Application of Anammox-Based Processes in Urban WWTPs: Are We on the Right Track?
Abstract
:1. Introduction
2. Implications of Thermal Pre-Hydrolysis Units at the Sludge Line
- A direct effect: The increase of the inlet ammonium concentration increases the risk of inhibition of AOB and anammox bacteria by both free ammonia (NH3) and free nitrous acid (HNO2). To guarantee operational safety conditions, full-scale PN/A units are generally operated at inlet ammonium concentrations of around 1000 mg N-NH4+/L. To achieve this, a 1:1 dilution is usually applied to the effluents from anaerobic digesters fed with thermally hydrolyzed sludge [10,23,25]. This operational strategy has the disadvantage of having to heat the water used for dilution in order to maintain a temperature of around 30 °C and avoid a decrease in biomass activity that would hinder the ammonium removal [26].
- An indirect effect: The increase in ammonium concentration also affects the performance of the AD process due to the inhibitory effect of the former on methanogenic (acetoclastic) bacteria, which leads to an increase in the concentration of biodegradable organic matter in the effluent [27]. Moreover, anaerobic digesters fed with prehydrolyzed sludge are generally operated at lower solid retention times (SRT) than those fed with raw sludge, thus promoting the presence of biodegradable organic matter in their effluent (Figure 1, calculations details are provided in the Supplementary Section). The literature shows that the concentration of volatile fatty acids (VFAs) in the sludge of anaerobic digesters increases when the sludge is thermally pretreated [28]. Therefore, the implementation of THP units in the sludge line leads to an increase of the CODbiodegradable/N ratio up to values around 1.2 g/g, or even higher, when the anaerobic digesters become unstable [10,11]. These values exceed the limit of 0.5 g/g recommended for the operation of single-stage PN/A systems under stable conditions [29]. This high concentration of organic matter would affect both AOB and anammox bacteria activities [11,30].
3. Application of Anammox-Based Processes in the Mainstream
3.1. Divert More Nitrogen to the Sludge Line for Its Removal by the PN/A Processes
3.2. Carry out PN in the Sludge Line and Anammox Process in the Water Line
3.3. Bioaugmentation of AOB from the Sludge Line
4. Interactions between AOB and Anammox Bacteria and Others: Are They Useful for Obtaining the Desired Effluent Quality?
5. Conclusions
- The CODbiodegradable/N ratio at the inlet of single-stage nitrogen removal systems treating THP/AD effluents should be maintained below 0.5 to avoid losing operational stability. For this purpose, applying an anerobic pretreatment seems to be a viable option from an economic perspective.
- When single-stage nitrogen removal systems are applied under mainstream conditions, maintaining the stability of the nitritation process requires complex control strategies and adequate effluent quality is not guaranteed. In this sense, promoting the growth of AOB in the sludge line by supplying extra sludge to the anaerobic digesters in order to carry out their bioaugmentation in the mainstream and subsequently applying the anammox process could be a feasible strategy for achieving autotrophic nitrogen removal from urban wastewater.
