Physicochemical Characteristics of Vinegar from Banana Peels and Commercial Vinegars before and after In Vitro Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Chemicals and Reagents
2.2. Production of Banana Peel Vinegars
2.3. Vinegar Samples
2.4. In Vitro Digestion
2.5. Physicochemical Properties
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ho, C.W.; Lazim, A.M.; Fazry, S.; Zaki, U.K.H.H.; Lim, S.J. Varieties, production, composition and health benefits of vinegars: A review. Food Chem. 2017, 221, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Leonés, A.; Durán-Guerrero, E.; Carbú, M.; Cantoral, J.M.; Barroso, C.G.; Castro, R. Development of vinegar obtained from lemon juice: Optimization and chemical characterization of the process. LWT Food Sci. Technol. 2019, 100, 314–321. [Google Scholar] [CrossRef]
- Lima, M.J.A.; Reis, B.F. Fully automated photometric titration procedure employing a multicommuted flow analysis setup for acidity determination in fruit juice, vinegar, and wine. Microchem. J. 2017, 135, 207–212. [Google Scholar] [CrossRef]
- Cejudo-Bastante, C.; Castro-Mejías, R.; Natera-Marín, R.; García-Barroso, C.; Durán-Guerrero, E. Chemical and sensory characteristics of orange based vinegar. J. Food Sci. Technol. 2016, 53, 3147–3156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Cho, H.D.; Jeong, J.H.; Lee, M.K.; Jeong, Y.K.; Shim, K.H.; Sheo, K.I. New vinegar produced by tomato suppresses adipocyte differentiation and fat accumulation in 3T3-L1cells and obese rat model. Food Chem. 2013, 141, 3241–3249. [Google Scholar] [CrossRef]
- Özen, M.; Özdemir, N.; Filiz, B.E.; Budak, N.H.; Kök-Taş, T. Sour cherry (Prunus cerasus L.) vinegars produced from fresh fruit or juice concentrate: Bioactive compounds, volatile aroma compounds and antioxidant capacities. Food Chem. 2020, 309, 125664. [Google Scholar] [CrossRef]
- Roda, A.; Faveri, D.M.; Giacosa, S.; Dordoni, R.; Lambri, M. Effect of pre-treatments on the saccharification of pineapple waste as a potential source for vinegar production. J. Clean. Prod. 2016, 112, 4477–4484. [Google Scholar] [CrossRef]
- Fatima, B.; Mishra, A.A. Optimization of process parameter for the production of vinegar from banana peel and coconut water. Int. J. Sci. Eng. Technol. 2015, 3, 817–823. [Google Scholar]
- Prisacaru, A.E.; Oroian, M. Quality evaluation of vinegar obtained from banana peel. In Proceedings of the International Multidisciplinary Scientific GeoConference: SGEM (Surveying Geology & Mining Ecology Management), Viena, Austria, 3–6 December 2018; Volume 18, pp. 259–264. [Google Scholar]
- Johnston, C.S.; Gaas, C.A. Vinegar: Medicinal uses and antiglycemic effect. Medscape Gen. Med. 2006, 8, 61. [Google Scholar]
- Ozturk, I.; Caliskan, O.; Tornuk, F.; Ozcan, N.; Yalcin, H.; Baslar, M.; Sagdic, O. Antioxidant, antimicrobial, mineral, volatile, physicochemical and microbiological characteristics of traditional home-made Turkish vinegars. LWT Food Sci. Technol. 2015, 63, 144–151. [Google Scholar] [CrossRef]
- Vinegar Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2020–2025. Available online: https://www.imarcgroup.com/vinegar-manufacturing-plant (accessed on 20 February 2020).
- EU. Vinegar—Market Analysis, Forecast, Size, Trends and Insights. 2019. Available online: https://www.researchandmarkets.com/reports/4657911/eu-vinegar-market-analysis-forecast-size#pos-0 (accessed on 20 February 2020).
