Dependence of Viscosity and Diffusion on β-Cyclodextrin and Chloroquine Diphosphate Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Techniques
2.2.1. Viscosity Measurements
2.2.2. Diffusion Measurements
3. Results
3.1. Viscosity Measurements
3.2. Diffusion Measurements
4. Discussion
C2 = CCD + CCDP-β-CD
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daneshfar, A.; Vafafard, S. Solubility of Chloroquine Diphosphate and 4,7-Dichloroquinoline in Water, Ethanol, Tetrahydrofuran, Acetonitrile, and Acetone from (298.2 to 333.2) K. J. Chem. Eng. Data 2009, 54, 2170–2173. [Google Scholar] [CrossRef]
- Roy, A.; Saha, S.; Roy, D.; Bhattacharyya, S.; Roy, M.N. Formation & specification of host–guest inclusion complexes of an anti-malarial drug inside into cyclic oligosaccharides for enhancing bioavailability. J. Incl. Phenom. Macrocycl. Chem. 2020, 97, 65–76. [Google Scholar] [CrossRef]
- Kamitsuji, Y.; Kuroda, J.; Kimura, S.; Toyokuni, S.; Watanabe, K.; Ashihara, E.; Tanaka, H.; Yui, Y.; Watanabe, M.; Matsubara, H.; et al. The Bcr-Abl kinase inhibitor INNO-406 induces autophagy and different modes of cell death execution in Bcr-Abl-positive leukemias. Cell Death Differ. 2008, 15, 1712–1722. [Google Scholar] [CrossRef] [Green Version]
- Furst, D.E. Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus 1996, 5, 11–15. [Google Scholar] [CrossRef]
- Verbeeck, R.K.; Junginger, H.E.; Midha, K.K.; Shah, V.P.; Barends, D.M. Biowaiver monographs for immediate release solid oral dosage forms based on biopharmaceutics classification system (BCS) literature data: Chloroquine phosphate, chloroquine sulfate, and chloroquine hydrochloride.This study reflects the scientific opinion. J. Pharm. Sci. 2005, 1389–1395. [Google Scholar] [CrossRef]
- Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 2020, 71, 732–739. [Google Scholar] [CrossRef] [Green Version]
- Braga, C.B.; Martins, A.C.; Cayotopa, A.D.E.; Klein, W.W.; Schlosser, A.R.; Silva, A.F.; Sousa, M.N.; Andrade, B.W.B.; Junior, J.A.F.; Pinto, W.J.; et al. Side Effects of Chloroquine and Primaquine and Symptom Reduction in Malaria Endemic Area (Mâncio Lima, Acre, Brazil). Interdiscip. Perspect. Infect. Dis. 2015, 2015, 346853. [Google Scholar] [CrossRef]
- Carneiro, S.B.; Duarte, F.I.C.; Heimfarth, L.; Quintans, J.S.S.; Quintans-Junior, L.J.; Junior, V.F.V.; Lima, A.A.N. Cyclodextrin–Drug Inclusion Complexes: In Vivo and In Vitro Approaches. Int. J. Mol. Sci. 2019, 20, 642. [Google Scholar] [CrossRef] [Green Version]
- Valente, A.J.; Soderman, O. The formation of host-guest complexes between surfactants and cyclodextrins. Adv. Colloid Interface Sci. 2014, 205, 156. [Google Scholar] [CrossRef] [PubMed]
- Niether, D.; Kawaguchi, T.; Hovancova, J.; Eguchi, K.; Dhont, J.K.G.; Kita, R.; Wiegand, S. Role of Hydrogen Bonding of Cyclodextrin–Drug Complexes Probed by Thermodiffusion. Langmuir 2017, 33, 8483. [Google Scholar] [CrossRef] [PubMed]
- Ryzhakov, A.; Thi, T.D.; Stappaerts, J.; Bertoletti, L.; Kimpe, K.; Couto, A.R.S.; Saokham, P.; Mooter, G.V.; Augustijns, P.; Somsen, G.W.; et al. Self-Assembly of Cyclodextrins and Their Complexes in Aqueous Solutions. J. Pharm. Sci. 2016, 105, 2556. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Diao, C.-H.; Yu, M.; Jing, Z.-L.; Chen, X.; Deng, Q.-L. An Investigation of the Inclusion Complex of β-Cyclodextrin with 8-Nitro-Quinoline in the Solid State. Supramol. Chem. 2006, 18, 7–11. [Google Scholar] [CrossRef]
- Duan, Z.; Bu, T.; Bian, H.; Zhu, L.; Xiang, Y.; Xia, D. Effective Removal of Phenylamine, Quinoline, and Indole from Light Oil by β-Cyclodextrin Aqueous Solution through Molecular Inclusion. Energy Fuels 2018, 32, 9280–9288. [Google Scholar] [CrossRef]