- Combining PN/A with other biological processes can be used to adjust excess nitrate to meet discharge requirements. However, the more processes taking place simultaneously, the more difficult it will be to balance them. A simple way to remove excess nitrate would be to partially recirculate the WWTP effluent to the unit where organic matter is removed and promote heterotrophic denitrification by implementing an anoxic chamber.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gu, Y.; Li, Y.; Li, X.; Luo, P.; Wang, H.; Robinson, Z.P.; Wang, X.; Wu, J.; Li, F. The feasibility and challenges of energy self-sufficient wastewater treatment plants. Appl. Energy 2017, 204, 1463–1475. [Google Scholar] [CrossRef] [Green Version]
- Sancho, I.; Lopez-Palau, S.; Arespacochaga, N.; Cortina, J.L. New concepts on carbon redirection in wastewater treatment plants: A review. Sci. Total. Environ. 2019, 647, 1373–1384. [Google Scholar] [CrossRef] [PubMed]
- Taboada-Santos, A.; Rivadulla, E.; Paredes, L.; Carballa, M.; Romalde, J.; Lema, J.M. Comprehensive comparison of chemically enhanced primary treatment and high-rate activated sludge in novel wastewater treatment plant configurations. Water Res. 2020, 169, 115258. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Lu, D.; Phua, K.; Yan, W.; Le, C.; Tao, G.; Zhou, Y. Organics transformation and energy production potential in a high rate A-stage system: A demo-scale study. Bioresour. Technol. 2020, 295, 122300. [Google Scholar] [CrossRef]
- Carrera, J.; Vicent, T.; Lafuente, J. Effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater. Process Biochem. 2004, 39, 2035–2041. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Ji, B.; Liu, Y. Towards mainstream deammonification of municipal wastewater: Partial nitrification-anammox versus partial denitrification-anammox. Sci. Total. Environ. 2019, 692, 393–401. [Google Scholar] [CrossRef]
- Siegrist, H.; Salzgeber, D.; Eugster, J.; Joss, A. Anammox brings WWTP closer to energy autarky due to increased biogas production and reduced aeration energy for N-removal. Water Sci. Technol. 2008, 57, 383–388. [Google Scholar] [CrossRef]
- Nsenga Kumwimba, M.; Lotti, T.; Şenel, E.; Li, X.; Suanon, F. Anammox-based processes: How far have we come and what work remains? A review by bibliometric analysis. Chemosphere 2020, 238, 124627. [Google Scholar] [CrossRef] [PubMed]
- Izadi, P.; Izadi, P.; Eldyasti, A. Towards mainstream deammonification: Comprehensive review on potential mainstream applications and developed sidestream technologies. J. Environ. Manag. 2021, 279, 111615. [Google Scholar] [CrossRef]
- Zhang, Q.; De Clippeleir, H.; Su, C.; Al-Omari, A.; Wett, B.; Vlaeminck, S.E.; Murthy, S. Deammonification for digester supernatant pretreated with thermal hydrolysis: Overcoming inhibition through process optimization. Appl. Microbiol. Biotechnol. 2016, 100, 5595–5606. [Google Scholar] [CrossRef]
- Zhang, Q.; Vlaeminck, S.E.; DeBarbadillo, C.; Su, C.; Al-Omari, A.; Wett, B.; Pümpel, T.; Shaw, A.; Chandran, K.; Murthy, S.; et al. Supernatant organics from anaerobic digestion after thermal hydrolysis cause direct and/or diffusional activity loss for nitritation and anammox. Water Res. 2018, 143, 270–281. [Google Scholar] [CrossRef]
- Ochs, P.; Martin, B.D.; Germain, E.; Stephenson, T.; van Loosdrecht, M.; Soares, A. Ammonia removal from thermal hydrolysis dewatering liquors via three different deammonification technologies. Sci. Total. Environ. 2021, 755, 142684. [Google Scholar] [CrossRef]