- Shahidi, F.; McDonald, J.; Chandrasekara, A.; Zhong, Y. Phytochemicals of foods, beverages and fruit vinegars: Chemistry and health effects. Asia Pac. J. Clin. Nutr. 2008, 17, 380–382. [Google Scholar] [PubMed]
- Cerezo, A.B.; Tesfaye, W.; Torija, M.J.; Mateo, E.; García-Parrilla, M.C.; Troncoso, A.M. The phenolic composition of red wine vinegar produced in barrels made from different woods. Food Chem. 2008, 109, 606–615. [Google Scholar] [CrossRef]
- Adams, M.R. Fermented weaning foods. In Microbiology of Fermented Foods; Wood, B.J.B., Ed.; Springer: Boston, MA, USA, 1998; pp. 790–811. [Google Scholar]
- Lun, O.K.; Wai, T.B.; Ling, L.S. Pineapple cannery waste as a potential substrate for microbial biotranformation to produce vanillic acid and vanillin. Int. Food Res. J. 2014, 21, 953–958. [Google Scholar]
- Solieri, L.; Giudici, P. (Eds.) Vinegars of the world. In Vinegars of the World; Springer: Milan, Italy, 2009. [Google Scholar]
- Roda, A.; Lucini, L.; Torchio, F.; Dordoni, R.; De Faveri, D.M.; Lambri, M. Metabolite profiling and volatiles of pineapple wine and vinegar obtained from pineapple waste. Food Chem. 2017, 229, 734–742. [Google Scholar] [CrossRef]
- Sharma, K.; Mahato, N.; Nile, S.H.; Lee, E.T.; Lee, Y.R. Economical and environmentally-friendly approaches for usage of onion (Allium cepa L.) waste. Food Funct. 2016, 7, 3354–3369. [Google Scholar] [CrossRef]
- Gallier, S.; Ye, A.; Singh, H. Structural changes of bovine milk fat globules during in vitro digestion. J. Dairy Sci. 2012, 95, 3579–3592. [Google Scholar] [CrossRef] [Green Version]
- Wine Vinegars—Determination of Total Dry Extract Content. Available online: https://www.oiv.int/public/medias/2702/oeno-57-2000.pdf (accessed on 11 May 2021).
- AOAC International. Acidity (Titratable) of Fruit Products, Titratable Acidity; AOAC Official Method 942.15; AOAC International: Rockville, MD, USA, 1990. [Google Scholar]
- Ghinea, C.; Apostol, L.C.; Prisacaru, A.E.; Leahu, A. Development of a model for food waste composting. Environ. Sci. Pollut. Res. 2019, 26, 4056–4069. [Google Scholar] [CrossRef]
- López, F.; Pescador, P.; Güell, C.; Morales, M.L.; García-Parrilla, M.C.; Troncoso, A.M. Industrial vinegar clarification by cross-flow microfiltration: Effect on colour and polyphenol content. J. Food Eng. 2005, 68, 133–136. [Google Scholar] [CrossRef]
- Walter, P. Determination of organic acids in food by means of ion exclusive chromatography. Mitt. Lebensm. Hyg. 2005, 96, 476–483. [Google Scholar]
- Montgomery, R.; Conway, T.W.; Spector, A.A.; Chappell, D. Nutrition. In Biochemistry: A Case-Oriented Approach, 6th ed.; Mosby-Year Book Inc.: St. Louis, MO, USA, 1996; p. 120. [Google Scholar]
- Codex Alimentarius Commission. Proposed Draft Revised Regional Standards for Vinegar. 2014. Available online: http://193.43.36.92/codex/Meetings/CCEURO/cceuro22/CLOO_18e.pdf (accessed on 20 February 2020).
- Lopa, R.A.S.; Lima, J.F.C.; Pérez-Olmas, R.; Ruiz, M.P. Simultaneous automatic potentiometric determination of acidity, chloride and fluoride in vinegar. Food Control 1995, 6, 155–159. [Google Scholar] [CrossRef]
- Sáiz-Abajo, M.-J.; Gonzales-Sáiz, J.M.; Pizarro, C. Classification of wine and alcohol vinegar samples based on near-infrared spectroscopy. Feasibility study on the detection of adulterated vinegars samples. J. Agric. Food Chem. 2004, 52, 7711–7719. [Google Scholar] [CrossRef]
- Chalchisa, T.; Dereje, B. From waste to food: Utilization of pineapple peels for vinegar production. MOJ Food Process Technols 2021, 9, 1–5. [Google Scholar]
