Bioelectricity Production from Blueberry Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of Single-Chamber Microbial Fuel Cells
2.2. Sampling and Bio-Electrochemical Analysis
2.3. Isolation of Electrogenic Microorganisms from the Anode Chamber
2.3.1. Isolation in Solid Media of Electrogenic Bacteria from the Anode Chamber
2.3.2. Molecular Identification of Yeast C. boidinii
2.4. Physico-Chemical Characterization of MFC
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mikulčić, H.; Wang, X.; Duić, N.; Dewil, R. Environmental problems arising from the sustainable development of energy, water and environment system. J. Environ. Manag. 2020, 259, 109666. [Google Scholar] [CrossRef] [PubMed]
- Obileke, K.; Onyeaka, H.; Meyer, E.L.; Nwokolo, N. Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochem. Commun. 2021, 125, 107003. [Google Scholar] [CrossRef]
- Shabani, M.; Younesi, H.; Pontié, M.; Rahimpour, A.; Rahimnejad, M.; Zinatizadeh, A.A. A critical review on recent proton exchange membranes applied in microbial fuel cells for renewable energy recovery. J. Clean. Prod. 2020, 264, 121446. [Google Scholar] [CrossRef]
- Yang, E.; Mohamed, H.O.; Park, S.-G.; Obaid, M.; Al-Qaradawi, S.Y.; Castaño, P.; Chon, K.; Chae, K.-J. A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies. Bioresour. Technol. 2021, 320, 124363. [Google Scholar] [CrossRef]
- Suryawan, I.W.K.; Septiariva, I.Y.; Sarwono, A. Energy Conversion of Industrial Wastewater on Microbial Fuel Cell (MFC)-Based with Biocatalysts and Pretreatments: A Review. Indones. J. Environ. Manag. Sustain. 2020, 4, 102–109. [Google Scholar]
- Deng, Y.; Li, Z.; Tang, R.; Ouyang, K.; Liao, C.; Fang, Y.; Gong, D. What will happen when microorganisms “meet” photocatalysts and photocatalysis? Environ. Sci. Nano 2020, 7, 702–723. [Google Scholar] [CrossRef]
- Klavins, L.; Maaga, I.; Bertins, M.; Hykkerud, A.L.; Karppinen, K.; Bobinas, Č.; Klavins, M. Trace Element Concentration and Stable Isotope Ratio Analysis in Blueberries and Bilberries: A Tool for Quality and Authenticity Control. Foods 2021, 10, 567. [Google Scholar] [CrossRef]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2019, 11, 224–236. [Google Scholar] [CrossRef] [PubMed]
- MINAGRI. Exportaciones de Arándanos Llegaron a los US$ 589 Millones el año Pasado. 2012. Available online: https://www.gob.pe/institucion/midagri/noticias/24651-minagri-exportaciones-de-arandanos-llegaron-a-los-us-589-millones-el-ano-pasado (accessed on 15 January 2019).
- Moqsud, M.A. Bioelectricity from Organic Solid Waste. In Strategies of Sustainable Solid Waste Management; IntechOpen: London, UK, 2021; p. 129. [Google Scholar]
- Elviliana; Toding, O.S.L.; Virginia, C.; Suhartini, S. Conversion banana and orange peel waste into electricity using microbial fuel cell. IOP Conf. Series Earth Environ. Sci. 2018, 209, 012049. [Google Scholar] [CrossRef]
- Manjrekar, Y.; Kakkar, S.; Durve-Gupta, A. Bio-Electricity Generation Using Kitchen Waste and Molasses Powered MFC. IJSRSET 2018, 5, 181–187. [Google Scholar]
- Kondaveeti, S.; Mohanakrishna, G.; Kumar, A.; Lai, C.; Lee, J.-K.; Kalia, V.C. Exploitation of Citrus Peel Extract as a Feedstock for Power Generation in Microbial Fuel Cell (MFC). Indian J. Microbiol. 2019, 59, 476–481. [Google Scholar] [CrossRef]
- Frattini, D.; Accardo, G.; Ferone, C.; Cioffi, R. Fabrication and characterization of graphitecement composites for microbial fuel cells applications. Mater. Res. Bull. 2017, 88, 188–199. [Google Scholar] [CrossRef]
- Din, M.I.; Iqbal, M.; Hussain, Z.; Khalid, R. Bioelectricity generation from waste potatoes using single chambered microbial fuel cell. Energy Sources Part A Recover. Util. Environ. Eff. 2020, 1–11. [Google Scholar] [CrossRef]
