001 |
Temp (°C) | Time | Extract Yield (%) | TPC | TTC | TFC | TAC | Vit C | DPPH | FRAP | ABTS | PPO | POD |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unblanched | 29.46 ± 0.75 | 10.61 ± 0.15 | 0.76 ± 0.02 | 0.07 ± 0.00 | 1.17 ± 0.00 | 45.24 ± 0.06 | 243.97 ± 2.43 | 478.04 ± 73.98 | 718.79 ± 2.43 | 0.40 ± 0.00 | 3.00 ± 0.00 | |
60 | 1 | 25.77 ± 1.01 b | 10.66 ± 0.08 d | 0.75 ± 0.06 bcd | 0.08 ± 0.00 a | 1.84 ± 0.00 a | 48.95 ± 0.05 bc | 266.41 ± 1.05 b | 482.89 ± 6.55 bc | 736.37 ± 1.60 c | 0.70 ± 0.00 a | 5.25 ± 0.00 a |
3 | 25.48 ± 1.25 b | 9.911 ± 0.03 ef | 0.73 ± 0.07 bcd | 0.07 ± 0.00 b | 1.22 ± 0.05 c | 48.49 ± 0.26 c | 246.40 ± 1.05 c | 480.47 ± 1.21 c | 723.03 ± 2.77 d | 0.68 ± 0.03 ab | 4.88 ± 0.38 ab | |
5 | 21.73 ± 0.89 c | 9.22 ± 0.05 g | 0.71 ± 0.03 cde | 0.06 ± 0.00 c | 0.83 ± 0.00 d | 34.50 ± 0.40 e | 223.96 ± 1.60 d | 445.30 ± 0.60 d | 682.40 ± 2.18 e | 0.60 ± 0.00 b | 4.50 ± 0.00 b | |
80 | 1 | 21.77 ± 1.04 c | 11.01 ± 0.08 bc | 0.87 ± 0.02 b | 0.07 ± 0.00 b | 1.39 ± 0.11 b | 49.82 ± 0.20 b | 309.45 ± 11.56 a | 503.50 ± 9.70 b | 754.56 ± 2.42 b | 0.28 ± 0.03 cd | 2.25 ± 0.00 c |
3 | 31.28 ± 0.60 a | 12.22 ± 0.08 a | 1.06 ± 0.06 a | 0.08 ± 0.00 a | 1.50 ± 0.00 b | 53.94 ± 0.46 a | 319.16 ± 4.20 a | 525.33 ± 15.76 a | 778.82 ± 2.42 a | 0.33 ± 0.03 c | 1.50 ± 0.00 d | |
5 | 30.67 ± 0.45 a | 10.08 ± 0.05 e | 0.81 ± 0.02 bc | 0.08 ± 0.00 a | 0.83 ± 0.00 d | 43.32 ± 0.23 d | 269.43 ± 4.85 b | 495.63 ± 4.57 bc | 725.46 ± 1.60 d | 0.30 ± 0.00 cd | 2.25 ± 0.00 c | |
100 | 1 | 24.81 ± 0.51 b | 11.14 ± 0.05 b | 0.66 ± 0.02 de | 0.07 ± 0.00 b | 0.50 ± 0.00 e | 19.42 ± 0.55 f | 180.30 ± 1.21 e | 479.86 ± 3.03 c | 663.00 ± 2.77 f | 0.23 ± 0.03 de | 1.50 ± 0.00 d |
3 | 21.45 ± 0.64 c | 10.94 ± 0.06 c | 0.61 ± 0.02 ef | 0.07 ± 0.00 b | 0.44 ± 0.05 e | 16.17 ± 0.05 g | 149.37 ± 0.60 f | 403.45 ± 1.60 e | 625.40 ± 4.37 g | 0.15 ± 0.05 e | 1.13 ± 0.38 d | |
5 | 20.42 ± 0.85 c | 9.79 ± 0.05 f | 0.48 ± 0.03 f | 0.06 ± 0.00 c | 0.22 ± 0.05 f | 14.37 ± 0.69 h | 136.64 ± 2.64 f | 348.88 ± 1.60 f | 602.36 ± 1.21 h | 0.18 ± 0.03 e | 1.13 ± 0.38 d | |
Temp (A) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Time (B) | 0.0191 | <0.0001 | 0.0043 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
A*B | <0.0001 | <0.0001 | 0.0335 | <0.0001 | <0.0001 | <0.0001 | 0.0021 | <0.0001 | <0.0001 | <0.0001 | 0.0481 |
Variables | Extract Yield | TPC | TTC | TFC | TAC | Vit C | DPPH | FRAP | ABTS | PPO | POD | E. coli | K. pneumonia | S. aureus | B. subtilis |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Extract yield | 1 | ||||||||||||||
TPC | 0.412 | 1 | |||||||||||||
TTC | 0.681 | 0.598 | 1 | ||||||||||||
TFC | 0.758 | 0.601 | 0.666 | 1 | |||||||||||
TAC | 0.461 | 0.344 | 0.732 | 0.618 | 1 | ||||||||||
Vit C | 0.615 | 0.237 | 0.834 | 0.592 | 0.913 | 1 | |||||||||