- Bayram, Y.; Ozkan, K.; Sagdic, O. Bioactivity, physicochemical and antimicrobial properties of vinegar made from persimmon (Diospyros kaki) peels. Sigma J. Eng. Nat. Sci. 2020, 38, 1643–1652. [Google Scholar]
- Masino, F.; Chinnici, F.; Bendini, A.; Montevecchi, G.; Antonelli, A. A study on relationships among chemical, physical, and qualitative assessment in traditional balsamic vinegar. Food Chem. 2008, 106, 90–95. [Google Scholar] [CrossRef]
- Lalou, S.; Hatzidimitriou, E.; Papadopoulou, M.; Kontogianni, V.G.; Tsiafoulis, C.G.; Gerothanassis, I.P.; Tsimidou, M.Z. Beyond traditional balsamic vinegar: Compositional and sensorial characteristics of industrial balsamic vinegars and regulatory requirements. J. Food Compos. Anal. 2015, 43, 175–184. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.A.; Park, G.G.; Jang, J.K.; Park, Y.S. Semi-continuous fermentation of onion vinegar and its functional properties. Molecules 2017, 22, 1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Na, H.S.; Choi, G.C.; Yang, S.I.; Lee, J.H.; Cho, J.Y.; Ma, S.J.; Kim, J.Y. Comparison of characteristics in commercial fermented vinegars made with different ingredients. Korean J. Food Preserv. 2013, 20, 482–487. [Google Scholar] [CrossRef]
- Appel, L.J. Nonpharmacologic therapies that reduce blood pressure: A fresh perspective. Clin. Cardiol. 1999, 22, 1–5. [Google Scholar] [CrossRef]
- Bakir, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Capanoglu, E. Fruit antioxidants during vinegar processing: Changes in content and in vitro bio-accessibility. Int. J. Mol. Sci. 2016, 17, 1658. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-O.; Kim, S.-M.; Kim, S.-M.; Kim, D.-Y.; Jo, D.; Yeo, S.-H.; Jeong, Y.-J.; Kwon, J.-H. Physicochemical properties of commercial fruit vinegars with different fermentation methods. J. Korean Soc. Food Sci. Nutr. 2013, 42, 736–742. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Chae, K.S.; Son, R.H.; Jung, J.; Im, Y.R.; Kwon, J.W. Quality characteristics and antioxidant activity of bokbunja (black raspberry) vinegars. Food Eng. Prog. 2012, 16, 340–346. [Google Scholar]
- Mo, H.W.; Jung, Y.H.; Jeong, J.S.; Choi, K.H.; Choi, S.W.; Park, C.S.; Choi, M.A.; Kim, M.L.; Kim, M.S. Quality characteristics of vinegar fermented using omija (Schizandra chinensis Baillon). J. Korean Soc. Food Sci. Nutr. 2013, 42, 441–449. [Google Scholar] [CrossRef]
- Ubeda, C.; Hidalgo, C.; Torija, M.J.; Mas, A.; Troncoso, A.M.; Morales, M.L. Evaluation of antioxidant activity and total phenols index in persimmon vinegars produced by different processes. LWT Food Sci. Technol. 2011, 44, 1591–1596. [Google Scholar] [CrossRef]
- Abid, H.; Ali, J.; Hussain, A.; Afridi, S.R. Production and quality evaluation of sea buckthorn (Hippophae rhamnoides L.) vinegar using Accetobacter acceti. Pak. J. Biochem. Mol. Biol. 2010, 43, 185–188. [Google Scholar]
Sample | Total Dry Extract (g/cm3) | Total Acidity (g/cm3) | Specific Gravity (g/cm3) | Total Soluble Solids (° Brix) | TPC (mg GAE/L) | I% |
---|---|---|---|---|---|---|
V1 | 2.11 e ± 0.111 | 1.08 d ± 0.036 | 0.9243 a ± 0.001 | 2.15 e ± 0.036 | 5.72 a ± 0.044 | 14.69 d ± 0.118 |
V2 | 5.43 c ± 0.085 | 2.18 c ± 0.036 | 0.8558 b ± 0.009 | 5.83 c ± 0.072 | 4.03 c ± 0.046 | 20.19 c ± 0.530 |
V3 | 4.23 d ± 0.056 | 0.91 e ± 0.089 | 0.8662 b ± 0.004 | 4.0 d ± 0.191 | 5.20 b ± 0.035 | 60.92 a ± 0.098 |
V4 | 12.66 b ± 0.082 | 3.57 b ± 0.056 | 0.8853 b ± 0.001 | 10.87 b ± 0.131 | 4.14 c ± 0.044 | 25.29 b ± 0.820 |
V5 | 26.43 a ± 0.182 | 4.72 a ± 0.056 | 0.9412 a ± 0.017 | 21.87 a ± 0.171 | 5.27 b ± 0.044 | 5.42 e ± 0.046 |
Means that do not share a letter are significantly different. | ||||||
V1g.d. | 1.454 e ± 0.019 | 0.3 d ± 0.026 | 0.9311 c ± 0.010 | 1.0 e ± 0.173 | 5.31 a ± 0.044 | 31.59 b ± 0.380 |
V2g.d. | 3.426 c ± 0.075 | 0.9 c ± 0.036 | 0.9654 b ± 0.008 | 3.9 c ± 0.098 | 2.5 d ± 0.035 | 25.63 c ± 0.161 |
V3g.d. | 2.81 d ± 0.089 | 0.36 d ± 0.044 | 0.9813 b ± 0.005 | 3.0 d ± 0.353 | 4.8 b ± 0.040 | 31.40 b ± 0.053 |
V4g.d. | 7.98 b ± 0.046 | 1.38 b ± 0.026 | 0.9756 b ± 0.007 | 7.0 b ± 0.265 | 2.91 c ± 0.040 | 13.92 d ± 0.911 |
V5g.d. | 17.088 a ± 0.487 | 1.74 a ± 0.056 | 1.0392 a ± 0.012 | 12.0 a ± 0.529 | 1.81 e ± 0.026 | 74.96 a ± 0.262 |
Means that do not share a letter are significantly different. | ||||||
V1i.d. | 1.228 e ± 0.084 | 0.26 c ± 0.053 | 0.9754 b,c ± 0.005 | 1.0 c ± 0.105 | 3.04 b ± 0.072 | 80.24 c ± 0.062 |
V2i.d. | 2.1 c ± 0.211 | 0.36 c ± 0.044 | 0.995 a, b ± 0.010 | 0.8 c ± 0.106 | 4.69 a ± 0.111 | 87.77 a ± 0.219 |
V3i.d. | 1.774 d ± 0.012 | 0.3 c ± 0.017 | 0.955 c ± 0.001 | 1.0 c ± 0.105 | 2.23 d ± 0.070 | 88.26 a ± 0.348 |
V4i.d. | 4.694 b ± 0.088 | 1.2 b ± 0.052 | 0.9595 c ± 0.009 | 3.0 b ± 0.176 | 2.17 d ± 0.108 | 92.94 a ± 0.250 |
V5i.d. | 8.826 a ± 0.011 | 1.62 a ± 0.085 | 1.007 a ± 0.010 | 6.0 a ± 0.361 | 2.77 c ± 0.035 | 86.36 b ± 0.070 |
Means that do not share a letter are significantly different. |
Mineral Substance | Sample | ||||
---|---|---|---|---|---|
V1 | V2 | V3 | V4 | V5 | |
Se | 2.82 e ± 0.026 | 2.54 d,e ± 0.030 | 2.89 e ± 0.017 | 0.07 e ± 0.010 | 0.14 d ± 0.017 |
Cr | 3.63 d,e ± 0.020 | 3.26 d,e ± 0.026 | 3.72 d,e ± 0.017 | 0.04 e ± 0.010 | 0.12 d ± 0.010 |
Cu | 3.01 d,e ± 0.062 | 2.79 d,e ± 0.125 | 3.11 e ± 0.108 | 0.05 e ± 0.009 | 0.33 d ± 0.035 |
Mg | 113.31 b ± 0.370 | 105.06 b ± 0.986 | 114.29 b ± 0.719 | 7.12 c ± 0.123 | 111.90 b ± 1.115 |
Co | 0.01 f ± 0.0002 | 0.02 e ± 0.010 | 0.01 f ± 0.005 | 0.00 e | 0.00 d |
Zn | 0.764 f ± 0.019 | 0.569 d,e ± 0.016 | 0.812 f ± 0.001 | 3.61 d ± 0.045 | 2.38 d ± 0.096 |
Na | 186.06 a ± 1.107 | 168.01 a ± 3.527 | 187.54 b ± 0.795 | 26.12 b ± 0.304 | 14.69 c ± 0.856 |
Ca | 12.02 c ± 0.288 | 11.89 c ± 0.296 | 12.34 c ± 0.735 | 104.21 a ± 0.593 | 148.94 a ± 8.756 |
Ni | 0.14 f ± 0.017 | 0.12 e ± 0.010 | 0.15 f ± 0.010 | 0.11 e ± 0.017 | 0.07 d ± 0.016 |
Mn | 4.01 d ± 0.187 | 3.78 d ± 0.178 | 4.36 d ± 0.161 | 0.09 e ± 0.018 | 0.11 d ± 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prisacaru, A.E.; Ghinea, C.; Apostol, L.C.; Ropciuc, S.; Ursachi, V.F. Physicochemical Characteristics of Vinegar from Banana Peels and Commercial Vinegars before and after In Vitro Digestion. Processes 2021, 9, 1193. https://doi.org/10.3390/pr9071193
Prisacaru AE, Ghinea C, Apostol LC, Ropciuc S, Ursachi VF. Physicochemical Characteristics of Vinegar from Banana Peels and Commercial Vinegars before and after In Vitro Digestion. Processes. 2021; 9(7):1193. https://doi.org/10.3390/pr9071193
Chicago/Turabian StylePrisacaru, Ancuța Elena, Cristina Ghinea, Laura Carmen Apostol, Sorina Ropciuc, and Vasile Florin Ursachi. 2021. "Physicochemical Characteristics of Vinegar from Banana Peels and Commercial Vinegars before and after In Vitro Digestion" Processes 9, no. 7: 1193. https://doi.org/10.3390/pr9071193
APA StylePrisacaru, A. E., Ghinea, C., Apostol, L. C., Ropciuc, S., & Ursachi, V. F. (2021). Physicochemical Characteristics of Vinegar from Banana Peels and Commercial Vinegars before and after In Vitro Digestion. Processes, 9(7), 1193. https://doi.org/10.3390/pr9071193