- Reque, P.M.; Steffens, R.S.; Silva, A.; Jablonski, A.; Flôres, S.H.; Rios, A.D.O.; De Jong, E.V. Characterization of blueberry fruits (Vaccinium spp.) and derived products. Food Sci. Technol. 2014, 34, 773–779. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Zhou, S.-G.; Zhuang, L.; Zhang, J.-T.; Ni, J.-R. Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem. Eng. J. 2009, 43, 246–251. [Google Scholar] [CrossRef]
- Gustincich, S.; Manfioletti, G.; Del Sal, G.; Schneider, C.; Carninci, P. A fast method for high-quality genomic DNA extraction from whole human blood. Biotechnology 1991, 11, 298–300. [Google Scholar]
- Wahyuningsih, R.; Freisleben, H.-J.; Sonntag, H.-G.; Schnitzler, P. Simple and Rapid Detection of Candida albicans DNA in Serum by PCR for Diagnosis of Invasive Candidiasis. J. Clin. Microbiol. 2000, 38, 3016–3021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamau, J.M.; Mbui, D.N.; Mwaniki, J.M.; Mwaura, F.B.; Kamau, G.N. Microbial fuel cells: Influence of external resistors on power, current and power density. J. Thermodyn Catal. 2017, 8, 1–5. [Google Scholar]
- Harshitha, G.; Sahoo, A.; Sethy, R. Bioelectricity generation from different biomass feed at anode chamber and to study process parameters in microbial fuel cells. Biocatal. Agric. Biotechnol. 2019, 20, 101191. [Google Scholar] [CrossRef]
- Hassan, S.H.; Zohri, A.E.N.A.; Kassim, R.M. Electricity generation from sugarcane molasses using microbial fuel cell technologies. Energy 2019, 178, 538–543. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Mohamad Ibrahim, M.N.; Umar, K.; Bhawani, S.A.; Khan, A.; Asiri, A.M.; AlAmmari, A.M. Cellulose Derived Graphene/Polyaniline Nanocomposite Anode for Energy Generation and Bioremediation of Toxic Metals via Benthic Microbial Fuel Cells. Polymers 2021, 13, 135. [Google Scholar] [CrossRef]
- Rojas-Flores, S.; Noriega, M.D.L.C.; Benites, S.M.; Gonzales, G.A.; Salinas, A.S.; Palacios, F.S. Generation of bioelectricity from fruit waste. Energy Rep. 2020, 6, 37–42. [Google Scholar] [CrossRef]
- Abbas, S.Z.; Rafatullah, M.; Ismail, N.; Shakoori, F.R. Electrochemistry and microbiology of microbial fuel cells treating marine sediments polluted with heavy metals. RSC Adv. 2018, 8, 18800–18813. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Tian, Y.; Zuo, W.; Zhang, J.; Pan, X.; Li, L.; Su, X. Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell. Bioresour. Technol. 2016, 205, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Leon-Fernandez, L.F.; Rodrigo, M.A.; Villaseñor, J.; Fernandez-Morales, F. Bio-electrocatalytic dechlorination of 2,4-dichlorophenol. Effect of pH and operational configuration. Electrochim. Acta 2021, 367, 137456. [Google Scholar] [CrossRef]
- Ou, S.; Kashima, H.; Aaron, D.S.; Regan, J.M.; Mench, M.M. Full cell simulation and the evaluation of the buffer system on air-cathode microbial fuel cell. J. Power Source 2017, 347, 159–169. [Google Scholar] [CrossRef]
- Michie, I.S.; Dinsdale, R.M.; Guwy, A.J.; Premier, G.C. Electrogenic Biofilm Development Determines Charge Accumulation and Resistance to pH Perturbation. Energies 2020, 13, 3521. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, V.; Gude, V.G.; Malyan, S.K.; Pugazhendhi, A. Alkalinity and salinity favor bioelectricity generation potential of Clostridium, Tetrathiobacter and Desulfovibrio consortium in Microbial Fuel Cells (MFC) treating sulfate-laden wastewater. Bioresour. Technol. 2020, 306, 123110. [Google Scholar] [CrossRef]
- Vrhovsek, U.; Masuero, D.; Palmieri, L.; Mattivi, F. Identification and quantification of flavonol glycosides in cultivated blueberry cultivars. J. Food Compos. Anal. 2012, 25, 9–16. [Google Scholar] [CrossRef]
- Feldaman, H. Yeast Metabolism. Yeast 2012, 25–58. [Google Scholar] [CrossRef]
- Kebaili, H.; Kameche, M.; Innocent, C.; Ziane, F.; Sabeur, S.A.; Sahraoui, T.; Ouis, M.; Zerrouki, A.; Charef, M. Treatment of fruit waste leachate using microbial fuel cell: Preservation of agricultural environment. Acta Ecol. Sin. 2020, 41, 97–105. [Google Scholar] [CrossRef]
