Current Strategies for Studying the Natural and Synthetic Bioactive Compounds in Food by Chromatographic Separation Techniques
Abstract
:1. Introduction
2. Thin Layer Chromatography
TLC Analysis of Selected Bioactive Compounds in Food Samples
3. Column Liquid Chromatography
Column Liqiud Chromatography in Analysis of Selected Bioactive Compounds in Food Samples
4. Gas Chromatography
GC in Analysis of Selected Bioactive Compounds in Food Samples
5. Combined Techniques
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guaadaoui, A.; Benaicha, S.; Elmajdoub, N.; Bellaoui, M.; Hamal, A. What is a bioactive compound? A combined definition for a preliminary consensus. Int. J. Food Sci. Nutr. 2014, 3, 174–179. [Google Scholar] [CrossRef]
- Anuuryanti, F.; Isnaeni, I.; Darmawati, A.; Rosyidah, I.; Dwiana, N. Method validation of contact and immersion TLC bioautography for determination of streptomycin sulfate in shrimp. Turk J. Pharm. Sci. 2020, 17, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Foudah, A.I.; Alam, P.; Abdel-Kader, M.S.; Shakeel, F.; Alqasoumi, S.I.; Salkini, A.M.; Yusufoglu, H.S. High-performance thin-layer chromatographic determination of trigonelline content in various extracts and different varieties of some commercial coffees available in the Saudi Arabian market. J. Planar Chromatogr. Mod. TLC 2020, 33, 43–50. [Google Scholar] [CrossRef]
- Khairul, I.M.; Sostaric, T.; Lim, L.Y.; Hammer, K.; Locher, C. Development and validation of an HPTLC–DPPH assay and its application to the analysis of honey. J. Planar Chromatogr. Mod. TLC 2020, 33, 301–311. [Google Scholar]
- Madhukar, N.S.; Vinayak, S.M. A novel digitally optimized rapid quantification of carcinogenic aryl azo amines from various food matrices by HPTLC-MS. J. Liq. Chromatogr. Rel. Technol. 2020, 43, 445–454. [Google Scholar] [CrossRef]
- Piszcz, P.; Tomaszewska, M.; Głód, B.K. Estimation of the total antioxidant potential in the meat samples using thin-layer chromatography. Open Chem. 2020, 18, 50–57. [Google Scholar] [CrossRef]
- Turkmen, Z.; Kurada, O. Rapid HPTLC determination of patulin in fruit-based baby food in Turkey. J. Planar Chromatogr. Mod. TLC 2020, 33, 209–217. [Google Scholar] [CrossRef]
- Dąbrowska, M.; Sokalska, K.; Gumułka, P.; Binert-Kusztal, Ż.; Starek, M. Quantification of omega-3-fatty acids in dietary supplements and cooking products available on the polish market by thin-layer chromatography-densitometry. J. Planar Chromatogr. Mod. TLC 2019, 32, 13–24. [Google Scholar] [CrossRef]
- Pawar, U.D.; Pawar, C.D.; Kulkarni, U.K.; Pardeshi, R.K.; Farooqui, M.; Shinde, D.B. Use of diphenylamine reagent for high-performance thin-layer chromatographic detection of organochloro insecticide endosulfan in biological samples. J. Planar Chromatogr. Mod. TLC 2019, 32, 65–68. [Google Scholar] [CrossRef]
- Patil, A.S.; Patil, K.P.; Patil, A.B.; Kulkarni, P.M.; Chandegaonkar, V.R.; More, B.P.; Mane, D.V. A new chromogenic spray reagent for the detection and identification of oxyfluorten herbicide in biological material by high-performance thin-layer chromatography. J. Planar Chromatogr. Mod. TLC 2019, 32, 69–71. [Google Scholar] [CrossRef]
- Pawar, U.D.; Pawar, C.D.; Kulkarni, U.K.; Pardeshi, R.K.; Farooqui, M.; Shinde, D.B. New chromogenic reagent for high-performance thin-layer chromatographic detection of organophosphorus insecticide monocrotophos in biological materials. J. Planar Chromatogr. Mod. TLC 2019, 32, 61–64. [Google Scholar] [CrossRef]
- Patil, K.P.; Patil, A.S.; Patil, A.B.; Kulkarni, P.M.; Chandegaonkar, V.R.; More, B.P. A new chromogenic spray reagent for the detection and identification of 2,4-dichlorophenol, an intermediate of 2,4-D herbicide in biological material by high-performance thin-layer chromatography. J. Planar Chromatogr. Mod. TLC 2019, 32, 431–434. [Google Scholar] [CrossRef]
- Pawar, U.D.; Pawar, C.D.; Kulkarni, U.K.; Pardeshi, R.K. Development method of high-performance thin-layer chromatographic detection of synthetic organophosphate insecticide profenofos in visceral samples. J. Planar Chromatogr. Mod. TLC 2020, 33, 203–206. [Google Scholar] [CrossRef]
- Pawar, U.D.; Pawar, C.D.; Mavie, R.R.; Pardeshi, R.K. Development of a new chromogenic reagent for the detection of organophosphorus herbicide glyphosate in biological samples. J. Planar Chromatogr. Mod. TLC 2019, 32, 435–437. [Google Scholar] [CrossRef]
- Hussain, M.; Aftab, K.; Iqbal, M.; Ali, S.; Rizwan, M.; Alkahtani, S.; Abdel-Daim, M.M. Determination of pesticide residue in brinjal sample using HPTLC and developing a cost-effective method alternative to HPLC. J. Chem. 2020, 8180320. [Google Scholar] [CrossRef]
- Zheng, W.; Choi, J.M.; Abd El-Aty, A.M.; Yoo, K.H.; Park, D.H.; Kim, S.K.; Kang, Y.S.; Hacımüftüoğlu, A.; Wang, J.; Shim, J.H.; et al. Simultaneous determination of spinosad, temephos, and piperonyl butoxide in animal-derived food using LC-MS/MS. Biomed. Chromatogr. 2019, 33, e4493. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.C.; Ma, J.K.; Feng, R.X.; Wei, S.L. Simultaneous determination of five organophosphorus pesticide residues in different food samples by solid-phase microextraction fibers coupled with high-performance liquid chromatography. J. Sci. Food Agric. 2019, 99, 6998–7007. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Wang, X.; Wang, H.; Hu, Y.; Zhang, S.; Zhao, R. Determination of phenoxy acid herbicides in cereals using high-performance liquid chromatography-tandem mass spectrometry. J. Food Prot. 2019, 82, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Hu, M.; Liu, K.; Zhang, H.; Li, X.; Tan, H. Trace enantioselective determination of imidazolinone herbicides in various food matrices using a modified QuEChERS method and ultra-performance liquid chromatography/tandem mass spectrometry. Food Anal. Methods 2019, 12, 2647–2664. [Google Scholar] [CrossRef]
