Arsenic and Fluoride in Groundwater, Prevalence and Alternative Removal Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Sampling and Characterization
2.2. As and F Quantification
2.3. Removal Methods
2.3.1. Electrocoagulation Method
2.3.2. Bioadsorbent Preparation
Adsorption Experiments
Adsorption for As/F in Solution
Groundwater As and F− Adsorption
Magnetic Nanoparticles Synthesis
MNP Adsorption Experiments
3. Results
3.1. Electrocoagulation Method
3.2. Adsorbent Methods
3.2.1. Bioadsorbent Synthesis (General Characteristics)
3.2.2. Bioadsorbents’ Efficiency
3.2.3. Magnetic Nanoparticles’ General Characteristics
3.2.4. Nanoadsorbents’ Efficiency
Effect of the Contact Time on As Removal
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fawell, J.; Bailey, K.; Chilton, J.; Dahi, E.; Fewtrell, L.; Magara, Y. Fluoride in Drinking Water; IWA Publishing: London, UK, 2001; pp. 15–37. [Google Scholar]
- WHO. Arsenic in Drinking-Water Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO Pres: Geneva, Switzerland, 2011; pp. 2–11. [Google Scholar]
- Bretzler, A.; Johnson, C.A. The Geogenic Contamination Handbook: Addressing arsenic and fluoride in drinking water. Appl. Geochem. 2015, 63, 642–646. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guias Para la Calidad del Agua de Consumo Humano, 4th ed.; WHO Press: Geneva, Switzerland, 2018; pp. 185–230. ISBN 9789243549958. [Google Scholar]
- Armienta, M.A.; Segovia, N. Arsenic and fluoride in the groundwater of Mexico. Environ. Geochem. Health 2008, 30, 345–353. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, K.; Ko, K.S.; Kim, Y.; Lee, K.S. Co-contamination of arsenic and fluoride in the groundwater of unconsolidated aquifers under reducing environments. Chemosphere 2012, 87, 851–856. [Google Scholar] [CrossRef]
- Mondal, N.K.; Kundu, M. Biosorption of Fluoride from Aqueous Solution Using Lichen and Its Ca-Pretreated Biomass. Water Conserv. Sci. Eng. 2016, 1, 143–160. [Google Scholar] [CrossRef]
- Alarcón-Herrera, M.T.; Martin-Alarcon, D.A.; Gutiérrez, M.; Reynoso-Cuevas, L.; Martín-Domínguez, A.; Olmos-Márquez, M.A.; Bundschuh, J. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Sci. Total Environ. 2020, 698. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Li, P.; Ji, Y.; Wang, Y.; Su, Z.; Elumalai, V. Groundwater Arsenic and Fluoride and Associated Arsenicosis and Fluorosis in China: Occurrence, Distribution and Management. Expo. Health 2020, 12, 355–368. [Google Scholar] [CrossRef]
- Bibi, S.; Kamran, M.A.; Sultana, J.; Farooqi, A. Occurrence and methods to remove arsenic and fluoride contamination in water. Environ. Chem. Lett. 2017, 15, 125–149. [Google Scholar] [CrossRef]
- Raghav, S.; Nehra, S.; Kumar, D. Biopolymer scaffold of pectin and alginate for the application of health hazardous fluoride removal studies by equilibrium adsorption, kinetics and thermodynamics. J. Mol. Liq. 2019, 284, 203–214. [Google Scholar] [CrossRef]
- Phillips, D.H.; Sen Gupta, B.; Mukhopadhyay, S.; Sen Gupta, A.K. Arsenic and fluoride removal from contaminated drinking water with Haix-Fe-Zr and Haix-Zr resin beads. J. Environ. Manag. 2018, 215, 132–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, T.; Fawell, J.; Kunikane, S.; Jackson, D.; Appleyard, S.; Callan, P.; Bartram, J.; Kingston, P. Chemical Safety of Drinking-Water: Assessing Priorities for Risk Management; WHO Press: Geneva, Switzerland, 2007; pp. 11–17. [Google Scholar]
- USEPA. Division of Toxicology and Environmental Medicine ToxFAQs—Arsenic. 2007. Available online: https://www.epa.gov/foia/division-toxicology-and-environmental-medicine-toxfaqs-arsenic (accessed on 1 March 2021).
- USEPA. Arsenic, Inorganic (CASRN 7440-38-2)|IRIS|US EPA. 1998. Available online: https://iris.epa.gov/ChemicalLanding/&substance_nmbr=278 (accessed on 1 March 2021).