DPPH | 0.598 | 0.375 | 0.927 | 0.626 | 0.857 | 0.954 | 1 | ||||||||
FRAP | 0.696 | 0.490 | 0.881 | 0.706 | 0.744 | 0.822 | 0.881 | 1 | |||||||
ABTS | 0.661 | 0.420 | 0.926 | 0.679 | 0.890 | 0.966 | 0.986 | 0.924 | 1 | ||||||
PPO | 0.143 | −0.363 | 0.186 | 0.122 | 0.641 | 0.577 | 0.387 | 0.334 | 0.441 | 1 | |||||
POD | 0.047 | −0.462 | 0.085 | 0.060 | 0.590 | 0.521 | 0.327 | 0.274 | 0.371 | 0.980 | 1 | ||||
E. coli | −0.509 | −0.050 | −0.751 | −0.369 | −0.624 | −0.802 | −0.835 | −0.857 | −0.835 | −0.524 | −0.478 | 1 | |||
K. pneumonia | −0.691 | −0.081 | −0.818 | −0.558 | −0.735 | −0.917 | −0.901 | −0.748 | −0.883 | −0.498 | −0.440 | 0.823 | 1 | ||
S. aureus | −0.576 | −0.121 | −0.839 | −0.513 | −0.756 | −0.931 | −0.950 | −0.768 | −0.911 | −0.425 | −0.388 | 0.837 | 0.971 | 1 | |
B. subtilis | −0.463 | 0.070 | −0.745 | −0.344 | −0.702 | −0.895 | −0.872 | −0.699 | −0.840 | −0.583 | −0.546 | 0.882 | 0.945 | 0.957 | 1 |
Temperature (°C) | Time (min) | Gram-Negative | Gram-Positive | ||
---|---|---|---|---|---|
Escherichia coli | Klebsiella pneumonia | Staphylococcus aureus | Bacillus subtilis | ||
Unblanched | 310 | 310 | 310 | 310 | |
60 | 1 | 310 | 310 | 310 | 310 |
3 | 160 | 310 | 310 | 160 | |
5 | 160 | 310 | 310 | 160 | |
80 | 1 | 160 | 310 | 160 | 160 |
3 | 160 | 160 | 160 | 160 | |
5 | 160 | 160 | 160 | 160 | |
100 | 1 | 310 | 630 | 630 | 630 |
3 | 630 | 630 | 630 | 630 | |
5 | 630 | 630 | 630 | 630 | |
Streptomycin (µg/mL) | 1.6 | 1.6 | 0.8 | 1.6 | |
Solvent control (70% ethanol) | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magangana, T.P.; Makunga, N.P.; Amos Fawole, O.; Opara, U.L. Effect of Solvent Extraction and Blanching Pre-Treatment on Phytochemical, Antioxidant Properties, Enzyme Inactivation and Antibacterial Activities of ‘Wonderful’ Pomegranate Peel Extracts. Processes 2021, 9, 1012. https://doi.org/10.3390/pr9061012
Magangana TP, Makunga NP, Amos Fawole O, Opara UL. Effect of Solvent Extraction and Blanching Pre-Treatment on Phytochemical, Antioxidant Properties, Enzyme Inactivation and Antibacterial Activities of ‘Wonderful’ Pomegranate Peel Extracts. Processes. 2021; 9(6):1012. https://doi.org/10.3390/pr9061012
Chicago/Turabian StyleMagangana, Tandokazi Pamela, Nokwanda P. Makunga, Olaniyi Amos Fawole, and Umezuruike Linus Opara. 2021. "Effect of Solvent Extraction and Blanching Pre-Treatment on Phytochemical, Antioxidant Properties, Enzyme Inactivation and Antibacterial Activities of ‘Wonderful’ Pomegranate Peel Extracts" Processes 9, no. 6: 1012. https://doi.org/10.3390/pr9061012
APA StyleMagangana, T. P., Makunga, N. P., Amos Fawole, O., & Opara, U. L. (2021). Effect of Solvent Extraction and Blanching Pre-Treatment on Phytochemical, Antioxidant Properties, Enzyme Inactivation and Antibacterial Activities of ‘Wonderful’ Pomegranate Peel Extracts. Processes, 9(6), 1012. https://doi.org/10.3390/pr9061012