- Li, X.; Klaus, S.; Bott, C.; He, Z. Status, Challenges, and Perspectives of Mainstream Nitritation–Anammox for Wastewater Treatment. Water Environ. Res. 2018, 90, 634–649. [Google Scholar] [CrossRef]
- Ma, W.-J.; Li, G.-F.; Huang, B.-C.; Jin, R.-C. Advances and challenges of mainstream nitrogen removal from municipal wastewater with anammox-based processes. Water Environ. Res. 2020, 92, 1899–1909. [Google Scholar] [CrossRef]
- Qiu, S.; Li, Z.; Hu, Y.; Shi, L.; Liu, R.; Shi, L.; Chen, L.; Zhan, X. What’s the best way to achieve successful mainstream partial nitritation-anammox application? Crit. Rev. Environ. Sci. Technol. 2020, 51, 1045–1077. [Google Scholar] [CrossRef]
- Agrawal, S.; Seuntjens, D.; Cocker, P.D.; Lackner, S.; Vlaeminck, S.E. Success of mainstream partial nitritation/anammox demands integration of engineering, microbiome and modeling insights. Curr. Opin. Biotechnol. 2018, 50, 214–221. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, T.; Gu, M.; Chen, Z.; Yin, Q. Review of characteristics of anammox bacteria and strategies for anammox start-up for sustainable wastewater resource management. Water Sci. Technol. 2020, 82, 1742–1757. [Google Scholar] [CrossRef]
- Cao, Y.; Kwok, B.H.; van Loosdrecht, M.C.M.; Daigger, G.; Png, H.Y.; Long, W.Y.; Eng, O.K. The influence of dissolved oxygen on partial nitritation/anammox performance and microbial community of the 200,000 m3/d activated sludge process at the Changi water reclamation plant (2011 to 2016). Water Sci. Technol. 2018, 78, 634–643. [Google Scholar] [CrossRef] [Green Version]
- Lackner, S.; Gilbert, E.M.; Vlaeminck, S.E.; Joss, A.; Horn, H.; van Loosdrecht, M.C.M. Full-scale partial nitritation/anammox experiences—An application survey. Water Res. 2014, 55, 292–303. [Google Scholar] [CrossRef]
- Morales, N.; Val del Río, Á.; Vázquez-Padín, J.R.; Méndez, R.; Mosquera-Corral, A.; Campos, J.L. Integration of the Anammox process to the rejection water and main stream lines of WWTPs. Chemosphere 2015, 140, 99–105. [Google Scholar] [CrossRef]
- Barber, W.P.F. Thermal hydrolysis for sewage treatment: A critical review. Water Res. 2016, 104, 53–71. [Google Scholar] [CrossRef]
- Cano, R.; Pérez-Elvira, S.I.; Fdz-Polanco, F. Energy feasibility study of sludge pretreatments: A review. Appl. Energy 2015, 149, 176–185. [Google Scholar] [CrossRef]
- Figdore, B.A.; Wett, B.; Hell, M.; Murthy, S. Deammonification of Dewatering Sidestream from Thermal Hydrolysis-Mesophilic Anaerobic Digestion Process. Proc. Water Environ. Fed. 2011, 1, 1037–1052. [Google Scholar] [CrossRef] [Green Version]
- Figdore, B.; Bowden, G.; Stinson, B.; Wett, B.; Hell, M.; Bailey, W.; Carr, J.; Der Minassian, R.; Murthy, S. Treatment of Dewatering Sidestream from a Thermal Hydrolysis-Mesophilic Anaerobic Digestion Process with a Single-Sludge Deammonification Process. Proc. Water Environ. Fed. 2011, 2011, 249–264. [Google Scholar] [CrossRef]
- Lemaire, R.; Veuillet, F.; Bausseron, A.; Chastrusse, S.; Monnier, R.; Christensson, M.; Zhao, H.W.; Thomson, C.; Ochoa, J. ANITAMox deammonification process for COD-rich and THP reject water. Proc. Water Environ. Fed. 2015, 16, 3266–3279. [Google Scholar] [CrossRef]
- Driessen, W.; Van Veldhoven, J.T.A.; Janssen, M.P.M.; Van Loosdrecht, M.C.M. Treatment of sidestream dewatering liquors from thermally hydrolised and anaerobically digested biosolids. Water Pract. Technol. 2020, 15, 142–150. [Google Scholar] [CrossRef]
- Jiang, Y.; McAdam, E.; Zhang, Y.; Heaven, S.; Banks, C.; Longhurst, P. Ammonia inhibition and toxicity in anaerobic digestion: A critical review. J. Water Process. Eng. 2019, 32, 100899. [Google Scholar] [CrossRef]