- Tan, S.; Yu, H.; He, Y.; Wang, M.; Liu, G.; Hong, S.; Yan, F.; Wang, Y.; Wang, M.; Li, T.; et al. A dummy molecularly imprinted solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry for selective determination of four pyridine carboxylic acid herbicides in milk. J. Chromatogr. B 2019, 1108, 65–72. [Google Scholar] [CrossRef]
- Francesquett, J.Z.; Rizzetti, T.M.; Cadaval, T.R.S., Jr.; Prestes, O.D.; Adaime, M.B.; Zanella, R. Simultaneous determination of the quaternary ammonium pesticides paraquat, diquat, chlormequat, and mepiquat in barley and wheat using a modified quick polar pesticides method, diluted standard addition calibration and hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2019, 1592, 101–111. [Google Scholar]
- Savini, S.; Bandini, M.; Sannino, A. An improved, rapid, and sensitive ultra-high-performance liquid chromatography-high-resolution orbitrap mass spectrometry analysis for the determination of highly polar pesticides and contaminants in processed fruits and vegetables. J. Agric. Food Chem. 2019, 67, 2716–2722. [Google Scholar] [CrossRef]
- Zhang, Y.; Dang, Y.; Lin, X.; An, K.; Li, J.; Zhang, M. Determination of glyphosate and glufosinate in corn using multi-walled carbon nanotubes followed by ultra high performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 2020, 1619, 460939. [Google Scholar] [CrossRef]
- Lopez, S.H.; Dias, J.; Mol, H.; de Kok, A. Selective multiresidue determination of highy polar anionic pesticides in plant-based milk, wine and beer using hydrophilic interaction liquid chromatography combined with tandem mass spectrometry. J. Chromatogr. A 2020, 1625, 461226. [Google Scholar] [CrossRef]
- Li, G.; Meng, X.; Wang, J.; Wang, Q.; Zhou, J.; Wang, C.; Wu, Q.; Wang, Z. A low-cost and high-efficiency carbazole-based porous organic polymer as a novel sorbent for solid-phase extraction of triazine herbicides in vegetables. Food Chem. 2020, 309, 125618. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, J.; Wang, C.; Yu, R. Silica gel immobilized ionic liquid dispersion extraction and separation of triazine and acetanilide herbicides in beans. Food Anal. Methods 2020, 13, 1791–1798. [Google Scholar] [CrossRef]
- Martínez, Á.G.; Arrebola Liébanas, F.J.; Valverde, R.S.; Hernández Torres, M.E.; Casinello, J.R.; Garrido Frenich, A. Multifamily determination of phytohormones and acidic herbicides in fruits and vegetables by liquid chromatography-tandem mass spectrometry under accredited conditions. Foods 2020, 9, 906. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, C.; Wang, J.; Liu, W.; Hao, L.; Zhou, J.; Wang, Z.; Wu, Q. Sensitive determination of phenylurea herbicides in soybean milk and tomato samples by a novel hypercrosslinked polymer based solid-phase extraction coupled with high performance liquid chromatography. Food Chem. 2020, 317, 126410. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Tan, H.; Li, Y.; Qiu, J.; Liu, L.; Zeng, D. Simultaneous determination of tiafenacil and its six metabolites in fruits using ultra-high-performance liquid chromatography/tandem mass spectrometry. Food Chem. 2020, 327, 127015. [Google Scholar] [CrossRef]
- Melo, M.G.; Carqueijo, A.; Freitas, A.; Barbosa, J.; Silva, A.S. Modified QuEChERS extraction and HPLC-MS/MS for simultaneous determination of 155 pesticide residues in rice (Oryza sativa L.). Foods 2020, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Barci, P.E.P.; Alves, L.S.; Avellar, A.A.S.; Cendon, L.R.; dos Santos, P.J.; Stringhini, F.M.; Prestes, O.D.; Zanella, R. Modified QuEChERS method for multiresidue determination of pesticides in pecan nuts by liquid chromatography tandem mass spectrometry. Food Anal. Methods 2020, 13, 793–801. [Google Scholar] [CrossRef]
- Pereira dos Santos, N.G.; Maciel, E.V.S.; Mejía-Carmona, K.; Lanças, F.M. Multidimensional capillary liquid chromatography-tandem mass spectrometry for the determination of multiclass pesticides in ‘‘sugarcane spirits’’ (cachaças). Anal. Bioanal. Chem. 2020, 412, 7789–7797. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, Z.; Gao, X.; Guo, X.; Zhao, L. Simultaneous enantioselective determination of 22 chiral pesticides in fruits and vegetables using chiral liquid chromatography coupled with tandem mass spectrometry. Food Chem. 2019, 277, 298–306. [Google Scholar] [CrossRef]
- Lόpez, S.H.; Scholten, J.; Kiedrowska, B.; de Kok, A. Method validation and application of a selective multiresidue analysis of highly polar pesticides in food matrices using hydrophilic interaction liquid chromatography and mass spectrometry. J. Chromatogr. A 2019, 1594, 93–104. [Google Scholar] [CrossRef]
- Britzi, M.; Schwartsburd, F. Development and validation of a high-throughput method for the determination of eight non-steroidal anti-inflammatory drugs and chloramphenicol in milk, using liquid chromatography-tandem mass spectroscopy. Int. J. Analyt. Bioanalyt. Methods 2019, 1, 005. [Google Scholar]
- Shishov, A.; Nechaeva, D.; Bulatov, A. HPLC-MS/MS determination of non-steroidal anti-inflammatory drugs in bovine milk based on simultaneous deep eutectic solvents formation and its solidification. Microchem. J. 2019, 150, 104080. [Google Scholar] [CrossRef]
- Wang, Y.; Ou, Y.; Xie, S.; Chen, D.; Wang, X.; Pan, Y.; Wang, Y.; Huang, L.; Cheng, G.; Qu, W.; et al. Magnetic graphene solid-phase extraction for the determination of 47 kinds of non-steroidal anti-inflammatory drug residues in animal food with liquid chromatography tandem mass spectrometry. Food Anal. Methods 2019, 12, 1346–1368. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, N.S.; Kwon, H.J.; Ha, S.Y.; Kim, H.S.; Kim, J.W. Development of a simultaneous multi-residue analysis for screening and confirmation of 7 veterinary drugs in bovine milk by LC-MSMS. J. Prev. Vet. Med. 2019, 43, 68–73. [Google Scholar] [CrossRef]