- USEPA. Fluorine (Soluble Fluoride) (CASRN 7782-41-4)|IRIS|US EPA. 2012. Available online: https://cfpub.epa.gov/ncea/iris2/chemicalLanding.cfm?substance_nmbr=53 (accessed on 1 March 2021).
- CONAGUA. Estadísticas del Agua en México 2018; Comisión Nacional del Agua: Ciudad de México, México, 2018; pp. 26–69. [Google Scholar]
- Alarcón Herrera, M.T.; Flores Montenegro, I.; Romero Navar, P.; Martín Domínguez, I.R.; Trejo Vázquez, R. Contenido de Arsénico en el Agua Potable del Valle del Guadiana, México. Tecnol. Cienc. Agua 2001, 16, 63–70. [Google Scholar]
- Alarcón-Herrera, M.T.; Martín-Domínguez, A.; Martín Domínguez, I.R. Flúor y Arsénico en Agua de Consumo Humano, Retos y Perspectivas; Centro de Investigación en Materiales Avanzados: Chihuahua, México, 2013; pp. 1–94. [Google Scholar]
- He, J.; Yang, Y.; Wu, Z.; Xie, C.; Zhang, K.; Kong, L.; Liu, J. Review of fluoride removal from water environment by adsorption. J. Environ. Chem. Eng. 2020, 8. [Google Scholar] [CrossRef]
- Jadhav, S.V.; Bringas, E.; Yadav, G.D.; Rathod, V.K.; Ortiz, I.; Marathe, K.V. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. J. Environ. Manag. 2015, 162, 306–325. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, S.; Yenkie, M.K.; Labhsetwar, N.; Rayalu, S. Fluoride in drinking water and defluoridation of water. Chem. Rev. 2012, 112, 2454–2466. [Google Scholar] [CrossRef]
- Nyangi, M.J.; Chebude, Y.; Kilulya, K.F. Fluoride removal efficiencies of Al-EC and Fe-EC reactors: Process optimization using Box–Behnken design of the surface response methodology. Appl. Water Sci. 2020, 10. [Google Scholar] [CrossRef]
- Sandoval, M.A.; Fuentes, R.; Thiam, A.; Salazar, R. Arsenic and fluoride removal by electrocoagulation process: A general review. Sci. Total Environ. 2021, 753, 142108. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, D. Conventional as well as Emerging Arsenic Removal Technologies—A Critical Review. Water Air Soil Pollut. 2017, 228. [Google Scholar] [CrossRef]
- Silva, J.F.A.; Graça, N.S.; Ribeiro, A.M.; Rodrigues, A.E. Electrocoagulation process for the removal of co-existent fluoride, arsenic and iron from contaminated drinking water. Sep. Purif. Technol. 2018, 197, 237–243. [Google Scholar] [CrossRef]
- Thakur, L.S.; Mondal, P. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: Parametric and cost evaluation. J. Environ. Manag. 2017, 190, 102–112. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, B.; Liu, H.; Qu, J. Simultaneous removal of arsenite and fluoride via an integrated electro-oxidation and electrocoagulation process. Chemosphere 2011, 83, 726–729. [Google Scholar] [CrossRef]
- López-Guzmán, M.; Alarcón-Herrera, M.T.; Irigoyen-Campuzano, J.R.; Torres-Castañón, L.A.; Reynoso-Cuevas, L. Simultaneous removal of fluoride and arsenic from well water by electrocoagulation. Sci. Total Environ. 2019, 678. [Google Scholar] [CrossRef]
- Guzmán, A.; Nava, J.L.; Coreño, O.; Rodríguez, I.; Gutiérrez, S. Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor. Chemosphere 2016, 144, 2113–2120. [Google Scholar] [CrossRef]
- Mohora, E.; Rončević, S.; Agbaba, J.; Zrnić, K.; Tubić, A.; Dalmacija, B. Arsenic removal from groundwater by horizontal-flow continuous electrocoagulation (EC) as a standalone process. J. Environ. Chem. Eng. 2018, 6, 512–519. [Google Scholar] [CrossRef]