- Wilson, C.A.; Tanneru, C.T.; Banjade, S.; Murthy, S.N.; Novak, J.T. Anaerobic Digestion of Raw and Thermally Hydrolyzed Wastewater Solids Under Various Operational Conditions. Water Environ. Res. 2011, 83, 815–825. [Google Scholar] [CrossRef]
- Giustinianovich, E.A.; Campos, J.-L.; Roeckel, M.D. The presence of organic matter during autotrophic nitrogen removal: Problem or opportunity? Sep. Purif. Technol. 2016, 166, 102–108. [Google Scholar] [CrossRef]
- Gu, Z.; Li, Y.; Yang, Y.; Xia, S.; Hermanowicz, S.W.; Alvarez-Cohen, L. Inhibition of anammox by sludge thermal hydrolysis and metagenomic insights. Bioresour. Technol. 2018, 270, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, G.; Dai, X. Operation of pilot-scale nitrification-anammox reactors for the treatment of reject-water produced from the anaerobic digestion of thermal hydrolysis-treated sludge. Bioresour. Technol. 2020, 314, 123717. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, Y.; Li, T.; Wang, G.; Dai, X. Two-step partial nitrification-anammox process for treating thermal-hydrolysis anaerobic digester effluent: Start-up and microbial characterisation. J. Clean. Prod. 2020, 252, 119784. [Google Scholar] [CrossRef]
- Yan, M.; Treu, L.; Campanaro, S.; Tiana, H.; Zhu, X.; Khoshnevisan, B.; Tsapekos, P.; Angelidaki, I.; Fotidis, J.A. Effect of ammonia on anaerobic digestion of municipal solid waste: Inhibitory performance, bioaugmentation and microbiome functional reconstruction. Chem. Eng. J. 2020, 401, 126159. [Google Scholar] [CrossRef]
- Molaey, R.; Bayrakdar, A.; Sürmeli, R.O.; Çalli, B. Anaerobic digestion of chicken manure: Mitigating process inhibition at high ammonia concentrations by selenium supplementation. Biomass Bioenergy 2018, 108, 439–446. [Google Scholar] [CrossRef]
- Mahdy, A.; Bi, S.; Song, Y.; Qiao, W.; Dong, R. Overcome inhibition of anaerobic digestion of chicken manure under ammonia-stressed condition by lowering the organic loading rate. Bioresour. Technol. Rep. 2020, 9, 100359. [Google Scholar] [CrossRef]
- Wett, B.; Omari, A.; Podmirseg, S.M.; Han, M.; Akintayo, O.; Gómez Brandón, M.; Murthy, S.; Bott, C.; Hell, M.; Takács, I.; et al. Going for mainstream deammonification from bench to full scale for maximized resource efficiency. Water Sci. Technol. 2013, 68, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Morales, N.; Val del Río, Á.; Vázquez-Padín, J.R.; Méndez, R.; Campos, J.L.; Mosquera-Corral, A. The granular biomass properties and the acclimation period affect the partial nitritation/anammox process stability at a low temperature and ammonium concentration. Process Biochem. 2016, 51, 2134–2142. [Google Scholar] [CrossRef]
- Val del Rio, A.; Campos, J.L.; Da Silva, C.; Pedrouso, A.; Mosquera-Corral, A. Determination of the intrinsic kinetic parameters of ammonia-oxidizing and nitrite-oxidizing bacteria in granular and flocculent sludge. Sep. Purif. Technol. 2019, 213, 571–577. [Google Scholar] [CrossRef]
- Regmi, P.; Miller, M.W.; Holgate, B.; Bunce, R.; Park, H.; Chandran, K.; Wett, B.; Murthy, S.; Bott, C.B. Control of aeration, aerobic SRT and COD input for mainstream nitritation/denitritation. Water Res. 2014, 57, 162–171. [Google Scholar] [CrossRef]
- Wett, B.; Podmirseg, S.M.; Gómez-Brandón, M.; Hell, M.; Nyhuis, G.; Bott, C.; Murthy, S. Expanding DEMON Sidestream Deammonification Technology Towards Mainstream Application. Water Environ. Res. 2015, 87, 2084–2089. [Google Scholar] [CrossRef] [PubMed]
- Laureni, M.; Falås, P.; Robin, O.; Wick, A.; Weissbrodt, D.G.; Nielsen, J.L.; Ternes, T.A.; Morgenroth, E.; Joss, A. Mainstream partial nitritation and anammox: Long-term process stability and effluent quality at low temperatures. Water Res. 2016, 101, 628–639. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Wang, L.; Chen, Z.; Yang, M.; Yu, Z.; Ge, S. An integrated mainstream and sidestream strategy for overcoming nitrite oxidizing bacteria adaptation in a continuous plug-flow nutrient removal process. Bioresour. Technol. 2021, 319, 124133. [Google Scholar] [CrossRef]
- Pedrouso, A.; Val del Río, Á.; Morales, N.; Vázquez-Padín, J.R.; Campos, J.L.; Méndez, R.; Mosquera-Corral, A. Nitrite oxidizing bacteria suppression based on in-situ free nitrous acid production at mainstream conditions. Sep. Purif. Technol. 2017, 186, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhao, Z.; Liu, H.; Ma, Y.; An, F.; Huang, J.; Shao, Z. Achieving stable two-stage mainstream partial-nitrification/anammox (PN/A) operation via intermittent aeration. Chemosphere 2020, 245, 125650. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Qian, W.; Yuan, C.; Yuan, Z.; Peng, Y. Achieving Mainstream Nitrogen Removal through Coupling Anammox with Denitratation. Environ. Sci. Technol. 2017, 51, 8405–8413. [Google Scholar] [CrossRef]
- Cao, S.; Oehmen, A.; Zhou, Y. Denitrifiers in Mainstream Anammox Processes: Competitors or Supporters? Environ. Sci. Technol. 2019, 53, 11063–11065. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Xu, X.; Wei, Y.; Ge, C.; Peng, Y. Recent advances in controlling denitritation for achieving denitratation/anammox in mainstream wastewater treatment plants. Bioresour. Technol. 2020, 299, 122697. [Google Scholar] [CrossRef] [PubMed]
- Robles, Á.; Aguado, D.; Barat, R.; Borrás, L.; Bouzas, A.; Giménez, J.B.; Martí, N.; Ribes, J.; Ruano, M.V.; Serralta, J.; et al. New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy. Bioresour. Technol. 2020, 300, 122673. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y. Circular economy-driven ammonium recovery from municipal wastewater: State of the art, challenges and solutions forward. Bioresour. Technol. 2021, 334, 125231. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Xie, M.; Shon, H.K.; Gray, S.R.; Elimelech, M. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. Water Res. 2016, 89, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Mohsenpour, S.F.; Hennige, S.; Willoughby, N.; Adeloye, A.; Gutierrez, T. Integrating micro-algae into wastewater treatment: A review. Sci. Total. Environ. 2021, 752, 142168. [Google Scholar] [CrossRef]
- Winkler, M.K.H.; Straka, L. New directions in biological nitrogen removal and recovery from wastewater. Curr. Opin. Biotechnol. 2019, 57, 50–55. [Google Scholar] [CrossRef]
- Moñino, P.; Jiménez, E.; Barat, R.; Aguado, D.; Seco, A.; Ferrer, J. Potential use of the organic fraction of municipal solid waste in anaerobic co-digestion with wastewater in submerged anaerobic membrane technology. Waste Manag. 2016, 56, 158–165. [Google Scholar] [CrossRef]
- Verstraete, W.; Vlaeminck, S.E. ZeroWasteWater: Short-cycling of wastewater resources for sustainable cities of the future. Int. J. Sustain. Dev. World Ecol. 2011, 18, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yang, J.; Furukawa, K. Stable and high-rate nitrogen removal from reject water by partial nitrification and subsequent anammox. J. Biosci. Bioeng. 2010, 110, 441–448. [Google Scholar] [CrossRef] [PubMed]
