Aloe Vera Gel Edible Coating for Shelf Life and Antioxidant Proprieties Preservation of Andean Blackberry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Determination of the Optimal Coating Composition
Experimental Design
2.3. Preparation of Coatings and Films
2.4. Characterisation of the Films
2.4.1. Physical Properties
- Thickness: The thickness was determined by averaging the measurements made with a micrometer (Newton, MA, USA, Fowler) in six different locations of ten films for each coating [18].
- Transparency: Absorbance readings were taken for each film at 600 nm in a UV-Vis spectrophotometer (ColorQuest XE, Reston, Virginia, USA, HunterLab), and the transparency was subsequently calculated according to Equation (1). The absorbance was measured on three films per coating, each in triplicateTransparency = Absorbance/Thickness
- Water solubility index (WSI): This index was determined using weight differences. The films were dispersed in 80 mL of water with constant stirring for one hour and then dried at 60 °C. The index was calculated according to Equation (2) [21]. The WSI was measured for three films per coating, each in triplicate.WSI = (Dry weight initial-dry weight final)/(dry weight initial)
2.4.2. Barrier Properties
- Water Vapour Permeability (WVP): To determine the WVP, the ASTM E96-05 standard was followed according to Equation (3), with modifications proposed by García, et al., (2004) [22] for hydrophilic films. Films were placed in permeation cells and maintained in a controlled humidity cabinet at 65% RH and 25 °C for 48 h. The permeation cells were weighted at 1 h intervals for 8 h. The WVP was calculated using the thickness of each film studied and was measured on three films per coating, each in triplicateWVP = [(m/A) L)/(Pw (hr1 − hr2)],
2.4.3. Mechanical Properties
- Tensile stress (TS) and elongation percentage (% E): These parameters were determined according to the ASTM method D882-09. The equipment used was a TA-XT Plus Texture Analyzer (texture technologies), the biofilm was placed in the equipment holder and stretched until it ruptured. The tensile strength (TS [MPa]) was calculated as the quotient between the force to rupture and the cross-sectional area, while the elongation percentage (% E) was determined as the percentage ratio between the elongation and the initial length of the film.
2.5. Evaluation of the Influence of the Coating on the Shelf Life of the Blackberries
2.5.1. Application of the Coating
2.5.2. Parameters Evaluated
- pH: The pH was determined by the potentiometric method according to the Colombian technical norm NTC 4592 [24], with digital pH meter Orion 3 Star (North America, Thermo Scientific).
- Acidity: The titratable acidity expressed as malic acid was determined by potentiometric titration with sodium hydroxide and phenolphthalein as an indicator according to the Colombian technical norm NTC 4106 [17].
- Total soluble solids (TSS): The total soluble solids were measured in °Brix by the refractometric method according to the Colombian technical standard NTC 4106 [17].
- Weight loss: The weight loss was evaluated by the gravimetric method using Equation (4) [25].Weight loss = Weight day 1 − Weight day X
- Total phenols: The Folin–Ciocalteu method was used. In a 5 mL flask, 50 µL of the extract, 250 µL of Folin-Ciocalteu reagent (1: 1), 750 µL of Na2CO3 (20%) were mixed and made up with distilled water. After incubating this mixture for 30 min, the absorbance was measured at 760 nm wavelength (GEN10S UV-Vis, Deutschland, Germany, Thermo Scientific). A calibration curve was used using gallic acid as a reference standard (R2: 0.9992). The results were expressed as milligrams of gallic acid equivalents per gram of sample (mg GAE g−1 sample).
- Antioxidant activity: Two spectrophotometric methods were used. The first was the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method, in which 30 μL of the extract were mixed with 2 mL of the ethanolic DPPH solution at 50.7 μM (20 mg L−1). After incubating this mixture for 30 min, the absorbance was measured at 517 nm wavelength (GEN10S UV-Vis, Deutschland, Germany, Thermo Scientific). Then a calibration curve was made with Trolox as the reference standard (R2: 0.9950). The results were expressed as micromolar of the Trolox Equivalents (μM TE)
2.6. Statistical Analysis
3. Results
3.1. Determination of the Coating Composition
3.2. Evaluation of the Influence of the Coating on the Shelf Life of the Blackberry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milosevic, T.; Mratinic, E.; Milosevic, N.; Glisic, I.; Mladenovic, J. Segregation of Blackberry Cultivars Based on the Fruit Physico- Chemical Attributes. J. Agric. Sci. 2012, 18, 100–109. [Google Scholar]
- Gündoğdu, M.; Kan, T.; Canan, İ. Bioactive and antioxidant characteristics of blackberry cultivars from East Anatolia. Turk. J. Agric. For. 2016, 40, 344–351. [Google Scholar] [CrossRef]
- Paredes-López, O.; Cervantes-Ceja, M.L.; Vigna-Pérez, M.; Hernández-Pérez, T. Berries: Improving Human Health and Healthy Aging and Promoting Quality Life—A Review. Plant. Foods Hum. Nutr. 2010, 65, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Perdomo, E.; Aller, A.; Cruz-Quintana, S.M.; Giampieri, F.; Alvarez-Suarez, J.M.; Riera, M.E. Andean berries from Ecuador: A review on Botany, Agronomy, Chemistry and Health Potential. J. Berry Res. 2015, 5, 49–69. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, T.M.; Cuenca, K.; Tacuri, E. Caracterización de la poscosecha de la mora de castilla (Rubus glaucus) tratada con 1-metilciclopropeno. Cienc. Técnicas Agropecu. 2018, 27, 66–75. [Google Scholar]
- Ayala, L.C.; Valenzuela, C.P.; Bohórquez, Y. Phytochemical characterization of Castilla Blackberry (Rubus glaucus Benth) in six maturity stage. Biotecnol. Sect. Agropecu. Agroind. 2013, 11, 10–18. [Google Scholar]
- Ramírez, J.D.; Aristizábal, I.D.; Restrepo, J.I. Blackberry conservation through the application of edible coating of aloe vera mucilaginous gel. Vitae 2013, 20, 172–183. [Google Scholar]
- Antunes, L.E.C.; Duarte Filho, J.; De Souza, C.M. Conservação pós-colheita de frutos de amoreira-preta. Pesqui. Agropecuária Bras. 2003, 38, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Sapper, M.; Chiralt, A. Starch-Based Coatings for Preservation of Fruits and Vegetables. Coatings 2018, 8, 152. [Google Scholar] [CrossRef] [Green Version]
- Raybaudi-Massilia, R.; Mosqueda-Melgar, J.; Soliva-Fortuny, R.; Martín-Belloso, O. Combinational Edible Antimicrobial Films and Coatings. Antimicrob. Food Packag. 2016, 1, 633–646. [Google Scholar]
- Botelho, L.N.S.; Rocha, D.A.; Braga, M.A.; Silva, A.; de Abreu, C.M.P. Quality of guava cv. ‘Pedro Sato’ treated with cassava starch and cinnamon essential oil. Sci. Hortic. 2016, 209, 214–220. [Google Scholar] [CrossRef]
- Perdones, Á.; Vargas, M.; Atarés, L.; Chiralt, A. Physical, antioxidant, and antimicrobial properties of chitosan–cinnamon leaf oil films as affected by oleic acid. Food Hydrocoll. 2014, 36, 256–264. [Google Scholar] [CrossRef]
- Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, M. Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Avila-Sosa, R.; Palou, E.; Jiménez-Munguía, M.T.; Nevárez-Morillón, G.V.; Navarro-Cruz, A.R.; López-Malo, A. Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. Int. J. Food Microbiol. 2012, 153, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Toro, R.; Collazo-Bigliardi, S.; Roselló, J.; Santamarina, P.; Chiralt, A. Antifungal starch-based edible films containing Aloe vera. Food Hydrocoll. 2017, 72, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.H.; Oh, Y.A.; Lee, H.; Song, K.B.; Min, S.C. Grape berry coatings of lemongrass oil-incorporating nanoemulsion. LWT Food Sci. Technol. 2014, 58, 1–10. [Google Scholar] [CrossRef]
- Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). NTC 4106. Frutas Frescas. Mora de Castilla. Especificaciones; ICONTEC: Bogotá, Colombia, 1997; p. 13. [Google Scholar]
- Acevedo-Guevara, L.; Nieto-Suaza, L. Diseño de nanocompuestos de aloe vera. In Desarrollo y caracterización de nanocompuestos comestibles de Aloe Vera (Aloe Barbadensis Miller) y nanopartículas de almidón plátano (Musa x Paradisiaca l) nativo y modificado; Facultad de Ciencias Básicas y Tecnologías—Universidad del Quindío: Armenia-Quindío, Colombia, 2017. [Google Scholar]
- Sánchez, T.; García, O.; Pinzón, M. Elaboración y caracterización de películas de almidón de yuca (Manihot esculenta) variedad ICA cultivada en el departamento de Quindío. Vitae 2012, 1, S426–S429. [Google Scholar]
- Guancha-Chalapud, M.A.; Caicedo, C.; Ruiz, E.M.; Valencia, M.F. Propiedades de conservación: Recubrimiento a base de quitosano y Aloe vera aplicado en papa criolla (Solanum phureja). Inf. Técnico 2016, 80, 9–19. [Google Scholar] [CrossRef] [Green Version]
- García, M.A.; Pinotti, A.; Martino, M.N.; Zaritzky, N.E. Characterization of composite hydrocolloid films. Carbohydr. Polym. 2004, 54, 339–345. [Google Scholar] [CrossRef]
- Gennadios, A.; Weller, C.L.; Gooding, C.H. Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. J. Food Eng. 1994, 21, 395–409. [Google Scholar] [CrossRef]
- Velasquez-Castro, J.; Arrubla-Vélez, J.P.; Guerrero-Álvarez, G.E.; Cardona-Hurtado, N.C. Preservation of the polyphenolic content and antioxidant properties of Rubus glaucus Benth. Curr. Res. Nutr. Food Sci. 2019, 7, 886–893. [Google Scholar] [CrossRef]
- Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). NTC 4592. Productos de Frutas y Verduras. Determinación del pH; ICONTEC: Bogotá, Colombia, 1999; p. 4. [Google Scholar]
- García-Mera, G.A.; Salas-Macías, C.A.; Canales-Torres, H.G. Recubrimiento comestible natural con base en Aloe vera como estrategia de conservación de Psidium guajava. Rev. Científica 2017, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- García-Tejeda, Y.; Zamudio-Flores, P.; Luis, A.; Romero-Bastida, C.; Solorza-Feria, J. Oxidación del almidón nativo de plátano para su uso potencial en la fabricación de materiales de empaque biodegradables: Caracterización física, química, térmica y morfológica. Rev. Iberoam. Polímeros 2011, 12, 125–135. [Google Scholar]
- Embuscado, M.E.; Huber, K.C. Edible Films and Coatings for Food Applications; Springer: New York, NY, USA, 2009; Volume 9. [Google Scholar]
- Jancikova, S.; Dordevic, D.; Jamroz, E.; Behalova, H.; Tremlova, B. Chemical and physical characteristics of edible films, based on κ-and ι-carrageenans with the addition of lapacho tea extract. Foods 2020, 9, 357. [Google Scholar] [CrossRef] [Green Version]
- González, M.V. Conservación de Mora, Uvilla y Frutilla Mediante La utilización del Aceite Esencial de Canela (Cinnamomum zeynalicum). Bachelor’s Thesis, Facultad de Ciencias, Escuela de Bioquimica y Farmacia, Escuela Superior Técnica de Chimborazo, Riobamba, Ecuador, 2010. [Google Scholar]
- Hassan, F.A.S.; Mahfouz, S.A. Effect of 1-methylcyclopropene (1-MCP) on the postharvest senescence of coriander leaves during storage and its relation to antioxidant enzyme activity. Sci. Hortic. 2012, 141, 69–75. [Google Scholar] [CrossRef]
- Singh, R.; Rastogi, S.; Dwivedi, U.N. Phenylpropanoid Metabolism in Ripening Fruits. Compr. Rev. Food Sci. Food Saf. 2010, 9, 398–416. [Google Scholar] [CrossRef] [PubMed]
- Almanza-Merchán, P.J.; Balaguera-López, H.E. Determinación de los estadios fenológicos del fruto de Vitis vinifera L. bajo condiciones del altiplano tropical en Boyacá. Rev. UDCA Actual. Divulg. Científica 2009, 12, 141–150. [Google Scholar] [CrossRef]