- Li, M.; Liang, X.; Guo, X.; Di, X.; Jiang, Z. Enantiomeric separation and enantioselective determination of some representive non-steroidal anti-inflammatory drug enantiomers in fish tissues by using chiral liquid chromatography coupled with tandem mass spectrometry. Microchem. J. 2020, 153, 104511. [Google Scholar] [CrossRef]
- Liang, S.; Jian, N.; Cao, J.; Zhang, H.; Li, J.; Xu, Q. Rapid, simple and green solid phase extraction based on polyaniline nanofibers-mat for detecting non-steroidal anti-inflammatory drug residues in animal-origin food. Food Chem. 2020, 328, 127097. [Google Scholar] [CrossRef]
- Timofeeva, I.; Stepanova, K.; Shishov, A.; Nugbienyo, L.; Moskvin, L.; Bulatov, A. Fluoroquinolones extraction from meat samples based on deep eutectic solvent formation. J. Food Compos. Anal. 2020, 93, 103589. [Google Scholar] [CrossRef]
- Alqahtani, S.S.; Humaid, D.M.B.; Alshail, S.H.; AlShammari, D.T.; Al-Showiman, H.; Alzoman, N.Z.; Maher, H.M. Development and validation of a high performance liquid chromatography/diode array detection method for estrogen determination: Application to residual analysis in meat products. Open Chem. 2020, 18, 995–1010. [Google Scholar] [CrossRef]
- Caulfield, M.P.; Padula, M.P. HPLC MS-MS analysis shows measurement of corticosterone in egg albumen is not a valid indicator of chicken welfare. Animals 2020, 10, 821. [Google Scholar] [CrossRef]
- Han, X.; Liu, D. Detection and analysis of 17 steroid hormones by ultra-high-performance liquid chromatography-electrospray ionization mass spectrometry (UHPLC-MS) in different sex and maturity stages of Antarctic krill (Euphausia superba Dana). PLoS ONE 2019, 14, e0213398. [Google Scholar] [CrossRef] [Green Version]
- Yue, C.S.; Hong, W.L.; Tan, S.A.S.W.; Loh, K.E.; Liew, Y.C.; Yap, R.E.; Chong, Z.Y.; Chai, J.C. Identification and validation of synthetic phenolic antioxidants in various foods commonly consumed in Malaysia by HPLC. Indones. J. Chem. 2019, 19, 907–919. [Google Scholar] [CrossRef]
- Gbylik-Sikorska, M.; Gajda, A.; Burmańczuk, A.; Grabowski, T.; Posyniak, A. Development of a UHPLC-MS/MS method for the determination of quercetin in milk and its application to a pharmacokinetic study. J. Vet. Res. 2019, 63, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Velkoska-Markovska, L.; Jankulovska, M.S.; Petanovska-Ilievska, B.; Hristovski, K. Development and validation of RPLC-UV method for determination of chlorogenic acid in green coffee. Acta Chromatogr. 2020, 32, 34–38. [Google Scholar] [CrossRef]
- Atanacković Krstonošić, M.; Cvejić Hogervorst, J.; Mikulić, M.; Gojković-Bukarica, L. Development of HPLC method for determination of phenolic compounds on a core shell column by direct injection of wine samples. Acta Chromatogr. 2020, 32, 134–138. [Google Scholar] [CrossRef]
- Kurjogi, M.; Issa Mohammad, Y.H.I.; Alghamdi, S.; Abdelrahman, M.; Satapute, P.; Jogaiah, S. Detection and determination of stability of the antibiotic residues in cow’s milk. PLoS ONE 2019, 14, e0223475. [Google Scholar] [CrossRef]
- Dinh, Q.T.; Munoz, G.; Duy, S.V.; Do, D.T.; Bayen, S.; Sauvé, S. Analysis of sulfonamides, fluoroquinolones, tetracyclines, triphenylmethane dyes and other veterinary drug residues in cultured and wild seafood sold in Montreal, Canada. J. Food Compos. Anal. 2020, 94, 103630. [Google Scholar] [CrossRef]
- Uenoyama, R.; Miyazaki, M.; Miyazaki, T.; Shigeno, Y.; Tokairin, Y.; Konno, H.; Yamashita, T. LC-ESI-MS/MS quantification of carnosine, anserine, and balenine in meat samples. J. Chromatogr. B 2019, 1132, 121826. [Google Scholar] [CrossRef] [PubMed]
- Przybylska, A.; Bazylak, G.; Kosicki, R.; Altyn, I.; Twaruzek, M.; Grajewski, J.; Soltys-Lelek, A. Advantageous extraction, cleanup, and UHPLC-MS/MS detection of patulin mycotoxin in dietary supplements and herbal blends containing hawberry from Crataegus spp. J. Anal. Methods Chem. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Shao, H.; Ma, J.; Li, H.; He, Y.; Wang, M.; Jin, M.; Wang, J.; Abd El-Aty, A.M.; Hacımüftüoğlu, A.; et al. Preparation of core-shell magnetic molecularly imprinted polymers for extraction of patulin from juice samples. J. Chromatogr. A 2020, 1615, 460751. [Google Scholar] [CrossRef] [PubMed]
- Dural, E. Monitorization of patulin and hydroxymethylfurfural in fruit juices and commercial fruity baby foods by an HPLC-DAD method. Rev. Roum. Chim. 2020, 65, 191–200. [Google Scholar] [CrossRef]
- Hassan, N.H.; Othman, H.I.A.A.; Abdul Malek, N.R.; Zulkurnain, M.; Saad, B.; Wong, Y.F. Simultaneous quantitative assessment of ochratoxin A, patulin, 5-Hydroxymethylfurfural, and bisphenol A in fruit drinks using HPLC with Diode Array-Fluorimetric Detection. Foods 2020, 9, 1633. [Google Scholar] [CrossRef]
- Hussain, S.; Asi, M.R.; Iqbal, M.; Akhtar, M.; Imran, M.; Ariño, A. Surveillance of patulin in apple, grapes, juices and value-added products for sale in Pakistan. Foods 2020, 9, 1744. [Google Scholar] [CrossRef]
- Hussain, S.; Asi, M.R.; Iqbal, M.; Khalid, N.; Wajih-ul-Hassan, S.; Ariño, A. Patulin mycotoxin in mango and orange fruits, juices, pulps, and jams marketed in Pakistan. Toxins 2020, 12, 52. [Google Scholar] [CrossRef] [Green Version]
- Lien, K.W.; Ling, M.P.; Pan, M.H. Probabilistic risk assessment of patulin in imported apple juice and apple—Containing beverages in Taiwan. J. Sci. Food Agric. 2020, 100, 4776. [Google Scholar] [CrossRef]
- Cheung, Y.; Meenu, M.; Yu, X.; Xu, B. Phenolic acids and flavonoids profiles of commercial honey from different floral sources and geographic sources. Int. J. Food Prop. 2019, 22, 290–308. [Google Scholar] [CrossRef]
- Radović, M.; Dragan Milatović, D.; Tešić, Ž.; Tosti, T.; Gašić, U.; Dojčinović, B.; Dabić Zagorac, D. Influence of rootstocks on the chemical composition of the fruits of plum cultivars. J. Food Compos. Anal. 2020, 92, 103480. [Google Scholar] [CrossRef]
- Pepe, G.; Salviati, E.; Rapa, S.F.; Ostacolo, C.; Cascioferro, S.; Manfra, M.; Autore, G.; Marzocco, S.; Campiglia, P. Citrus sinensis and Vitis vinifera protect cardiomyocytes from doxorubicin-induced oxidative stress: Evaluation of onconutraceutical potential of vegetable smoothies. Antioxidants 2020, 9, 378. [Google Scholar] [CrossRef] [PubMed]
- Kyraleou, M.; Kallithraka, S.; Gkanidi, E.; Koundouras, S.; Mannion, D.T.; Kilcawley, K.N. Discrimination of five Greek red grape varieties according to the anthocyanin and proanthocyanidin profiles of their skins and seeds. J. Food Compos. Anal. 2020, 92, 103547. [Google Scholar] [CrossRef]
- Sochorova, L.; Klejdus, B.; Baro, M.; Jurikova, T.; Mlcek, J.; Sochor, J.; Ercisli, S.; Kupe, M. Assessment of antioxidants by HPLC-MS in grapevine seeds. Acta Sci. Pol. Hortorum Cultus. 2019, 18, 17–28. [Google Scholar] [CrossRef] [Green Version]
- El-Nakhel, C.; Pannico, A.; Graziani, G.; Kyriacou, M.C.; Giordano, M.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Variation in macronutrient content, phytochemical constitution and In Vitro antioxidant capacity of green and red butterhead lettuce dictated by different developmental stages of harvest maturity. Antioxidants 2020, 9, 300. [Google Scholar] [CrossRef] [Green Version]
- Cirilli, R.; Gallo, F.R.; Multari, G.; Palazzino, G.; Mustazza, C.; Panusa, A. Study of solvent effect on the stability of isothiocyanate iberin, a breakdown product of glucoiberin. J. Food Compos. Anal. 2020, 92, 103515. [Google Scholar] [CrossRef]
- Liu, R.; Choi, H.S.; Kim, S.L.; Kim, J.H.; Yun, B.S.; Lee, D.S. 6-Methoxymellein isolated from carrot (Daucus carota L.) targets breast cancer stem cells by regulating NF-κB signaling. Molecules 2020, 25, 4374. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Pérez, M.; Domínguez, I.; Egea González, F.J. Application of full scan gas chromatography high resolution mass spectrometry data quantify targeted-pesticide residues and to screen for additional substances of concern in fresh-food commodities. J. Chromatogr. A 2020, 1622, 461118. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Z.; Di, S.; Xue, X.; Jin, Y.; Qi, P.; Wang, X.; Han, L.; Xiao, Y.; Min, S. Determination of 14 lipophilic pesticide residues in raw propolis by selective sample preparation and gas chromatography-tandem mass spectrometry. Food Anal. Methods 2020, 13, 1726–1735. [Google Scholar] [CrossRef]
- Moinfar, S.; Jamil, L.A.; Sami, H.Z. Determination of organophosphorus pesticides in juice and water by modified continuous sample drop flow microextraction combined with gas chromatography-mass spectrometry. Food Anal. Methods 2020, 13, 1050–1059. [Google Scholar] [CrossRef]
- Azzouz, A.; Colόn, L.P.; Hejji, L.; Ballesteros, E. Determination of alkylphenols, phenylphenols, bisphenol A, parabens, organophosphorus pesticides and triclosan in different cereal-based foodstuffs by gas chromatography-mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 2621–2631. [Google Scholar] [CrossRef]
- Zhao, Y.; Hou, X.; Qin, D.; Liu, D. Dispersive liquid-liquid microextraction method for the simultaneous determination of four isomers of hexachlorocyclohexane and six pyrethroid pesticides in milk by gas chromatography electron capture detector. Food Anal. Methods 2020, 13, 370–381. [Google Scholar] [CrossRef]
- Li, S.; Yu, P.; Zhou, C.; Tong, L.; Li, D.; Yu, Z.; Zhao, Y. Analysis of pesticide residues in commercially available chenpi using a modified QuEChERS method and GC-MS/MS determination. J. Pharm. Anal. 2020, 10, 60–69. [Google Scholar] [CrossRef]
- Wolecki, D.; Caban, M.; Pazdro, K.; Mulkiewicz, E.; Stepnowski, P.; Kumirska, J. Simultaneous determination of non-steroidal anti-inflammatory drugs and natural estrogens in the mussels. Mytilus Edulis Trossulus. Talanta 2019, 200, 316–323. [Google Scholar] [CrossRef]
- Lim, H.H.; Shin, H.S. In-solution derivatization and detection of glyoxal and methylglyoxal in alcoholic beverages and fermented foods by headspace solid-phase microextraction and gas chromatography-mass spectrometry. J. Food Compos. Anal. 2020, 92, 103584. [Google Scholar] [CrossRef]
- Lee, S.; Lim, D.K.; Baek, S.Y.; Seo, D.; Park, J.S.; Kwak, B.M.; Won, J.; Lee, J.; Kim, B. Quantitative analyses of essential fatty acids in cereals and green vegetables by isotope dilution-gas chromatography/mass spectrometry. J. Anal. Sci. Technol. 2020, 11, 37. [Google Scholar] [CrossRef]
- Iko Afe, O.H.; Anihouvi, D.G.; Assogba, M.F.; Anihouvi, E.L.; Kpoclou, Y.E.; Douny, C.; Mahillon, J.; Anihouvi, V.B.; Scippo, M.L.; Hounhouigan, D.J. Consumption and nutritional quality of grilled pork purchased from open road-side restaurants of Benin. J. Food Compos. Anal. 2020, 92, 103549. [Google Scholar] [CrossRef]
- Choi, E.; Kim, B.H. A comparison of the fat, sugar, and sodium contents in ready-to-heat type home meal replacements and restaurant foods in Korea. J. Food Compos. Anal. 2020, 92, 103524. [Google Scholar] [CrossRef]
- Jarukas, L.; Kuraite, G.; Baranauskaite, J.; Marksa, M.; Bezruk, I.; Ivanauskas, L. Optimization and validation of the GC/FID method for the quantification of fatty acids in bee products. Appl. Sci. 2021, 11, 83. [Google Scholar] [CrossRef]
