Iron Based Chitin Composite Films for Efficient Solar Seawater Desalination
Abstract
:1. Introduction
2. Experimental Part
2.1. Experimental Materials
2.2. Experimental Process
2.2.1. Chitin Purification
2.2.2. Dissolution of Chitin and Its Composites
2.2.3. Preparation of Fe-Based Chitin Composite Films
2.2.4. Artificial Seawater Preparation
2.2.5. Desalination Performance of FeS/Chitin and Fe3O4/Chitin Films
2.3. Measurement
3. Results and Discussion
3.1. Morphology and Structure of Materials
3.2. Fixation and Size Distribution of Nanoparticles on Chitin
3.3. Interaction between FeS, Fe3O4 and Chitin
3.4. Desalination Performance of Composite Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, J.Q.; Li, L.; Fu, C.; Wang, J.; Fu, P.; Kong, C.P.; Bai, F.Q.; Eglitis, R.I.; Zhang, H.X.; Jia, R. A novel T-C3N and seawater desalination. Nanoscale 2020, 12, 5055–5066. [Google Scholar] [CrossRef]
- Andres-Manas, J.A.; Roca, L.; Ruiz-Aguirre, A.; Acien, F.G.; Gil, J.D.; Zaragoza, G. Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation. Appl. Energy 2020, 258, 114068. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Hu, Y.; Wei, Q.; Li, W.; Chen, F. Enhanced Desalination Performance of a Flow-Electrode Capacitive Deionization System by Adding Vanadium Redox Couples and Carbon Nanotubes. J. Phys. Chem. C 2021, 125, 1234–1239. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, X.; Li, L.; Hu, T.; Zhang, J. Facile preparation of polydimethylsiloxane/carbon nanotubes modified melamine solar evaporators for efficient steam generation and desalination. J. Colloid Interface Sci. 2021, 584, 602–609. [Google Scholar] [CrossRef]
- Elbar, A.R.A.; Hassan, H. Enhancement of hybrid solar desalination system composed of solar panel and solar still by using porous material and saline water preheating. Sol. Energy 2020, 204, 382–394. [Google Scholar] [CrossRef]
- Haddad, A.Z.; Menon, A.K.; Kang, H.; Urban, J.J.; Prasher, R.S.; Kostecki, R. Solar Desalination Using Thermally Responsive Ionic Liquids Regenerated with a Photonic Heater. Environ. Sci. Technol. 2021, 55, 3260–3269. [Google Scholar] [CrossRef]
- Du, X.; Qiu, J.; Deng, S.; Du, Z.; Cheng, X.; Wang, H. Flame-retardant and solid-solid phase change composites based on dopamine-decorated BP nanosheets/Polyurethane for efficient solar-to-thermal energy storage. Renew. Energ. 2021, 164, 1–10. [Google Scholar] [CrossRef]
- Xiong, F.; Yuan, K.; Aftab, W.; Jiang, H.; Zou, R. Copper Sulfide Nanodisk-Doped Solid–Solid Phase Change Materials for Full Spectrum Solar-Thermal Energy Harvesting and Storage. ACS Appl. Mater. Interfaces 2021, 13, 1377–1385. [Google Scholar] [CrossRef]
- Li, Z.; Cai, W.; Wang, X.; Hu, Y.; Gui, Z. Self-floating black phosphorous nanosheets as a carry-on solar vapor generator. J. Colloid Interface Sci. 2021, 582, 196–505. [Google Scholar] [CrossRef]
- Rafique, M.M.; Nathan, G.; Saw, W. A mathematical model to assess the influence of transients on a refractory-lined solar receiver. Renew. Energ. 2021, 167, 217–235. [Google Scholar] [CrossRef]
- Noureen, L.; Xie, Z.; Gao, Y.; Li, M.; Zhu, J. Multifunctional Ag3PO4-rGO Coated Textiles for Clean Water Production by Solar-Driven Evaporation, Photocatalysis, and Disinfection. ACS Appl. Mater. Interfaces 2020, 12, 6343–6350. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, J.X.; Han, Y.; Xu, H.B.; Wang, Y.; Qi, D.P.; Wang, W. A simple and universal strategy to deposit Ag/polypyrrole on various substrates for enhanced interfacial solar evaporation and antibacterial activity. Chem. Eng. J. 2020, 384, 123379.1–123379.31. [Google Scholar] [CrossRef]