- Pinzon, M.I.; Sanchez, L.T.; Garcia, O.R.; Gutierrez, R.; Luna, J.C.; Villa, C.C. Increasing shelf life of strawberries (Fragaria ssp) by using a banana starch-chitosan-Aloe vera gel composite edible coating. Int. J. Food Sci. Technol. 2020, 55, 92–98. [Google Scholar] [CrossRef]
- Pinzon, M.I.; Garcia, O.R.; Villa, C.C. The influence of Aloe vera gel incorporation on the physicochemical and mechanical properties of banana starch-chitosan edible films. J. Sci. Food Agric. 2018, 98, 4042–4049. [Google Scholar] [CrossRef]
- Meng, X.; Li, B.; Liu, J.; Tian, S. Physiological responses, and quality attributes of table grapefruit to chitosan preharvest spray and postharvest coating during storage. Food Chem. 2008, 106, 501–508. [Google Scholar] [CrossRef]
- Hassanpour, H. Effect of Aloe vera gel coating on antioxidant capacity, antioxidant enzyme activities and decay in raspberry fruit. LWT Food Sci. Technol. 2015, 60, 495–501. [Google Scholar] [CrossRef]
- Rahmanzadeh-Ishkeh, S.; Asghari, M.; Shirzad, H.; Alirezalu, A.; Ghasemi, G. Lemon verbena (Lippia citrodora) essential oil effects on antioxidant capacity and phytochemical content of raspberry (Rubus ulmifolius subsp. sanctus). Sci. Hortic. 2019, 248, 297–304. [Google Scholar] [CrossRef]
- Riaz, A.; Aadil, R.M.; Amoussa, A.M.O.; Bashari, M.; Abid, M.; Hashim, M.M. Application of chitosan-based apple peel polyphenols edible coating on the preservation of strawberry (Fragaria ananassa cv Hongyan) fruit. J. Food Process. Preserv. 2021, 45, e15018. [Google Scholar] [CrossRef]
- Ramírez, J.D.; Aristizabal, I.D.; Restrepo, J.I. Conservación de mora de castilla mediante la aplicación de un recubrimiento comestible de gel de mucílago de penca de sábila. Vitae 2013, 20, 172–183. [Google Scholar]
Coating | Factors | |
---|---|---|
Starch (%) | Essential Oil (%) | |
R1 | 2 | 0.02 |
R2 | 3 | 0.02 |
R3 | 2 | 0.1 |
R4 | 3 | 0.1 |
Coating | Physical Properties | Barrier Properties | Mechanical Properties | |||
---|---|---|---|---|---|---|
Thickness (mm) | Transparency (AU mm−1) | Solubility (mg mL−1) | Permeability g (Pa*s*m)−1 | Elongation (%) | Tensile Strength (MPa) | |
R1 | 0.107 ± 0.013 a | 15.7 ± 1.7 a | 65.3 ± 1.8 a | 5.1 ± 0.1 a | n/a | n/a |
R2 | 0.125 ± 0.004 b | 13.4 ± 0.6 b | 56.7 ± 0.8 a | 5.8 ± 0.2 b | 19.6 ± 7.9 a | 3.4 ± 0.5 a |
R3 | 0.110 ± 0.002 a | 16.8 ± 0.7 a | 52.3 ± 2.6 ab | 5.5 ± 0.1 c | 23.9 ± 3.5 a | 1.7 ± 0.1 b |
R4 | 0.115 ± 0.006 a | 14.1 ± 0.8 b | 50.5 ± 1.6 b | 5.8 ± 0.1 b | 26.4 ± 6.1 a | 3.9 ± 0.3 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrubla Vélez, J.P.; Guerrero Álvarez, G.E.; Vargas Soto, M.C.; Cardona Hurtado, N.; Pinzón, M.I.; Villa, C.C. Aloe Vera Gel Edible Coating for Shelf Life and Antioxidant Proprieties Preservation of Andean Blackberry. Processes 2021, 9, 999. https://doi.org/10.3390/pr9060999
Arrubla Vélez JP, Guerrero Álvarez GE, Vargas Soto MC, Cardona Hurtado N, Pinzón MI, Villa CC. Aloe Vera Gel Edible Coating for Shelf Life and Antioxidant Proprieties Preservation of Andean Blackberry. Processes. 2021; 9(6):999. https://doi.org/10.3390/pr9060999
Chicago/Turabian StyleArrubla Vélez, Juan Pablo, Gloria Edith Guerrero Álvarez, María Camila Vargas Soto, Nathalia Cardona Hurtado, Magda Ivóne Pinzón, and Cristian Camilo Villa. 2021. "Aloe Vera Gel Edible Coating for Shelf Life and Antioxidant Proprieties Preservation of Andean Blackberry" Processes 9, no. 6: 999. https://doi.org/10.3390/pr9060999
APA StyleArrubla Vélez, J. P., Guerrero Álvarez, G. E., Vargas Soto, M. C., Cardona Hurtado, N., Pinzón, M. I., & Villa, C. C. (2021). Aloe Vera Gel Edible Coating for Shelf Life and Antioxidant Proprieties Preservation of Andean Blackberry. Processes, 9(6), 999. https://doi.org/10.3390/pr9060999