- Fruehwirth, S.; Egger, S.; Flecker, T.; Ressler, M.; Firat, N.; Pignitter, M. Acetone as indicator of lipid oxidation in stored margarine. Antioxidants 2021, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Shahnawaz, A.; Rattanpal, H.S.; Gul, K.; Rouf Ahmad Dar, R.A.; Sharma, A. Chemical composition, antioxidant activity and GC-MS analysis of juice and peel oil of grapefruit varieties cultivated in India. J. Int. Agric. 2019, 18, 1634–1642. [Google Scholar]
- Szabo, K.; Dulf, F.V.; Teleky, B.-E.; Eleni, P.; Boukouvalas, C.; Krokida, M.; Kapsalis, N.; Rusu, A.V.; Socol, C.T.; Vodnar, D.C. Evaluation of the bioactive compounds found in tomato seed oil and tomato peels influenced by industrial heat treatments. Foods 2021, 10, 110. [Google Scholar] [CrossRef] [PubMed]
- Migas, P.; Stempka, N.; Krauze-Baranowska, M. The use of thin-layer chromatography in the assessment of the quality of lutein-containing dietary supplements. J. Planar Chromatogr. Mod. TLC 2020, 33, 11–18. [Google Scholar] [CrossRef]
- Yogeswara, I.B.A.; Kittibunchakul, S.; Rahayu, E.S.; Domig, K.J.; Haltrich, D.; Nguyen, T.H. Microbial production and enzymatic biosynthesis of γ-aminobutyric acid (GABA) using Lactobacillus plantarum FNCC 260 isolated from indonesian fermented foods. Processes 2021, 9, 22. [Google Scholar] [CrossRef]
- Mitema, A.; Feto, N.A.; Rafudeen, M.S. Development and validation of TOF/Q-TOF MS/MS, HPLC method and in vitro bio-strategy for aflatoxin mitigation. Food Addit. Contam. Part A 2020. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Wu, T.; Chen, W.; Li, L.; Du, Y. A novel metastable state nanoparticle-enhanced Raman spectroscopy coupled with thin layer chromatography for determination of multiple pesticides. Food Chem. 2019, 270, 494–501. [Google Scholar] [CrossRef]
- Gaweł, M.; Kiljanek, T.; Niewiadomska, A.; Semeniuk, S.; Goliszek, M.; Burek, O.; Posyniak, A. Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry. Food Chem. 2019, 282, 36–47. [Google Scholar] [CrossRef] [PubMed]
Matrix/Compound | Chromatographic Conditions | Other Parameters | Refs. |
---|---|---|---|
Variety Classes of Pesticides | |||
Insecticides | |||
Containing macrocyclic lactone structure | |||
Porcine muscle, egg, milk, eel, flatfish, shrimp Spinosyn A (SPA), Spinosyn D (SPD), Temephos (TP), Piperonyl butoxide (PB) | LC-TQ-ESI-MS/MS Multiple reaction monitoring (MRM) mode Phenomenex Kinetex EVO C18 (150 × 2.1 mm, 2.6 µm) Eluent A: 0.1% formic acid in 10 mM ammonium formate in distilled water; Eluent B: methanol A:B (10:90, v/v) Flow rate: 0.2 mL/min | Linearity (µg/kg): 3.5 ÷ 35 (for SPA), 1.5 ÷ 15 (for SPD) 5 ÷ 50 (for TP, PB) LOD (µg/kg): 0.5 ÷ 0.8 (for SPA), 0.1 (for SPD) 1.1 ÷ 1.6 (for TP), 0.3 ÷ 0.7 (for PB) Recovery: 70 ÷ 105% | [16] |
Organothiophosphate derivatives | |||
Tomato, cabbage, barley, Xijiang river water, tap water Quinalphos(QP), Triazophos (TZ), Parathion (PTN), Fenthion (FT), Chlorpyrifos-methyl (CHM) | HPLC-UV λ = 254 nm Agilent TC-C18 (150 × 4.6 mm, 5 µm) Pure methanol Flow rate: 0.5 mL/min | Linearity: 0.02 ÷ 2.00 µg/mL LOD (µg/L): 3.0 (for QP), 5.0 (for TZ, PTN) 6.0 (for FT), 10.0 (for CHM) Recovery: 80 ÷ 98% | [17] |
Herbicides | |||
Phenoxyacetic acid derivatives | |||
Corn, wheat, rice Phenoxy acid herbicides (6) | HPLC-TQ-ESI-MS/MS Multiple reaction monitoring (MRM) mode RP C18 (150 × 2.1 mm, 3.5 µm) Eluent A: water; Eluent B: acetonitrile Gradient elution Flow rate: 0.3 mL/min | Linearity: 0.200 ÷ 40.0 µg/kg LOD: 0.0500 ÷ 0.300 µg/kg Accuracy: 95.6 ÷ 107% Intraday precision: 0.895 ÷ 5.40% Interday precision: 1.13 ÷ 6.61% Recovery: 73.8 ÷ 115% | [18] |
Imidazolinone derivatives | |||
Soybean, peanut, wheat, maize, rice S-imazethapyr (SIT) R-imazethapyr (RIT) S-imazamox (SIZ) R-imazamox (RIZ) S-imazapic (SIP) R-imazapic (RIP) | UPLC-TQ-ESI-MS/MS Multiple reaction monitoring (MRM) mode Chiralcel OJ-3R (150 × 4.6 mm, 3 µm) Eluent A: 0.1% formic acid aqueous solution; Eluent B: acetonitrile Gradient elution Flow rate: 0.4 mL/min | LOD (µg/kg): 0.35 ÷ 0.48 (for SIP), 0.36 ÷ 0.72 (for RIP) 0.40 ÷ 0.88 (for SIT), 0.34 ÷ 0.75 (for RIT) 1.0 ÷ 1.5 (for SIZ), 0.98 ÷ 1.4 (for RIZ) Recovery: 64.2÷106.4% | [19] |
Pyridine carboxylic acid derivatives | |||
Milk aminopyralid, picloram, fluroxypyr, clopyralid | LC-TQ-ESI-MS/MS Multiple reaction monitoring (MRM) mode Waters Xselect HSS T3 (C18) (2.1 × 150 mm, 5 µm) Eluent A: ultrapure water; Eluent B: methanol Gradient elution Flow rate: 300 µL/min | Linearity: 1 ÷ 50 µg/L LOD: 0.124 µg/L Recovery: 75.3 ÷ 89.8% | [20] |
Quaternary ammonium salt derivatives | |||
Barley, wheat Paraquat (PQ), Diquat (DQ), Chlormequat CHQ), Mepiquat (MQ) | UHPLC-TQ-ESI-MS/MS Selected reaction monitoring (SRM) mode Acquity UPLCTM BEH HILIC (100 × 2.1 mm, 1.7 µm) Eluent A: aqueous solution of ammonium formate 60 mmol/L at pH 3.7; Eluent B: acetonitrile A:B (40:60, v/v) Flow rate: 0.250 mL/min | Linearity (µg/kg): 80 ÷ 1000 (for CHQ), 40 ÷ 1000 (for MQ) 20 ÷ 1000 (for PQ, DQ) LOD (µg/kg): 24 (for CHQ), 12 (for MQ), 6 (for PQ, DQ) Recovery: 93 ÷ 106% | [21] |
Organophosphorus compounds, chlorates | |||
Fruits, vegetables, infant foods Glyphosate (GLY), Aminomethyl phosphonic acid (AMPA), Phosphonic acid (PHA), Fosetyl-Al (FAL), Chlorate (CHL), Perchlorate (PCH) | UHPLC-Q Orbitrap-ESI-MS/MS Thermo Scientific Hypercarb (3 × 100 mm, 5 µm) Eluent A: 0.4% formic acid in methanol; Eluent B: 0.4% formic acid in purified water A:B (95:5, v/v) Flow rate: 0.3 mL/min | Linearity: 0.001 ÷ 0.1 mg/L LOQ (mg/kg): 0.0004 (for PCH) 0.001 (for FAL) 0.002 (for CHL) 0.003 (for GLY, AMPA) 0.004 (for PHA) Recovery: 72 ÷ 116% | [22] |
Corn Glyphosate, Glufosinate | UHPLC-ESI-QTRAP-MS Multiple reaction monitoring (MRM) mode Acquity UPLC HSS T3 (2 × 100 mm, 1.8 µm) Eluent A: 0.05% ammonia water; Eluent B: acetonitrile A:B (90:10, v/v) Flow rate: 0.2 mL/min | Linearity: 10.0 ÷ 500 ng/mL LOD: 0.0015 mg/kg Recovery: 90.3 ÷ 95.4% Intraday precision: 1.24 ÷ 3.35% Interday precision: 3.56 ÷ 6.06% | [23] |