- Kalagbor Ihesinachi, A.; Akpotayire Stephen, I. Electricity Generation from Waste Tropical Fruits-Watermelon (Citrullus lanatus) and Paw-paw (Carica papaya) using Single Chamber Microbial Fuel Cells. IJEIC 2020. [Google Scholar] [CrossRef]
- Borenstein, E.; Kupiec, M.; Feldman, M.W.; Ruppin, E. Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc. Natl. Acad. Sci. USA 2008, 105, 14482–14487. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, F.; Ludovico, P.; Leão, C. Sugar Metabolism in Yeasts: An Overview of Aerobic and Anaerobic Glucose Catabolism. Biodivers. Ecophysiol. Yeasts 2006, 101–121. [Google Scholar] [CrossRef] [Green Version]
- Del Pozo, J.L.; Cantón, E. Candidiasis asociada a biopelículas. Rev. Iberoam. Micol. 2016, 33, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Estela, L.; Rivera, C.; Ramos, A.; Del Carmen, M.; Desgarennes, P.; Laura, D.; Castrillón, E. Biopelículas fúngicas. Dermatol. Rev. Mex. 2013, 57, 350–361. [Google Scholar]
- Castrillón Rivera, L.E.; Palma Ramos, A.; Padilla Desgarennes, M.D.C. Biopelículas fúngicas. Dermatología 2013, 57, 350–361. [Google Scholar]
- Merino Guzmán, G.; Cedillo Ramírez, L.; Silva Andrade, F.; Muñoz García, A.A.; Castañeda Roldán, E.I. Análisis morfológico de biopelículas de Candida albicans producidas en diferentes condiciones de pH y temperatura analizadas por microscopía óptica y de fuerza atómica. Rev. Mex. Micol. 2011, 33, 1–8. [Google Scholar]
- Schlenzig, A. Identification of Phytophthora fragariae var. rubi by PCR. Methods Mol. Biol. 2009, 508, 161–169. [Google Scholar] [CrossRef]
- Camiolo, S.; Porru, C.; Benítez-Cabello, A.; Rodriguez-Gomez, F.; Calero-Delgado, B.; Porceddu, A.; Budroni, M.; Mannazzu, I.; Jiménez-Díaz, R.; Arroyo-López, F.N. Genome overview of eight Candida boidinii strains isolated from human activities and wild environments. Stand. Genom. Sci. 2017, 12, 70. [Google Scholar] [CrossRef] [Green Version]
- Oda, S.; Yurimoto, H.; Nitta, N.; Sasano, Y.; Sakai, Y. Molecular Characterization of Hap Complex Components Responsible for Methanol-Inducible Gene Expression in the Methylotrophic Yeast Candida boidinii. Eukaryot. Cell 2015, 14, 278–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, T.; Miyaji, T.; Yurimoto, H.; Sakai, Y.; Kato, N.; Tomizuka, N. A Methylotrophic Pathway Participates in Pectin Utilization by Candida boidinii. Appl. Environ. Microbiol. 2000, 66, 4253–4257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voragen, A.G.J.; Coenen, G.-J.; Verhoef, R.P.; Schols, H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 2009, 20, 263–275. [Google Scholar] [CrossRef] [Green Version]
BLAST Characterization | Length of Consensus Sequence (nt) | % Range | % Maximum Identity | Accession Number | Phylogeny |
---|---|---|---|---|---|
Candida boidinii | 713 | 96% | 99.86% | KY101980.1 | Celular organism; Eukaryota; Opisthokonta; Fungi; Dikarya; Ascomy cota; Saccharomyceta; S accharomycotina; Sacch aromycetes; Saccharom ycetales; Pichiaceae; Og ataea; Ogataea/Candida clade |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas-Flores, S.; Benites, S.M.; De La Cruz-Noriega, M.; Cabanillas-Chirinos, L.; Valdiviezo-Dominguez, F.; Quezada Álvarez, M.A.; Vega-Ybañez, V.; Angelats-Silva, L. Bioelectricity Production from Blueberry Waste. Processes 2021, 9, 1301. https://doi.org/10.3390/pr9081301
Rojas-Flores S, Benites SM, De La Cruz-Noriega M, Cabanillas-Chirinos L, Valdiviezo-Dominguez F, Quezada Álvarez MA, Vega-Ybañez V, Angelats-Silva L. Bioelectricity Production from Blueberry Waste. Processes. 2021; 9(8):1301. https://doi.org/10.3390/pr9081301
Chicago/Turabian StyleRojas-Flores, Segundo, Santiago M. Benites, Magaly De La Cruz-Noriega, Luis Cabanillas-Chirinos, Fiorela Valdiviezo-Dominguez, Medardo A. Quezada Álvarez, Victor Vega-Ybañez, and Luis Angelats-Silva. 2021. "Bioelectricity Production from Blueberry Waste" Processes 9, no. 8: 1301. https://doi.org/10.3390/pr9081301