- Rosales, M.; Coreño, O.; Nava, J.L. Removal of hydrated silica, fluoride and arsenic from groundwater by electrocoagulation using a continuous reactor with a twelve-cell stack. Chemosphere 2018, 211, 149–155. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M.; Witek-Krowiak, A. Agricultural waste peels as versatile biomass for water purification—A review. Chem. Eng. J. 2015, 270, 244–271. [Google Scholar] [CrossRef]
- Paudyal, H.; Pangeni, B.; Inoue, K.; Kawakita, H.; Ohto, K.; Alam, S. Adsorptive removal of fluoride from aqueous medium using a fixed bed column packed with Zr(IV) loaded dried orange juice residue. Bioresour. Technol. 2013, 146, 713–720. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, N.; Tang, Z.; Yu, Y.; Hu, Q.; Feng, C. A study of the mechanism of fluoride adsorption from aqueous solutions onto Fe-impregnated chitosan. Phys. Chem. Chem. Phys. 2015, 17, 12041–12050. [Google Scholar] [CrossRef]
- Mohapatra, M.; Anand, S.; Mishra, B.K.; Giles, D.E.; Singh, P. Review of fluoride removal from drinking water. J. Environ. Manag. 2009, 91, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Kazi, T.G.; Brahman, K.D.; Baig, J.A.; Afridi, H.I. A new efficient indigenous material for simultaneous removal of fluoride and inorganic arsenic species from groundwater. J. Hazard. Mater. 2018, 357, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Mondal, M.K. Removal of Pb(II) from aqueous solution by adsorption using activated tea waste. Korean J. Chem. Eng. 2010, 27, 144–151. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mondal, M.; Banerjee, S.; Halder, G. Elucidation of the sorptive uptake of fluoride by Ca2+-treated and untreated algal biomass of Nostoc sp. (BTA394): Isotherm, kinetics, thermodynamics and safe disposal. Process Saf. Environ. Prot. 2017, 107, 334–345. [Google Scholar] [CrossRef]
- Ramos-Vargas, S.; Alfaro-Cuevas-Villanueva, R.; Huirache-Acuña, R.; Cortés-Martínez, R. Removal of fluoride and arsenate from aqueous solutions by aluminum-modified guava seeds. Appl. Sci. 2018, 8, 1807. [Google Scholar] [CrossRef] [Green Version]
- Sankararamakrishnan, N.; Srivastava, I.; Mishra, S. Studies on novel nano-bimetal doped cellulose nanofibers derived from agrowaste towards deflouridation. Int. J. Biol. Macromol. 2019, 128, 556–565. [Google Scholar] [CrossRef]
- Maldonado-Reyes, A.; Montero-Ocampo, C.; Medina-Garcia, J.; Bolado-Rodríguez, S.; Alvárez-Benedí, J.; Herrera-Vazquez, A.; Castaño, V.M. Electro Coagulation Removal of As from Water: The Role of Phases Formation. Water Air Soil Pollut. 2015, 226, 1–6. [Google Scholar] [CrossRef]
- INDEXMUNDI (a). 2021. Available online: https://archive.is/StKpn (accessed on 1 March 2021).
- INDEXMUNDI (b). 2021. Available online: https://archive.is/zHQcT (accessed on 1 March 2021).
- CFE. Available online: https://archive.is/AAfWR (accessed on 1 March 2021).
- BANXICO. 2021. Available online: https://archive.is/C41m8 (accessed on 1 March 2021).
- Bee, A.; Massart, R.; Neveu, S. Synthesis of Very Fine Maghemite Particles. J. Magn. Magn. Mater. 1995, 149, 6–9. [Google Scholar] [CrossRef]
- García-Lara, A.M.; Montero-Ocampo, C. Improvement of arsenic electro-removal from underground water by lowering the interference of other ions. Water Air Soil Pollut. 2010, 205, 237–244. [Google Scholar] [CrossRef]
- Kobya, M.; Ulu, F.; Gebologlu, U.; Demirbas, E.; Oncel, M.S. Treatment of potable water containing low concentration of arsenic with electrocoagulation: Different connection modes and Fe-Al electrodes. Sep. Purif. Technol. 2011, 77, 283–293. [Google Scholar] [CrossRef]
- Banerji, T.; Chaudhari, S. Arsenic removal from drinking water by electrocoagulation using iron electrodes- an understanding of the process parameters. J. Environ. Chem. Eng. 2016, 4, 3990–4000. [Google Scholar] [CrossRef]
- Sandoval, M.A.; Fuentes, R.; Nava, J.L.; Rodríguez, I. Fluoride removal from drinking water by electrocoagulation in a continuous filter press reactor coupled to a flocculator and clarifier. Sep. Purif. Technol. 2014, 134, 163–170. [Google Scholar] [CrossRef]
- Kim, K.J.; Baek, K.; Ji, S.; Cheong, Y.; Yim, G.; Jang, A. Study on electrocoagulation parameters (current density, pH, and electrode distance) for removal of fluoride from groundwater. Environ. Earth Sci. 2016, 75, 1–8. [Google Scholar] [CrossRef]
- Flores, O.J.; Nava, J.L.; Carreño, G.; Elorza, E.; Martínez, F. Arsenic removal from groundwater by electrocoagulation in a pre-pilot-scale continuous filter press reactor. Chem. Eng. Sci. 2013, 97, 1–6. [Google Scholar] [CrossRef]
- Thakur, L.S.; Goyal, H.; Mondal, P. Simultaneous removal of arsenic and fluoride from synthetic solution through continuous electrocoagulation: Operating cost and sludge utilization. J. Environ. Chem. Eng. 2019, 7. [Google Scholar] [CrossRef]
- Castañeda, L.F.; Coreño, O.; Nava, J.L.; Carreño, G. Removal of fluoride and hydrated silica from underground water by electrocoagulation in a flow channel reactor. Chemosphere 2020, 244. [Google Scholar] [CrossRef]
- Santana, J.J.; Mena, V.F.; Betancor-Abreu, A.; Rodríguez-Raposo, R.; Izquierdo, J.; Souto, R.M. Use of alumina sludge arising from an electrocoagulation process as functional mesoporous microcapsules for active corrosion protection of aluminum. Prog. Org. Coat. 2021, 151. [Google Scholar] [CrossRef]
- Cai, H.M.; Chen, G.J.; Peng, C.Y.; Zhang, Z.Z.; Dong, Y.Y.; Shang, G.Z.; Zhu, X.H.; Gao, H.J.; Wan, X.C. Removal of fluoride from drinking water using tea waste loaded with Al/Fe oxides: A novel, safe and efficient biosorbent. Appl. Surf. Sci. 2015, 328, 34–44. [Google Scholar] [CrossRef]
- Jha, R.; Jha, U.; Dey, R.K.; Mishra, S.; Swain, S.K. Fluoride sorption by zirconium (IV) loaded carboxylated orange peel. Desalin. Water Treat. 2015, 53, 2144–2157. [Google Scholar] [CrossRef]
- Mondal, N.K. Natural Banana (Musa acuminate) Peel: An Unconventional Adsorbent for Removal of Fluoride from Aqueous Solution through Batch Study. Water Conserv. Sci. Eng. 2017, 1, 223–232. [Google Scholar] [CrossRef]
- Mwakabona, H.T.; Mlay, H.R.; Van der Bruggen, B.; Njau, K.N. Water defluoridation by Fe(III)-loaded sisal fibre: Understanding the influence of the preparation pathways on biosorbents’ defluoridation properties. J. Hazard. Mater. 2019, 362, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Naga Babu, A.; Reddy, D.S.; Kumar, G.S.; Ravindhranath, K.; Krishna Mohan, G.V. Removal of lead and fluoride from contaminated water using exhausted coffee grounds based bio-sorbent. J. Environ. Manag. 2018, 218, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, X.; Liu, L.; Chen, F. Fluoride removal by Fe(III)-loaded ligand exchange cotton cellulose adsorbent from drinking water. Carbohydr. Polym. 2008, 72, 144–150. [Google Scholar] [CrossRef]
- Paudyal, H.; Pangeni, B.; Nath Ghimire, K.; Inoue, K.; Ohto, K.; Kawakita, H.; Alam, S. Adsorption behavior of orange waste gel for some rare earth ions and its application to the removal of fluoride from water. Chem. Eng. J. 2012, 195–196, 289–296. [Google Scholar] [CrossRef]
- Manna, S.; Roy, D.; Adhikari, B.; Thomas, S.; Das, P. Biomass for water defluoridation and current understanding on biosorption mechanisms: A review. Environ. Prog. Sustain. Energy 2018, 37, 1560–1572. [Google Scholar] [CrossRef]
- Podder, M.S.; Majumder, C.B. SD/MnFe2O4 composite, a biosorbent for As(III) and As(V) removal from wastewater: Optimization and isotherm study. J. Mol. Liq. 2015, 212, 382–404. [Google Scholar] [CrossRef]
- Iconaru, S.L.; Guégan, R.; Popa, C.L.; Motelica-Heino, M.; Ciobanu, C.S.; Predoi, D. Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal. Appl. Clay Sci. 2016, 134, 128–135. [Google Scholar] [CrossRef]
- Zhang, S.; Niu, H.; Cai, Y.; Zhao, X.; Shi, Y. Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 2010, 158, 599–607. [Google Scholar] [CrossRef]
- Maji, S.K.; Pal, A.; Pal, T. Arsenic removal from real-life groundwater by adsorption on laterite soil. J. Hazard. Mater. 2008, 151, 811–820. [Google Scholar] [CrossRef]
- Biswas, B.K.; Inoue, J.; Inoue, K.; Ghimire, K.N.; Harada, H.; Ohto, K.; Kawakita, H. Adsorptive removal of As(V) and As(III) from water by a Zr(IV)-loaded orange waste gel. J. Hazard. Mater. 2008, 154, 1066–1074. [Google Scholar] [CrossRef]
- Manna, S.; Roy, D.; Saha, P.; Adhikari, B. Defluoridation of aqueous solution using alkali-steam treated water hyacinth and elephant grass. J. Taiwan Inst. Chem. Eng. 2015, 50, 215–222. [Google Scholar] [CrossRef]
- Mulinari, D.R.; Cruz, T.G.; Cioffi, M.O.H.; Voorwald, H.J.C.; Da Silva, M.L.C.P.; Rocha, G.J.M. Image analysis of modified cellulose fibers from sugarcane bagasse by zirconium oxychloride. Carbohydr. Res. 2010, 345, 1865–1871. [Google Scholar] [CrossRef]
- Paudyal, H.; Pangeni, B.; Inoue, K.; Matsueda, M.; Suzuki, R.; Kawakita, H.; Ohto, K.; Biswas, B.K.; Alam, S. Adsorption Behavior of Fluoride Ions on Zirconium(IV)-Loaded Orange Waste Gel from Aqueous Solution. Sep. Sci. Technol. 2012, 47, 96–103. [Google Scholar] [CrossRef]
- Gandhi, N.; Sirisha, D.; Chandra Sekhar, K.B. Adsorption of Fluoride (F−) from Aqueous Solution by Using Pineapple (Ananas comosus) Peel and Orange (Citrus sinensis) Peel Powders. Int. J. Environ. Bioremediat. Biodegrad. 2016, 4, 55–67. [Google Scholar] [CrossRef]
- Paudyal, H.; Pangeni, B.; Inoue, K.; Kawakita, H.; Ohto, K.; Harada, H.; Alam, S. Adsorptive removal of fluoride from aqueous solution using orange waste loaded with multi-valent metal ions. J. Hazard. Mater. 2011, 192, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Singh, D.K.; Kumar, V.; Hasan, S.H. Effective removal of Fluoride ions by rGO/ZrO2 nanocomposite from aqueous solution: Fixed bed column adsorption modelling and its adsorption mechanism. J. Fluor. Chem. 2017, 194, 40–50. [Google Scholar] [CrossRef]
- Nagaraj, A.; Sadasivuni, K.K.; Rajan, M. Investigation of lanthanum impregnated cellulose, derived from biomass, as an adsorbent for the removal of fluoride from drinking water. Carbohydr. Polym. 2017, 176, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Mallampati, R.; Valiyaveettil, S. Apple peels—A versatile biomass for water purification? ACS Appl. Mater. Interfaces 2013, 5, 4443–4449. [Google Scholar] [CrossRef] [PubMed]
- Ghorai, S.; Pant, K.K. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Sep. Purif. Technol. 2005, 42, 265–271. [Google Scholar] [CrossRef]
- Yadav, K.K.; Gupta, N.; Kumar, V.; Khan, S.A.; Kumar, A. A review of emerging adsorbents and current demand for defluoridation of water: Bright future in water sustainability. Environ. Int. 2018, 111, 80–108. [Google Scholar] [CrossRef]
- Sharma, M.; Kalita, P.; Senapati, K.; Garg, A. Study on magnetic materials for removal of water pollutants. In Emerging Pollutants; IntechOpen: London, UK, 2018; Volume 32, pp. 61–78. [Google Scholar]
- Camacho, L.M.; Gutiérrez, M.; Alarcón-Herrera, M.T.; de Villalba, M.L.; Deng, S. Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA. Chemosphere 2011, 83, 211–225. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
pH | 8.70 |
Conductivity (μs/cm) | 548.25 |
COD (mg O2/L) | 104 |
Na+ (mg/L) | 53.10 |
K+ (mg/L) | 9.88 |
Ca+2 (mg/L) | 60.55 |
Mg+2 (mg/L) | 1.54 |
F− (mg/L) | 3.89 |
NO3− (mg/L) | 38.36 |
NO2− (mg/L) | 1.84 |
Cl− (mg/L) | 26.39 |
CO3−2 (mg/L) | 0 |
HCO3− (mg CaCO3/L) | 148.50 |
SO4−2 (mg/L) | 59.76 |
As * (mg/L) | 0.032 |
Parameters | Al Anode | Fe Anode | Al-Fe Anode | ||
---|---|---|---|---|---|
Initial pH | 3 | 5 | 5 | 3 | 5 |
Current density (mA/cm2) | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 |
Active area (cm2) | 98 | 98 | 98 | 577.2 | 577.2 |
Current intensity imposed (A) | 0.441 | 0.441 | 0.441 | 2.597 | 2.597 |
Operating time (min) | 15 | 15 | 15 | 15 | 15 |
Initial F− concentration (mg/L) | 4.24 | 4.24 | 4.24 | 4.24 | 4.24 |
Final F− concentration (mg/L) | 2.48 | 1.89 | 4.20 | 0.29 | 1.61 |
F− removal efficiency (%) | 41.51 | 55.50 | 0.86 | 93.16 | 62.11 |
Initial As concentration (mg/L) | 0.042 | 0.042 | 0.042 | 0.042 | 0.042 |
Final As concentration (mg/L) | 0.042 | N.D. | N.D. | N.D. | N.D. |
As removal efficiency (%) | 0 | >97 | >97 | >97 | >97 |
Final pH | 4.57 | 7.47 | 6.73 | 6.47 | 7.93 |
Average voltage (V) | 2.90 | 3.89 | 3.06 | 5.05 | 5.04 |
Energy consumption (kWh/m3) | 0.213 | 0.286 | 0.225 | 0.371 | 0.371 |
Electrode consumption (kg/m3) | 0.029 | 0.044 | 0.067 | Al: 0.113 Fe: 0.167 | Al: 0.111 Fe: 0.156 |
Operating cost (USD/m3) | 0.072 | 0.107 | 0.026 | 0.279 | 0.273 |
Sludge production (kg/m3) | 0.002 | 0.091 | 0.147 | 0.667 | 0.630 |
Treatment Process | Type of Water | Initial Concentration (mg/L) | Initial pH | Final pH | Treatment Time (min) | Maximum Removal (%) | Type of Removal |
---|---|---|---|---|---|---|---|
EC | Groundwater | As *: 0.042 F−: 4.24 | 3 | 6.47 | 15 | As: >97 F−: 93.16 | Simultaneous |
BAD | Synthetic | F−: 4 | 6.5 | 3.5 | 60 | 84 | Exclusive |
Synthetic | As *: 0.047 F−: 4.0 | 3.5 | 3.5 | 60 | As: >82 F−: >86 | Simultaneous | |
Groundwater | As *: 0.032 F−: 3.89 | 3.5 | 3.5 | 60 | As: >81 F−: >93 | Simultaneous | |
MNPs CoFe2O4 MnFe2O4 Fe3O4 | Groundwater | As *: 0.045 | 7.9 7.9 7.9 | 8.1 8.4 8.9 | 90 (time in equilibrium 30 min) | CoFe2O4: 97 MnFe2O4: 94 Fe3O4: 82 | Exclusive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robledo-Peralta, A.; López-Guzmán, M.; Morales-Amaya, C.G.; Reynoso-Cuevas, L. Arsenic and Fluoride in Groundwater, Prevalence and Alternative Removal Approach. Processes 2021, 9, 1191. https://doi.org/10.3390/pr9071191
Robledo-Peralta A, López-Guzmán M, Morales-Amaya CG, Reynoso-Cuevas L. Arsenic and Fluoride in Groundwater, Prevalence and Alternative Removal Approach. Processes. 2021; 9(7):1191. https://doi.org/10.3390/pr9071191
Chicago/Turabian StyleRobledo-Peralta, Adriana, Miriam López-Guzmán, Corazón G. Morales-Amaya, and Liliana Reynoso-Cuevas. 2021. "Arsenic and Fluoride in Groundwater, Prevalence and Alternative Removal Approach" Processes 9, no. 7: 1191. https://doi.org/10.3390/pr9071191
APA StyleRobledo-Peralta, A., López-Guzmán, M., Morales-Amaya, C. G., & Reynoso-Cuevas, L. (2021). Arsenic and Fluoride in Groundwater, Prevalence and Alternative Removal Approach. Processes, 9(7), 1191. https://doi.org/10.3390/pr9071191