- Assaba, I.M.; Rahali, S.; Belhocine, Y.; Allal, H. Inclusion complexation of chloroquine with α and β-cyclodextrin: Theoretical insights from the new B97-3c composite method. J. Mol. Struct. 2021, 1227, 129696. [Google Scholar] [CrossRef]
- Guoquan, Z.; Tinggong, W.; Danfeng, S.; Jian, S.; Zehui, Y. The solubility and dissolution thermodynamic properties of chloroquine diphosphate in different organic solvents. J. Chem. Thermodyn. 2021, 156, 106368. [Google Scholar] [CrossRef]
- Callendar, R.; Leaist, D.G. Diffusion Coefficients for Binary, Ternary, and Polydisperse Solutions from Peak-Width Analysis of Taylor Dispersion Profiles. J. Solut. Chem. 2006, 35, 353–379. [Google Scholar] [CrossRef]
- Barthel, J.; Gores, H.J.; Lohr, C.M.; Seidl, J.J. Taylor dispersion measurements at low electrolyte concentrations. I. Tetraalkylammonium perchlorate aqueous solutions. J. Solut. Chem. 1996, 25, 921–935. [Google Scholar] [CrossRef]
- Loh, W. A técnica de dispersão de taylor para estudos de difusão em líquidos e suas aplicações. Quim. Nova 1997, 20, 541–545. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, A.; Nieto de Castro, C.A.; Wakeham, W.A. The theory of the Taylor dispersion technique for liquid diffusivity measurements. Int. J. Thermophys. 1980, 1, 243–284. [Google Scholar] [CrossRef]
- Price, W.E. Theory of the taylor dispersion technique for three-component-system diffusion measurements. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1988, 84, 2431–2439. [Google Scholar] [CrossRef]
- Deng, Z.; Leaist, D.G. Ternary mutual diffusion coefficients of MgCl2 + MgSO4 + H2O and Na2SO 4 + MgSO4 + H2O from Taylor dispersion profiles. Can. J. Chem. 1991, 69, 1548–1553. [Google Scholar] [CrossRef] [Green Version]
- Taylor, G. Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube. Proc. R. Soc. Lond. A 1953, 219, 186–203. [Google Scholar] [CrossRef]
- Taylor, G. The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. A 1954, 223, 446–468. [Google Scholar] [CrossRef]
- Taylor, G. Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. R. Soc. Lond. A. 1954, 225, 473–477. [Google Scholar] [CrossRef]
- Leaist, D.G. Determination of ternary diffusion coefficients by the Taylor dispersion method. J. Phys. Chem. 1990, 94, 5180–5183. [Google Scholar] [CrossRef]
- Leaist, D.G. Ternary diffusion coefficients of 18-crown-6 ether–KCl–water by direct least-squares analysis of Taylor dispersion measurements. J. Chem. Soc. Faraday Trans. 1991, 87, 597–601. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Leaist, D.G.; Esteso, M.A.; Lobo, V.M.; Valente, A.J.; Santos, C.I.; Cabral, A.M.; Veiga, F.J. Binary Mutual Diffusion Coefficients of Aqueous Solutions of β-Cyclodextrin at Temperatures from 298.15 to 312.15 K. J. Chem. Eng. Data 2006, 51, 1368–1371. [Google Scholar] [CrossRef]
- Jones, G.; Christian, S.M. The Viscosity of Aqueous Solutions of Electrolytes as a Function of the Concentration. V. Sodium Chloride. J. Am. Chem. Soc. 1937, 59, 484–486. [Google Scholar] [CrossRef]
- Jones, G.; Dole, M. The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 1929, 2950–2964. [Google Scholar] [CrossRef]
- Marcus, Y. Effect of Ions on the Structure of Water: Structure Making and Breaking. Chem. Rev. 2009, 109, 1346–1370. [Google Scholar] [CrossRef]
- Musilová, L.; Mráček, A.; Kašpárková, V.; Minařík, A.; Valente, A.J.; Azevedo, E.F.; Verissimo, L.M.; Rodrigo, M.M.; Esteso, M.A.; Ribeiro, A.C. Effect of Hofmeister Ions on Transport Properties of Aqueous Solutions of Sodium Hyaluronate. Int. J. Mol. Sci. 2021, 22, 1932. [Google Scholar] [CrossRef]