Vegetable milk, beer, wine Highly polar pesticides (14) including: glyphosate, glufosinate, ethephon, fosetyl and metabolites | LC-ESI-QTRAP-MS Multiple reaction monitoring (MRM) mode Obelisc N HILIC (150 × 2.1 mm, 5 µm) Eluent A: water with 1% formic acid; Eluent B: acetonitrile Gradient elution Flow rate: 0.5 mL/min | Linearity: 0.2 ÷ 50 ng/mL ILOD (instrumental LOD): 0.2 ng/mL Recovery: 70 ÷ 120% | [24] |
Triazine compounds/chlorinated anilide derivatives | |||
White gourd, tomato, soybean milk Metribuzin, Simetryn, Propazine, Prometryne | HPLC-DAD λ = 222 nm Centurysil C18 (200 × 4.6 mm, 5 µm) Eluent A: acetonitrile; Eluent B: water A:B (55:45, v/v) Flow rate: 1.0 mL/min | Linearity: 0.3 ÷ 100.0 ng/g for white gourd and tomato Linearity: 0.5 ÷ 100 ng/mL for soybean milk LOD: 0.10 ÷ 0.20 ng/g for white gourd and tomato LOD: 0.15 ÷ 0.30 ng/mL for soybean milk | [25] |
Beans Atrazine (AZ), Oxadiazon (OZ), Metazachlor (MZ), Propanil (P) | HPLC-DAD λ = 230 nm Aqilent Eclipse XDB-C18 (150×4.6 mm, 3.5 µm) Eluent A: water; Eluent B: acetonitrile Gradient elution Flow rate: 0.50 mL/min | Linearity: 0.1 ÷ 10 µg/mL LOD (µg/kg): 10.3 (for AZ) 2.4 (for OZ) 2.9 (for MZ) 3.8 (for P) Recovery: 90.7 ÷ 116.5% | [26] |
Acidic herbicides | |||
Cucumber, orange Acidic herbicides (27) Phytohormones (8) | UHPLC-TQ-ESI-MS/MS Multiple reaction monitoring (MRM) mode Acquity UPLC BEH C-18 (100 × 2.1 mm, 1.7 µm) Eluent A: 1% acetic acid and 5% methanol in water; Eluent B: 1% acetic acid in methanol Gradient elution Flow rate: 0.35 mL/min | For all compounds: Linearity: 10 ÷ 150 µg/kg LOQ: 10 µg/kg Recovery: 86 ÷ 120% Intraday precision: 1 ÷ 20% Interday precision: 4 ÷ 20% | [27] |
Phenylurea derivatives | |||
Soybean milk, tomato Metoxuron, Monuron, Chlortoluron, Monolinuron, Buturon | HPLC-DAD λ = 254 nmCenturysil C18 (250 × 4.6 mm, 5 µm) Eluent A: water; Eluent B: acetonitrile A:B (52:48, v/v) Flow rate: 1.0 mL/min | Linearity: 0.30 ÷ 150.0 ng/mL for soybean milk Linearity: 0.20 ÷ 150.0 ng/g for tomato LOD: 0.10 ÷ 0.20 ng/mL for soybean milk LOD: 0.06÷0.15 ng/g for tomato Recovery: 86.0 ÷ 115.2% | [28] |
Phenyluracil derivatives | |||
Orange, apple, grape, mango, banana, pear, peachTiafenacil and its six metabolites | UHPLC-TQ-ESI-MS/MS Multiple reaction monitoring (MRM) mode Waters CORTECS C18 (150 × 2.1 mm, 2.7 µm) Eluent A: water containing 0.1% formic acid; Eluent B: acetonitrile Gradient elution Flow rate: 0.4 mL/min | Linearity: 5 ÷ 1000 µg/kg LOQ: 10 µg/kg Intraday precision (RSD): 1.0 ÷ 13.0% Interday precision (RSD): 1.1 ÷ 14.6% Recovery: 73 ÷ 105% | [29] |
Multiclass pesticides | |||
Rice (Oryza sativa L.) Multiclass pesticides (155) | UHPLC-ESI-QTRAP-MS Multiple reaction monitoring (MRM) mode Fusion-RP 80A (50 × 2 mm, 4 µm) Eluent A: 0.1% formic acid aqueous solution; Eluent B: 0.1% formic acid in methanol Gradient elution Flow rate: 0.25 mL/min | Linearity: 5÷50 µg/L and 5 ÷ 60 µg/L LOQ: 5 µg/kg Recovery: 77.1 ÷ 111.5% | [30] |
Pecan nuts Multiclass pesticides (47) | LC-TQ-ESI-MS/MS Selected reaction monitoring (SRM) mode Pursuit XRs Ultra C18 (100 × 2.0 mm, 1.7 µm) Eluent A: aqueous 5 mmol/L ammonium formate; Eluent B: methanol Gradient elution Flow rate: 0.150 mL/min | Linearity: 2.5 ÷ 125 µg/L LOD: 2 ÷ 3 µg/kg Recovery: 70 ÷ 120% | [31] |
Sugarcane spirits (Brazilian cachaҫas) Multiclass pesticides (10) | UPLC-TQ-ESI-MS/MS Multiple reaction monitoring (MRM) mode Acquity UPLC HSS T3 (150 × 0.3 mm, 1.8 µm) Eluent A: water; Eluent B: acetonitrile Gradient elution Flow rate: 8 µL/min | Linearity: not given LOD: 5 µg/L Accuracy: 80 ÷ 123% Intraday precision (RSD): 0.31 ÷ 44.17% Interday precision (RSD): 0.23 ÷ 22.78% | [32] |
Other pesticides | |||
Cucumber, tomato, cabbage, grape, mulberry, apple, pear Chiral pesticides (22) | LC-TQ-ESI-MS/MS Multiple reaction monitoring (MRM) mode Chiralpak IG (250 × 4.6 mm, 5 µm) with a Chiralpack IG guard column (10 × 4 mm, 5 µm) Eluent A: acetonitrile; Eluent B: ultrapure water containing 5 mmol/L ammonium acetate and 0.1% formic acid A:B (65:35, v/v) Flow rate: 0.6 mL/min | Linearity: 1 ÷ 200 ng/g ILOQ (instrumental LOQ): 0.33 ÷ 1.50 ng/g MLOQ (method LOQ): 0.15 ÷ 1.00 ng/gRecovery: 84.0 ÷ 112.3% Intraday precision (RSD): 2.3 ÷ 10.9% Interday precision (RSD): 3.0 ÷ 11.2 % | [33] |
Grapes, lettuce, orange, oat, soya bean Highly polar pesticides (14) | LC-ESI-QTRAP-MS Multiple reaction monitoring (MRM) mode HILIC-column, Obelisc N (2.1 × 150 mm, 5 µm) Eluent A: water with 1% formic acid; Eluent B: acetonitrile Gradient elution Flow rate: 500 µL/min | Linearity: 0.1 ÷ 100 ng/mL LOQ: 0.02 ÷ 0.5 mg/kg Recovery: 70 ÷ 120% | [34] |
Non-steroidal anti-inflammatory compounds (derivatives of phenylpropionic acid, phenylacetic acid and acetylsalicylic acid) and chloramphenicol | |||
Bovine milk, ovine milk NSAIDs: Carprofen (CPF),Tolfenamic acid (TFA), 5-hydroxy flunixin (HFX), Diclofenac (D), 4-methylaminoantipyrin (MAAP), Meloxicam (MX), Ibuprofen (I), Phenylbutazone (PBZ); antibiotic: Chloramphenicol (CHP) | LC-ESI-QTRAP-MS Scheduled multiple reaction monitoring (sMRM) mode Kinetex XB-C18 (100 × 2.1 mm, 2.6 µm) Eluent A: water containing 0.1% formic acid; Eluent B: methanol Gradient elution Flow rate: 0.4 mL/min | For all compounds:LOQ (µg/kg): 0.05 (for D) 0.15 (for CHP) 2.5 (for PBZ) 5 (for I) 7.5 (for MX) 20 (for HFX) 25 (for TFA, MAAP) 250 (for CPF) Accuracy: 87 ÷ 108% Interday precision (CV): 3 ÷ 16% | [35] |
Bovine milk Diclofenac (D), Flurbiprofen (FB), Ketoprofen (KP), Mefenamic acid (MA) | HPLC-TQ-ESI-MS/MS Luna C18 (250 × 2.0 mm, 5 µm) Eluent A: methanol; Eluent B: 0.05% aqueous solution of formic acid A:B (3:1, v/v) Flow rate: 0.4 mL/min | Linearity (µg/kg): 0.03 ÷ 200 (for D, KP) 0.03 ÷ 300 (for FB) 0.1 ÷ 250 (for MA) LOD (µg/kg): 0.01 (for D, KP, FB) 0.03 (for MA) Recovery: 96 ÷ 107% | [36] |
Meat of swine, chicken and bovine Multiclass NSAIDs (47) | LC-TQ-ESI-MS/MS Hypersil Gold C18 (150 × 2.1 mm, 5 µm) Eluent A: 0.1% formic acid with 0.5 mmol/L ammonium acetate; Eluent B: acetonitrile | Linearity: 0.1 ÷ 50 ng/mL LOD: 0.1 ÷ 0.5 ng/g Intraday precision (RSD): 2.2 ÷ 5.6% Interday precision (RSD): 5.3 ÷ 12.6% Recovery: 72.4 ÷ 97.1% | [37] |
Bovine milk Veterinary drugs: Acetanilide (AAN), Anthranilic acid (ANA), Antipyrine (AP), Cyproheptadine (CHD), Diphenhydramine (DH), DL-methylephedrine (ME), Phenacetin (PA) | LC-TQ-ESI-MS/MS Multiple reaction monitoring (MRM) mode Waters Xbridge C18 (150 × 2.1 mm, 3.5 µm) Eluent A: 0.1% formic acid in water; Eluent B: 0.1% formic acid in acetonitrile Gradient elution Flow rate: 0.2 mL/min | Linearity: 1 ÷ 40 µg/kg LOD (µg/g): 0.3 (for AP) 0.4 (for CHD, ME) 0.5 (for DH) 0.6 (for PA) 2.1 (for AAN, ANA) Recovery: 71.2 ÷ 103.8% Intraday precision (RSD): 0.7 ÷ 6.4% Interday precision (RSD): 0.1 ÷ 8.6% | [38] |
Fish tissues Ibuprofen, Indoprofen, Pranoprofen, Flurbiprofen, Ketoprofen, Carprofen, Naproxen, Loxoprofen, Etodolac | UHPLC-TQ-ESI-MS/MS Multiple reaction monitoring (MRM) mode Chiralpak ID (250 × 4.6 mm, 5 µm) with guard column (10 × 4.6 mm, 5 µm) Eluent A: 40% acetonitrile Eluent B: water containing 20 mM HCOONH4 Gradient elution Flow rate: 0.6 mL/min | Linearity: 2 ÷ 400 ng/g LOD: 1 ÷ 8 ng/g Recovery: 82.6 ÷ 106.7% Intraday precision (RSD) ≤ 8.2% Interday precision (RSD) ≤ 8.2% | [39] |
Meat, egg Ibuprofen (I), Naproxen (N), Diclofenac (D), Carprofen (CPF), Ketoprofen (KP), Tolfenamic acid (TFA), Salicylic acid (SA) | UPLC-TQ-ESI-MS/MS Multiple reaction monitoring (MRM) mode Acquity UPLC BEH C18 (50 × 2.1 mm, 1.7 µm) Eluent A: methanol; Eluent B: water with 0.1% formic acid Gradient elution Flow rate: 0.25 mL/min | Linearity (µg/kg): 5 ÷ 1500 (for D),10 ÷ 1500 (for N) 20 ÷ 1500 (for CPF, KP, SA) 30 ÷ 1500 (for TFA), 40÷1500 (for I) LOD (µg/kg): 9.1 ÷ 12.2 (for I), 2.1 ÷ 2.4 (for N) 1.2 ÷ 1.4 (for D), 5.7÷6.0 (for CPF, KP) 7.5 ÷ 10.7 (for TFA), 4.5 ÷ 5.6 (for SA) Intraday precision (RSD): 4.06 ÷ 16.01% Interday precision (RSD): 2.74 ÷ 14.25% Recovery: 85.18 ÷ 109.8% | [40] |
Antibiotics (fluoroquinolones) | |||
Chicken meat Beef meat Feroxacin (FRX), Ofloxacin (OF) | HPLC-FLD λ = 278 nm and 466 nm Luna C18 (250 × 4.6 mm, 5 µm) Eluent A: Methanol Eluent B: 0.05 mol/L phosphate buffer (pH = 6.4) Gradient elution Flow rate 0.7 mL/min at 30 °C | For FRX: Linearity: 40 ÷ 4000 µg/kg LOD: 15 µg/kg, LOQ: 40 µg/kg Recovery: 98 ÷ 108% For OF: Linearity: 30 ÷ 3000 µg/kg LOD: 10 µg/kg, LOQ: 30 µg/kg Recovery: 100 ÷ 107% | [41] |
Steroid compounds | |||
Meat samples of different categories (chicken, beef, sheep, camels) Some estrogens: estrone (E1), 17β-estradiol (E2), estriol (E3), natural estrogens and 17-α ethinylestradiol (E4) an exoestrogen | HPLC-DAD, λ = 220 nm Symmetry C18 (4.6 × 150 mm, 3.5 μm) Eluent A: acetonitrile Eluent B: water A:B: (50:50, v/v) Flow rate: 1 mL/min | LOD (μg/g): 0.126 (for E1, E2) 0.094 (for E3, E4) LOQ (μg/g): 0.350 (for E1, E2) 0.188 (for E3, E4) | [42] |
Samples of chicken egg white Corticosterone | HPLC-MS/MS Agilent Zorbax Eclipse Plus C18 (2.1 × 100 mm, 1.8 μm) Eluent A: 0.1% formic acid in water Eluent B: acetonitrile-0.1% formic acid Gradient elution Flow rate: 0.4 mL/min | LOQ: 0.02 ng/mL Recovery: 48.1% | [43] |
Samples of Antarctic krill (Euphausia superba Dana) 17 Endogenous and exogenous steroid hormones | UHPLC-MS Acchrom Unitary C18 (2.1 × 150 mm, 5 μm) Eluent A: water containing 0.1% formic acid Eluent B: methanol Gradient elution Flow rate: 0.2 mL/min | LOD: 2 ÷ 30 ng/kg, LOQ: 10 ÷ 100 ng/kg Recovery: 75.4 ÷ 110.6% | [44] |
Antioxidants (polyphenols and related compounds) | |||
Samples of various food consumed in Malaysia, such as chewing gum, noodle, snacks, nut, chocolate, fruit juices, coffee, oat, biscuit Synthetic phenolic antioxidants (SPAs): propyl gallate, tert- butylhydroquinone, butylated hydroxyanisole, and butylated hydroxytoluene | HPLC-DAD, λ = 280 nm Agilent ZORBAX Eclipse XDB 5 μm C18 (150 mm × 4.6 mm, 5 μm) Eluent A: ultrapure water Eluent B: acetonitrile Gradient elution Flow rate: 2.0 mL/min | Linearity: 1 ÷ 300 mg/L LOD: 0.02 ÷ 0.67 mg/L, LOQ: 0.06 ÷ 2.03 mg/L Precision: 0.15 ÷ 0.84% Recovery: 80.4 ÷ 119.0% | [45] |
Milk samples from dairy cows Quercetin | UHPLC-MS/MS ZORBAX SB-C18 (50 × 2.1 mm × 1.8 µm) Eluent A: methanol Eluent B: 0.5% formic acid Gradient elution Flow rate: 0.5 mL/min | LOQ: 1.0 μg/kg Intraday precision: <10% Interday precision: <15% Repeatability: 3 ÷ 7.2% Reproducibility: 6.1 ÷ 12% Recovery: 98% | [46] |
Samples of green coffee produced company from Skopje, Macedonia Chlorogenic acid | RP-HPLC-DAD λ = 325 nm Poroshell 120 EC-C18 (50 × 3 mm, 2.7 μm) Eluent A: acetonitrile Eluent B: water with 1% phosphoric acid A:B (10:90, v/v) Flow rate: 1 mL/min | Linearity: 12.33 ÷ 143.50 μg/mL LOD: 0.29 pg LOQ: 0.96 pg Intraday precision (RSD peak area): 0.19% (RSD height): 1.32% Recovery: 97.87 ÷ 106.67% | [47] |
Samples of commercially available red wines from Serbia 16 selected phenolic compounds: gallic acid (GA), p-hydroxybenzoic acid (HBA), catechin (CAT), syringic acid (SGA), trans-cinnamic acid (TCA), hesperetin (HP), naringenin (NG), vanillic acid (VA), benzoic acid (BZA), coumaric acid (CMA), resveratrol (RV), chlorogenic acid (CGA), caffeic acid (CFA), rutin (RN), quercetin (Q), kaempferol (KF) | HPLC-DAD λ = 280 nm (GA, HBA, CAT, SGA, TCA, HP, NG) λ = 225 nm (VA, BZA, CMA, RV) λ = 360 nm (KF) Poroshell 120 EC-C18 (4.6 × 100 mm, 2.7 μm) Eluent A: distilled water with 0.1% glacial acetic acid Eluent B: acetonitrile with 0.1% glacial acetic acid Gradient elution Flow rate: 1.0 mL/min | Linearity (mg/L): 2.5 ÷ 25 (for CAT, VA) 1.0 ÷ 25 (for other compounds) LOD (mg/L): 0.03 (for RV) ÷ 0.62 (for CAT) LOQ (mg/L): 0.11 (for RV, TCA) ÷ 2.08 (for CAT) Recovery: 96.5 ÷ 100.9% | [48] |
Matrix/Compound | Chromatographic Conditions | Other Parameters | Refs. |
---|---|---|---|
Pesticides (organophosphorus and multiclass pesticides) | |||
Banana, watermelon, pear, strawberry Multiclass pesticides (200) | GC-HRMS-Q-Orbitrap Agilent VF-5 MS (30 m × 0.25 mm, 0.25 µm) Carrier gas: helium Flow rate: 1.0 mL/min | Linearity: 1 ÷ 100 µg/kg LOQ: 5 µg/kg Recovery: 70 ÷ 120% Intraday and Interday precision (RSD): <20% | [67] |
Raw propolis Lipophilic pesticides (14) | GC-EI-MS/MS Multiple reaction monitoring (MRM) mode Agilent HP-5 MS (30 m × 0.25 mm, 0.25 µm) Carrier gas: helium Flow rate: 1.0 mL/min | Linearity: 0.001 ÷ 0.200 µg/mL LOQ: 0.002 ÷ 0.020 µg/g Recovery: 61 ÷ 106.8% | [68] |
Apple juice, grape juice, water Organophosphorus pesticides (OPPs): Phorate (PHT), Dimethoate (DMT), Diazinone (DZ), Disulfoton (DSF), Chlorpyrifos (CPF) | GC-EI-MS selected ion monitoring (SIM) mode Agilent HP-5 MS (30 m × 0.25 mm, 0.25 µm) Carrier gas: helium Flow rate: 1.0 mL/min | Linearity: 2.0 ÷ 500.0 µg/L LOD (µg/L): 0.9 (for PHT), 0.4 (for DMT), 0.6 (for DZ), 0.3 (for DSF), 1.0 (for CPF) Recovery: 83 ÷ 105% | [69] |
Wheat flour, rice, spaghetti, cheese tortellini, macaroni, noodles, sesame regañas, wheat tortillas, corn flakes, crunchy fruit muesli, cookies, white bread, multiseed EDCs (Endocrine Disrupting Chemicals) (24): alkylphenols and phenylphenols (4), bisphenol A, parabens (7), pesticides (11), triclosan (personal care product) | GC-EI-MS selected ion monitoring (SIM) mode DB-5MS (30 m × 0.25 mm, 0.25 µm) Carrier gas: helium Flow rate: 1.0 mL/min | For all compounds: Linearity: 1.3 ÷ 2500 ng/kg LOD: 0.4 ÷ 23 ng/kg Intraday precision (RSD): 3.8 ÷ 6.2% Interday precision (RSD): 5.2 ÷ 7.2% Recovery: 82 ÷ 105% For pesticides: Linearity: 21 ÷ 2500 ng/kg LOD: 6.2 ÷ 23 ng/kg Intraday precision (RSD): 5.0 ÷ 6.2% Interday precision (RSD): 6.5 ÷ 7.2% Recovery: 83 ÷ 105% | [70] |
Milk Isomers of hexachlorocyclohexane (α-HCH, β-HCH, γ-HCH, δ-HCH) and pyrethroid pesticides (bifenthrin, fenpropathrin, cyhalothrin, cyfluthrin, cypermethrin, deltamethrin) | GC-ECD ZB-5 (30 m × 0.25 mm, 0.25 µm) Carrier gas: nitrogen Flow rate: 0.72 mL/min | For all compounds: Linearity: 0.00143 ÷ 3.57 mg/L LOD: 0.07 ÷ 2 µg/kg LOQ: 0.2 ÷ 5 µg/kg Recovery: 70.1 ÷ 106.3% | [71] |
Pericarpium citri reticulatae (chenpi) Multiclass pesticides (133) | GC-EI-MS/MS Multiple reaction monitoring (MRM) mode DB-5MS IU (30 m × 0.25 mm, 0.25 µm) Carrier gas: helium Flow rate: 1.5 mL/min | Linearity: 1 ÷ 200 ng/mL LOQ: 0.005 ÷ 0.01 mg/kg Recovery: 70 ÷ 112.2% | [72] |
Non-steroidal anti-inflammatory compounds (profens) and Steroids | |||
Mussels Mytilus edulis trossulus NSAID (5): ibuprofen, paracetamol, diclofenac, naproxen, ketoprofen Natural estrogens (3): estrone, 17β-estradiol, estriol | GC-MS Selected ion monitoring (SIM) mode Zebron ZB-5MSi (30 m × 0.25 mm, 0.25 µm) Carrier gas: helium | For all compounds: LOD: 1 ÷ 7 ng/g Intermediate precision (RSD): 0.24 ÷ 9.82% Repeatability (RSD): 0.94 ÷ 7.82% Recovery: 80 ÷ 118% For NSAID: LOD: 1 ÷ 2 ng/g Intermediate precision (RSD): 0.69 ÷ 7.85% Repeatability (RSD): 0.94 ÷ 4.92% Recovery: 80 ÷ 115% | [73] |
Fatty acids | |||
Cereals and green vegetables Essential fatty acids | ID-GC/MS HP-88 capillary column (60 m × 0.25 mm, 0.2 µm) Carrier gas: helium Flow rate: 1.0 mL/min | Repeatability (RSD): 0.23 ÷ 1.61% for the cereal samples 0.39 ÷ 1.89% for vegetable samples Repeatability for linoleic acid (RSD): 1.48 and 0.95% for rice and wheat flours Content of linoleic acid: 3614 mg/kg for rice flour 8402 mg/kg for wheat flour 6353 mg/kg for spinach powder 1353 mg/kg for Kimchi cabbage powder; Content of α-linolenic acid: 19786 mg/kg for spinach powder 9533 mg/kg for Kimchi cabbage powder | [75] |
Grilled pork Fatty acids | GC-MS CP-Sil88 (100 m × 0.25 mm, 0.2 µm) Carrier gas: helium | LOQ: 0.1% of the total fatty acids Content of: Palmitic acid: 17.3 ÷ 55.4% Stearic acid: 8.8 ÷ 20.9% Oleic acid: 24.4 ÷ 48.8% Linoleic acid: 0.5 ÷ 3.6% Stearidonic acid: <0.1 ÷ 4.2% Docosahexaenoic acid: 0.5 ÷ 1.4% Gamma linolenic acid: <1% di-homo-γ- linolenic acid: <1% eicosapentaenoic acid: <1% | [76] |
Other compounds | |||
Alcoholic beverage (wine, bear, makgeoli, soju, and fruit liquor) Fermented foods (soybean paste, red pepper paste, soy sauce) Glyoxal (GX), Methylglyoxal (MGX) | GC-MS HP-InnoWax capillary column (60 m × 0.25 mm, 0.25 µm) Carrier gas: helium Flow rate: 1.0 mL/min | For GLX: Working range 5 ÷ 4000 µg/kg Accuracy: 93.3 ÷ 104.5% Intraday precision: 4.3 ÷ 7.6% Interday precision: 3.0 ÷ 6.4% LOD: 1.1 µg/kg For MGX: Working range 5 ÷ 4000 µg/kg Accuracy: 92.9 ÷ 104.2% Intraday precision: 4.8 ÷ 7.9% Interday precision: 3.6 ÷ 7.5% LOD: 0.7 µg/kg | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parys, W.; Dołowy, M.; Pyka-Pająk, A. Current Strategies for Studying the Natural and Synthetic Bioactive Compounds in Food by Chromatographic Separation Techniques. Processes 2021, 9, 1100. https://doi.org/10.3390/pr9071100
Parys W, Dołowy M, Pyka-Pająk A. Current Strategies for Studying the Natural and Synthetic Bioactive Compounds in Food by Chromatographic Separation Techniques. Processes. 2021; 9(7):1100. https://doi.org/10.3390/pr9071100
Chicago/Turabian StyleParys, Wioletta, Małgorzata Dołowy, and Alina Pyka-Pająk. 2021. "Current Strategies for Studying the Natural and Synthetic Bioactive Compounds in Food by Chromatographic Separation Techniques" Processes 9, no. 7: 1100. https://doi.org/10.3390/pr9071100