- López-Palau, S.; Dosta, J.; Pericas, A.; Mata-Álvarez, J. Partial nitrification of sludge reject water using suspended and granular biomass. J. Chem. Technol. Biotechnol. 2011, 86, 1480–1487. [Google Scholar] [CrossRef]
- Hendrickx, T.L.G.; Wang, Y.; Kampman, C.; Zeeman, G.; Temmink, H.; Buisman, C.J.N. Autotrophic nitrogen removal from low strength waste water at low temperature. Water Res. 2012, 46, 2187–2193. [Google Scholar] [CrossRef]
- Juan-Díaz, X.; Pérez, J.; Carrera, J. Effective dampening of temperature effects in an anammox reactor treating real mainstream wastewater. J. Water Process Eng. 2021, 40, 101853. [Google Scholar] [CrossRef]
- Shi, Y.; Wells, G.; Morgenroth, E. Microbial activity balance in size fractionated suspended growth biomass from full-scale sidestream combined nitritation-anammox reactors. Bioresour. Technol. 2016, 218, 38–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trojanowicz, K.; Plaza, E.; Trela, J. Pilot scale studies on nitritation-anammox process for mainstream wastewater at low temperature. Water Sci. Technol. 2016, 73, 761–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotto, I.; Dai, Z.; Huo, L.; Anderson, C.L.; Vilardi, K.J.; Ijaz, U.; Khunjar, W.; Wilson, C.; De Clippeleir, H.; Gilmore, K.; et al. Long solids retention times and attached growth phase favor prevalence of comammox bacteria in nitrogen removal systems. Water Res. 2020, 169, 115268. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Xie, Y.; Van Beeck, W.; Zhu, W.; Van Tendeloo, M.; Tytgat, T.; Lebeer, S.; Vlaeminck, S.E. Return-Sludge Treatment with Endogenous Free Nitrous Acid Limits Nitrate Production and N2O Emission for Mainstream Partial Nitritation/Anammox. Environ. Sci. Technol. 2020, 54, 5822–5831. [Google Scholar] [CrossRef]
- Wang, Q.; Ye, L.; Jiang, G.; Hu, S.; Yuan, Z. Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway. Water Res. 2014, 55, 245–255. [Google Scholar] [CrossRef]
- Duan, H.; Ye, L.; Lu, X.; Yuan, Z. Overcoming Nitrite Oxidizing Bacteria Adaptation through Alternating Sludge Treatment with Free Nitrous Acid and Free Ammonia. Environ. Sci. Technol. 2019, 53, 1937–1946. [Google Scholar] [CrossRef]
- DHI. WEST Models Guide. [online] (n.d.) (WEST Models Guide). Available online: https://manuals.mikepoweredbydhi.help/latest/Cities/TornadoModels/index.htm (accessed on 7 April 2021).
- Duan, H.; Ye, L.; Wang, Q.; Zheng, M.; Lu, X.; Wang, Z.; Yuan, Z. Nitrite oxidizing bacteria (NOB) contained in influent deteriorate mainstream NOB suppression by sidestream inactivation. Water Res. 2019, 162, 331–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, B.; Peng, Y.; Zhang, S.; Wang, J.; Gan, Y.; Chang, J.; Wang, S.; Wang, S.; Zhu, G. Performance of anammox UASB reactor treating low strength wastewater under moderate and low temperatures. Bioresour. Technol. 2013, 129, 606–611. [Google Scholar] [CrossRef]
- Díaz, C.; Belmonte, M.; Campos, J.L.; Franchi, O.; Faúndez, M.; Vidal, G.; Argiz, L.; Pedrouso, A.; Val del Rio, A.; Mosquera-Corral, A. Limits of the anammox process in granular systems to remove nitrogen at low temperature and nitrogen concentration. Process Saf. Environ. Prot. 2020, 138, 349–355. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, H.; Wang, D.; Wang, W. Insight into the response of anammox granule rheological intensity and size evolution to decreasing temperature and influent substrate concentration. Water Res. 2019, 162, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Du, R.; Zhou, Y. Coupling anammox with heterotrophic denitrification for enhanced nitrogen removal: A review. Crit. Rev. Environ. Sci. Technol. 2020, 1–34. [Google Scholar] [CrossRef]
- Rios-Del Toro, E.E.; Cervantes, F.J. Coupling between anammox and autotrophic denitrification for simultaneous removal of ammonium and sulfide by enriched marine sediments. Biodegradation 2016, 27, 107–118. [Google Scholar] [CrossRef]
- Ren, Y.; Hao Ngo, H.; Guo, W.; Wang, D.; Peng, L.; Ni, B.-J.; Wei, W.; Liu, Y. New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems. Bioresour. Technol. 2020, 297, 122491. [Google Scholar] [CrossRef]
- Li, X.; Sun, Y.; Wang, Z.W.; He, Z. Theoretical understanding of the optimum conditions for a mainstream granular nitritation-anammox reactor coupled with anaerobic pretreatment. Sci. Total. Environ. 2019, 669, 683–691. [Google Scholar] [CrossRef]
- Kalyuzhnyi, S.; Gladchenko, M.; Mulder, A.; Versprille, B. DEAMOX—New biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Water Res. 2006, 40, 3637–3645. [Google Scholar] [CrossRef] [PubMed]
- You, Q.-G.; Wang, J.-H.; Qi, G.-X.; Zhou, Y.-M.; Guo, Z.-W.; Shen, Y.; Gao, X. Anammox and partial denitrification coupling: A review. RSC Adv. 2020, 10, 12554–12572. [Google Scholar] [CrossRef]
- Gani, K.M.; Awolusi, O.O.; Khan, A.A.; Kumari, S.; Bux, F. Potential strategies for the mainstream application of anammox in treatment of anaerobic effluents—A review. Crit. Rev. Environ. Sci. Technol. 2020, 1–28. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, X.; Li, B.-L. Autotrophic nitrogen removal characteristics of PN-anammox process enhanced by sulfur autotrophic denitrification under mainstream conditions. Bioresour. Technol. 2020, 316, 123926. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, J.; Peng, Y.; Wang, S.; Zhang, L.; Yang, S.; Li, S. Insight into the impacts of organics on anammox and their potential linking to system performance of sewage partial nitrification-anammox (PN/A): A critical review. Bioresour. Technol. 2020, 300, 122655. [Google Scholar] [CrossRef]
- Wang, B.; Gong, X.; Peng, Y. Simultaneous anammox-denitrification process and its emerging extensions. Chem. Eng. J. 2021, 415, 128380. [Google Scholar] [CrossRef]
- Pedrouso, A.; Val del Rio, A.; Morales, N.; Vazquez-Padin, J.R.; Campos, J.L.; Mosquera-Corral, A. Mainstream anammox reactor performance treating municipal wastewater and batch study of temperature, pH and organic matter concentration cross-effects. Process Saf. Environ. Prot. 2021, 145, 195–202. [Google Scholar] [CrossRef]
- Chen, C.; Sun, F.; Zhang, H.; Wang, J.; Shen, Y.; Liang, X. Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR). Bioresour. Technol. 2016, 216, 571–578. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedrouso, A.; Vázquez-Padín, J.R.; Crutchik, D.; Campos, J.L. Application of Anammox-Based Processes in Urban WWTPs: Are We on the Right Track? Processes 2021, 9, 1334. https://doi.org/10.3390/pr9081334
Pedrouso A, Vázquez-Padín JR, Crutchik D, Campos JL. Application of Anammox-Based Processes in Urban WWTPs: Are We on the Right Track? Processes. 2021; 9(8):1334. https://doi.org/10.3390/pr9081334
Chicago/Turabian StylePedrouso, Alba, José Ramón Vázquez-Padín, Dafne Crutchik, and José Luis Campos. 2021. "Application of Anammox-Based Processes in Urban WWTPs: Are We on the Right Track?" Processes 9, no. 8: 1334. https://doi.org/10.3390/pr9081334
APA StylePedrouso, A., Vázquez-Padín, J. R., Crutchik, D., & Campos, J. L. (2021). Application of Anammox-Based Processes in Urban WWTPs: Are We on the Right Track? Processes, 9(8), 1334. https://doi.org/10.3390/pr9081334