- Paduano, L.; Sartorio, R.; Vitagliano, V.; Castronuovo, G. Calorimetric and diffusional behaviour of the system α-cyclodextrin-L-phenylalanine in aqueous solution. Thermochim. Acta 1990, 162, 155–161. [Google Scholar] [CrossRef]
- Paduano, L.; Sartorio, R.; Vitagliano, V.; Costantino, L. Diffusion coefficients in systems with inclusion compounds. Part 2. α-Cyclodextrin-(DL)norleucine-water at 25 °C. Ber. Bunsenges. Phys. Chem. 1990, 94, 741–745. [Google Scholar] [CrossRef]
- Paduano, L.; Vergara, A.; Corradino, M.R.; Vitagliano, V.; Sartorio, R. Equilibrium properties of the system (dibutyl L-tartrate)–(α-cyclodextrin)–(water) at 25 °C. A 1H NMR and UV study. Phys. Chem. Chem. Phys. 1999, 1, 3627–3631. [Google Scholar] [CrossRef]
- Paduano, L.; Sartorio, R.; Vitagliano, V. Diffusion coefficients of the ternary system α-cyclodextrin−sodium benzenesulfonate−water at 25 °C: The effect of chemical equilibrium and complex formation on the diffusion coefficients of a ternary system. J. Phys. Chem. B 1998, 102, 5023–5028. [Google Scholar] [CrossRef]
- Saenger, W.; Steiner, T. Cyclodextrin Inclusion Complexes: Host–Guest Interactions and Hydrogen-Bonding Networks. Acta Crystallogr. Sect. A Found. Crystallogr. 1998, 54, 798–805. [Google Scholar] [CrossRef]
- Barros, M.C.; Ramos, M.L.; Burrows, H.D.; Esteso, M.A.; Leaist, D.G.; Ribeiro, A.C. Ternary mutual diffusion coefficients of aqueous {l-dopa (1)+β-CD (2)} solutions at T = 298.15 K. J. Chem. Thermodyn. 2015, 90, 169–173. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Musilová, L.; Mráček, A.; Cabral, A.M.; Santos, M.A.; Cabral, I.; Esteso, M.A.; Valente, A.J.M.; Leaist, D. Host-guest paracetamol/cyclodextrin complex formation evaluated from coupled diffusion measurements. J. Chem. Thermodyn. 2021, 161, 106551. [Google Scholar] [CrossRef]
Chemical Name | Source | CAS Number | Purity |
---|---|---|---|
Chloroquine diphosphate (CDP) (C18H26ClN3 · 2H3PO4) | Merck | 50-63-5 | mass fraction ≥ 0.98 |
β-Cyclodextrin (β-CD) | Sigma-Aldrich (water mass fraction of 0.131) | 7585-39-9 | mass fraction ≥ 0.99 |
Water | Millipore-Q water (ρ = 1.82 × 105 Ω·m at 298.15 K) | 7732-18-5 |
C /(mol dm−3) | ηwa /(mPa s) | η(w+ β-CD)b /(mPa s) |
---|---|---|
0.0010 | 0.949 | 0.969 |
0.0020 | 0.948 | 0.970 |
0.0050 | 0.952 | 0.972 |
0.0070 | 0.950 | 0.978 |
0.0100 | 0.953 | 0.983 |
C/(mol dm−3) | D1/(10−9 m2 s−1) | D2/(10−9 m2 s−1) a |
---|---|---|
0.0000 | 0.710 b | |
0.0020 | 0.690 | |
0.0040 | 0.684 | |
0.0050 | 0.678 | 0.322 c |
0.0060 | 0.675 | 0.321 c |
0.0070 | 0.672 | 0.319 c |
0.0080 | 0.669 | |
0.0100 | 0.666 | |
0.0200 | 0.650 |
C1a | C2a | X1 | D11 ± SD b | D12 ± SDb | D21 ± SDb | D22 ± SD b |
---|---|---|---|---|---|---|
0.0000 | 0.0070 | 0.000 | 0.689 ± 0.017 | 0.020 ± 0.020 | −0.031 ± 0.015 | 0.383 ± 0.010 |
0.0010 | 0.0070 | 0.014 | 0.686 ± 0.012 | 0.004 ± 0.010 | −0.010 ± 0.010 | 0.350 ± 0.020 |
0.0020 | 0.0050 | 0.250 | 0.602 ± 0.012 | −0.030 ± 0.010 | 0.021 ± 0.020 | 0.330 ± 0.020 |
0.0035 | 0.0035 | 0.500 | 0.567 ± 0.010 | −0.028 ± 0.011 | 0.020 ± 0.010 | 0.349 ± 0.015 |
0.0050 | 0.0020 | 0.750 | 0.594 ± 0.015 | 0.129 ± 0.012 | 0.018 ± 0.015 | 0.342 ± 0.010 |
0.0070 | 0.0000 | 1.000 | 0.670 ± 0.012 | 0.180 ± 0.012 | 0.010 ± 0.005 | 0.390 ± 0.011 |
0.0100 | 0.0000 | 1.000 | 0.667 ± 0.015 | 0.197 ± 0.060 | −0.001 ± 0.001 | 0.395 ± 0.012 |
Species | Ds/(10−9 m2 s−1) |
---|---|
Chloroquine diphosphate (CDP) | 0.670 |
β-cyclodextrin (β-CD) | 0.380 |
CDP–β-CD | 0.360 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musilová, L.; Mráček, A.; Azevedo, E.F.G.; Rodrigo, M.M.; Valente, A.J.M.; Esteso, M.A.; Ribeiro, A.C.F. Dependence of Viscosity and Diffusion on β-Cyclodextrin and Chloroquine Diphosphate Interactions. