Pressure Fluctuation Reduction of a Centrifugal Pump by Blade Trailing Edge Modification
Abstract
:1. Introduction
2. Model and Numerical Methods
2.1. Pump Parameters
2.2. Computational Domain and Grid
2.3. CFD Method and Boundary Conditions
3. Results
3.1. Pressure Fluctuation and Euler Head Analysis
3.1.1. Introduction of Euler Head
3.1.2. Modifications
3.1.3. Pressure Fluctuation Analysis
3.1.4. Euler Head Distribution Analysis
3.1.5. Pressure and Local Velocity Analysis
3.2. Methodology and Validation of Pressure Fluctuation Suppression
3.2.1. Hydraulic Performances
3.2.2. Experimental Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gülich, J.F. Centrifugal Pumps, 2nd ed.; Springer: Berlin, Germany, 2010; pp. 110–116. [Google Scholar]
- Kaupert, K.A.; Staubli, T. The Unsteady Pressure Field in a High Specific Speed Centrifugal Pump Impeller—Part I: In-fluence of the Volute. J. Fluids Eng. 1999, 121, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Gonza’Lez, J.; Ferna’Ndez, J.N.; Blanco, E.; Santolaria, C. Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump. J. Fluids Eng. 2002, 124, 348–355. [Google Scholar] [CrossRef]
- Dong, R.; Chu, S.; Katz, J. Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump. J. Turbomach. 1997, 119, 506–515. [Google Scholar] [CrossRef] [Green Version]
- Yan, P.; Chu, N.; Wu, D.; Cao, L.; Yang, S.; Wu, P. Computational Fluid Dynamics-Based Pump Redesign to Improve Efficiency and Decrease Unsteady Radial Forces. J. Fluids Eng. 2016, 139, 011101. [Google Scholar] [CrossRef]
- Gao, Z.; Zhu, W.; Lu, L.; Deng, J.; Zhang, J.; Wuang, F. Numerical and Experimental Study of Unsteady Flow in a Large Centrifugal Pump With Stay Vanes. J. Fluids Eng. 2014, 136, 071101. [Google Scholar] [CrossRef]
- Majidi, K. Numerical Study of Unsteady Flow in a Centrifugal Pump. J. Turbomach. 2005, 127, 363–371. [Google Scholar] [CrossRef]
- Barrio, R.; Parrondo, J.; Blanco, E. Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points. Comput. Fluids 2010, 39, 859–870. [Google Scholar] [CrossRef]
- Capurso, T.; Bergamini, L.; Torresi, M. Design and CFD performance analysis of a novel impeller for double suction centrifugal pumps. Nucl. Eng. Des. 2019, 341, 155–166. [Google Scholar] [CrossRef]
- Stuermer, A.W.; Akkermans, R.A. Validation of Aerodynamic and Aeroacoustic Simulations of Contra-Rotating Open Rotors at Low-Speed Flight Conditions. In Proceedings of the 32nd AIAA Applied Aerodynamics Conference, Atlanta, GA, USA, 10–16 June 2014. [Google Scholar]
- Wei, Y.; Wang, Y. Unsteady hydrodynamics of blade forces and acoustic responses of a model scaled submarine excited by propeller’s thrust and side-forces. J. Sound Vib. 2013, 332, 2038–2056. [Google Scholar] [CrossRef]
- Wu, D.; Yan, P.; Chen, X.; Wu, P.; Yang, S. Effect of Trailing-Edge Modification of a Mixed-Flow Pump. J. Fluids Eng. 2015, 137, 101205. [Google Scholar] [CrossRef]
- Gao, B.; Zhang, N.; Li, Z.; Ni, D.; Yang, M. Influence of the Blade Trailing Edge Profile on the Performance and Unsteady Pressure Pulsations in a Low Specific Speed Centrifugal Pump. J. Fluids Eng. 2016, 138, 051106. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, X.; Gao, B.; Wang, X.; Xia, B. Effects of modifying the blade trailing edge profile on unsteady pressure pul-sations and flow structures in a centrifugal pump. Int. J. Heat Fluid Flow 2019, 75, 227–238. [Google Scholar] [CrossRef]
- Detert Oude Weme, D.G.J.; Van Der Schoot, M.S.; Kruyt, N.P.; Van Der Zijden, E.J.J. Prediction of the Effect of Impeller Trimming on the Hydraulic Performance of Low Specific-Speed Centrifugal Pumps. J. Fluids Eng. 2018, 140. [Google Scholar] [CrossRef]
- Binama, M.; Su, W.-T.; Cai, W.-H.; Li, X.-B.; Muhirwa, A.; Li, B.; Bisengimana, E. Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions. Renew. Energy 2019, 136, 33–47. [Google Scholar] [CrossRef]
- Ni, D.; Yang, M.; Gao, B.; Zhang, N.; Li, Z. Numerical study on the effect of the diffuser blade trailing edge profile on flow instability in a nuclear reactor coolant pump. Nucl. Eng. Des. 2017, 322, 92–103. [Google Scholar] [CrossRef]
- Akkermans, R.A.; Stuermer, A.W.; Delfs, J. Active Flow Control for Interaction Noise Reduction of Contra-Rotating Open Rotors. AIAA J. 2016, 54, 1413–1423. [Google Scholar] [CrossRef]
- Li, X.; Gao, P.; Zhu, Z.; Li, Y. Effect of the blade loading distribution on hydrodynamic performance of a centrifugal pump with cylindrical blades. J. Mech. Sci. Technol. 2018, 32, 1161–1170. [Google Scholar] [CrossRef]
- Tao, Y.; Yuan, S.; Liu, J.; Zhang, F.; Tao, J. Influence of blade thickness on transient flow characteristics of centrifugal slurry pump with semi-open impeller. Chin. J. Mech. Eng. 2016, 29, 1209–1217. [Google Scholar] [CrossRef]
- Li, S.; Wu, P.; Wu, D. Hydraulic Optimization and Loss Analyses of a Low Specific-Speed Centrifugal Pump with Variable-Thickness Blades. Am. Soc. Mech. Eng. 2016, 50299, V01BT27A003. [Google Scholar]
- Barrio, R.; Fernández, J.; Blanco, E.; Parrondo, J. Estimation of radial load in centrifugal pumps using computational fluid dynamics. Eur. J. Mech. B Fluids 2011, 30, 316–324. [Google Scholar] [CrossRef]
- Tan, M.-G.; He, X.-H.; Liu, H.-L.; Dong, L.; Wu, X.-F. Design and analysis of a radial diffuser in a single-stage centrifugal pump. Eng. Appl. Comput. Fluid Mech. 2016, 10, 500–511. [Google Scholar] [CrossRef] [Green Version]
- Alemi, H.; Nourbakhsh, S.A.; Raisee, M.; Najafi, A.F. Development of new “multivolute casing” geometries for radial force reduction in centrifugal pumps. Eng. Appl. Comput. Fluid Mech. 2015, 9, 1–11. [Google Scholar] [CrossRef]
- Solis, M.; Bakir, F.; Khelladi, S. Pressure Fluctuations Reduction in Centrifugal Pumps: Influence of Impeller Geometry and Radial Gap. In Proceedings of the ASME 2009 Fluids Engineering Division Summer Meeting, Vail, CO, USA, 2–6 August 2009. [Google Scholar]
- Zeng, G.; Li, Q.; Wu, P.; Qian, B.; Huang, B.; Li, S.; Wu, D. Investigation of the impact of splitter blades on a low specific speed pump for fluid-induced vibration. J. Mech. Sci. Technol. 2020, 34, 2883–2893. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
(rotating speed, rpm) | 2950 |
(design flow rate, m3/h) | 18 |
(design head, m) | 24.5 |
(impeller suction diameter, mm) | 50 |
(impeller outlet diameter, mm) | 132 |
(impeller outlet width, mm) | 10 |
(number of blades) | 7 |
(number of splitter blades) | 7 |
(volute inlet width, mm) | 20 |
(volute tongue diameter, mm) | 164 |
(ratio of cutwater gap, ) | 1.24 |
(blade angle of outlet, ) | 21 |
Pump | Standard Deviation | Reduction (%) |
---|---|---|
Prototype | 0.04334 | - |
Model A | 0.03546 | 18.18 |
Model B | 0.02582 | 40.42 |
Model C | 0.02210 | 49.01 |
Pump | R (mm) | Pressure Side | Suction Side | ||||
---|---|---|---|---|---|---|---|
w (m/s) | w (m/s) | ||||||
Prototype | 59 | 1.42 | 28.30 | 15.43 | - | - | - |
61 | 1.66 | 28.63 | 15.85 | 1.20 | 34.05 | 16.30 | |
63 | 1.83 | 28.00 | 16.30 | 1.19 | 32.52 | 16.91 | |
65 | 2.41 | 26.30 | 16.31 | 1.10 | 32.36 | 17.60 | |
Model C | 59 | 1.44 | 27.52 | 15.40 | - | - | - |
61 | 2.10 | 24.87 | 15.40 | 1.20 | 34.02 | 16.30 | |
63 | 2.36 | 20.79 | 15.71 | 1.23 | 33.33 | 16.89 | |
65 | 2.99 | 14.54 | 15.64 | 1.14 | 31.30 | 17.56 |
Pressure Sensor | Torque Meter | Rotational Speed Meter | Magnetic Flow Meter | |
---|---|---|---|---|
Accuracy | ±0.1% | ±1.5% | ±0.1% | ±0.1% |
Error | ±0.3% | ±1.6% | ±0.4% | ±2.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Zeng, G.; Qian, B.; Wu, P.; Shi, P.; Qian, D. Pressure Fluctuation Reduction of a Centrifugal Pump by Blade Trailing Edge Modification. Processes 2021, 9, 1408. https://doi.org/10.3390/pr9081408
Huang B, Zeng G, Qian B, Wu P, Shi P, Qian D. Pressure Fluctuation Reduction of a Centrifugal Pump by Blade Trailing Edge Modification. Processes. 2021; 9(8):1408. https://doi.org/10.3390/pr9081408
Chicago/Turabian StyleHuang, Bin, Guitao Zeng, Bo Qian, Peng Wu, Peili Shi, and Dongqing Qian. 2021. "Pressure Fluctuation Reduction of a Centrifugal Pump by Blade Trailing Edge Modification" Processes 9, no. 8: 1408. https://doi.org/10.3390/pr9081408
APA StyleHuang, B., Zeng, G., Qian, B., Wu, P., Shi, P., & Qian, D. (2021). Pressure Fluctuation Reduction of a Centrifugal Pump by Blade Trailing Edge Modification. Processes, 9(8), 1408. https://doi.org/10.3390/pr9081408