- Cao, S.S.; Wu, X.H.; Zhu, Y.G.; Gupta, R.; Tan, A.; Wang, Z.Y.; Jun, Y.S.; Singamaneni, S. Polydopamine/hydroxyapatite nanowire-based bilayered membrane for photothermal-driven membrane distillation. J. Mater. Chem. A 2020, 8, 5147–5156. [Google Scholar] [CrossRef]
- Ma, X.; Deng, Z.; Li, Z.Y.; Chen, D.K.; Wan, X.Y.; Peng, X.S. A photothermal and Fenton active MOF-based membrane for high-efficiency solar water evaporation and clean water production. J. Mater. Chem. A 2020, 8, 22728–22735. [Google Scholar] [CrossRef]
- Miao, X.; Li, H.; Wang, L.; Li, Y.; Lei, Z. Monodispersed FeS nanoparticles confined in 3D interconnected carbon nanosheets network as an anode for high-performance lithium-ion batteries. J. Mater. Sci. 2020, 55, 12139–12150. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, S.; Sun, L.; Li, X.; Wang, Z. One-step synthesis of 2-mercaptobenzothiazole functionalized magnetic Fe3O4 and its application for the removal of heavy metals. J. Taiwan Inst. Chem. E. 2020, 113, 264–272. [Google Scholar] [CrossRef]
- Bag, J.; Mukherjee, S.; Ghosh, S.K.; Das, A.; Mishra, M. Fe3O4 coated guargum nanoparticles as non-genotoxic materials for biological application. Int. J. Biol. Macromol. 2020, 165, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Khayrova, A.; Lopatin, S.; Varlamov, V. Obtaining chitin, chitosan and their melanin complexes from insects. Int. J. Biol. Macromol. 2021, 167, 1319–1328. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Rajib, M.R.; Yin, H. Recognition Pattern, Functional Mechanism and Application of chitin and Chitosan Oligosaccharides in Sustainable Agriculture. Curr. Pharm. Design 2020, 26, 3508–3521. [Google Scholar] [CrossRef]
- Lizundia, E.; Nguyen, T.D.; Winnick, R.J.; Maclachlan, M.J. Biomimetic photonic materials derived from chitin and chitosan. J. Mater. Chem. C 2021, 9, 796–817. [Google Scholar] [CrossRef]
- Ding, F.Y.; Shi, X.W.; Jiang, Z.W.; Liu, L.; Cai, J.; Li, Z.Y.; Chen, S.; Du, Y.M. Electrochemically stimulated drug release from dual stimuli responsive chitin hydrogel. J. Mater. Chem. B 2013, 1, 1729–1737. [Google Scholar] [CrossRef] [PubMed]
- Ifuku, S.; Morooka, S.; Morimoto, M.; Saimoto, H. Acetylation of chitin nanofibers and their transparent nanocomposite films. Biomacromolecules 2010, 11, 1326–1330. [Google Scholar] [CrossRef]
- Shangguan, E.; Li, F.; Li, J.; Chang, Z.; Li, Q.; Yuan, X.Z.; Wang, H. FeS/C composite as high-performance anode material for alkaline nickel-iron rechargeable batteries. J. Power Sources 2015, 291, 29–39. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, P.; Li, Q.; Liu, Y.; Yin, J. Preparation of FeS@Fe3O4 core–shell magnetic nanoparticles and their application in uranyl ions removal from aqueous solution. J. Radioanal. Nucl. Ch. 2019, 321, 499–510. [Google Scholar] [CrossRef]
- Franco, D.L.; Afonso, A.S.; Vieira, S.N.; Ferreira, L.F.; Gonqalves, R.A.; Brito-Madurro, A.G.; Madurro, J.M. Electropolymerization of 3-aminophenol on carbon graphite surface, Electric and morphologic properties. Mater. Chem. Phys. 2008, 107, 404–409. [Google Scholar] [CrossRef]
- Bottoni, U.; Tiriolo, R.; Pullano, S.A. Infrared Saliva Analysis of Psoriatic and Diabetic Patients, Similarities in Protein Components. IEEE T. Bio. Med. Eng. 2016, 63, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Duan, B.; Zhang, L.N. Construction of controllable size silver nanoparticles immobilized on nanofibers of chitin microspheres via green pathway. Nano Res. 2016, 9, 2149–2161. [Google Scholar] [CrossRef]
- Pratt, A.R.; Muir, I.J.; Nesbitt, H.W. X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochim. Cosmochim. Acta 1994, 58, 827–841. [Google Scholar] [CrossRef]
- Thomas, J.E.; Skinner, W.M.; Smart, R.S.T.C. A comparison of the dissolution behavior of troilite with other iron(II) sulfides; implications of structure. Geochim. Cosmochim. Acta 2003, 67, 831–843. [Google Scholar] [CrossRef]
- Geng, H.; Zhu, L.; Li, W.; Liu, H.; Quan, L.; Xi, F.; Su, X. FeS/nickel foam as stable and efficient counter electrode material for quantum dot sensitized solar cells. J. Power Sources 2015, 281, 204–210. [Google Scholar] [CrossRef]
- Wang, W.; Tang, B.; Ju, B.; Gao, Z.; Xiu, J.; Zhang, S. Fe3O4-functionalized graphene nanosheet embedded phase change material composites, efficient magnetic- and sunlight-driven energy conversion and storage. J. Mater. Chem. A 2017, 5, 958–968. [Google Scholar] [CrossRef]
- Li, W.P.; Chen, Y.Q.; Yao, L.; Ren, X.Z.; Li, Y.L.; Deng, L.B. Fe3O4 /PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation. Desalination 2020, 478, 114288.1–114288.10. [Google Scholar] [CrossRef]
- Kangwansupamonkon, W.; Tiewtrakoonwat, W.; Supaphol, P.; Kiatkamjornwong, S. Surface modification of electrospun chitosan nanofibrous mats for antibacterial activity. J. Appl. Polym. Sci. 2014, 131, 8558–8572. [Google Scholar] [CrossRef]
- Pradal, C.; Kithva, P.; Martin, D.; Trau, M.; Grndahl, L. Improvement of the wet tensile properties of nanostructured hydroxyapatite and chitosan biocomposite films through hydrophobic modification. J. Mater. Chem. 2011, 21, 2330–2337. [Google Scholar] [CrossRef]
- Roy, P.S.; Samanta, A.; Mukherjee, M.; Roy, B.; Mukherjee, A. Designing Novel pH-Induced Chitosan–Gum Odina Complex Coacervates for Colon Targeting. Ind. Eng. Chem. Res. 2013, 52, 15728–15745. [Google Scholar] [CrossRef]
- Zuo, X.J. Preparation and Evaluation of Novel Thiourea/Chitosan Composite Beads for Copper(II) Removal in Aqueous Solutions. Ind. Eng. Chem. Res. 2014, 53, 1249–1255. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, W.; Pan, B.; Zhang, Q.; Zhang, W.; Lv, L. Facile fabrication of magnetic chitosan beads of fast kinetics and high capacity for copper removal. ACS Appl. Mater. Interfaces 2014, 6, 3421–3426. [Google Scholar] [CrossRef]
- Bratskaya, S.; Marinin, D.; Simon, F.; Synytska, A.; Zschoche, S.; Busscher, H.J.; Jager, D.; Van, d.M.H.C. Adhesion and viability of two enterococcal strains on covalently grafted chitosan and chitosan/kappa-carrageenan multilayers. Biomacromolecules 2007, 8, 2960–2968. [Google Scholar] [CrossRef] [PubMed]
Sample | Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Pore Size (nm) |
---|---|---|---|
Chitin | 149.860 | 1.305 | 17.388 |
FeS/Chitin | 120.560 | 0.954 | 17.408 |
Fe3O4/Chitin | 80.375 | 0.668 | 17.442 |
Sample | Cl | NO2/NO3 | SO4 |
---|---|---|---|
Seawater | 14495 | 819 | 4605 |
FeS/Chitin | 5.460 | 4.060/1.90 | 4.153 |
Fe3O4/Chitin | 7.329 | 4.097/0.18 | 10.765 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Li, X.; Xie, H.; Yao, L.; Ye, L. Iron Based Chitin Composite Films for Efficient Solar Seawater Desalination. Processes 2021, 9, 1126. https://doi.org/10.3390/pr9071126
Zhang R, Li X, Xie H, Yao L, Ye L. Iron Based Chitin Composite Films for Efficient Solar Seawater Desalination. Processes. 2021; 9(7):1126. https://doi.org/10.3390/pr9071126
Chicago/Turabian StyleZhang, Rumeng, Xin Li, Haiquan Xie, Lunguang Yao, and Liqun Ye. 2021. "Iron Based Chitin Composite Films for Efficient Solar Seawater Desalination" Processes 9, no. 7: 1126. https://doi.org/10.3390/pr9071126
APA StyleZhang, R., Li, X., Xie, H., Yao, L., & Ye, L. (2021). Iron Based Chitin Composite Films for Efficient Solar Seawater Desalination. Processes, 9(7), 1126. https://doi.org/10.3390/pr9071126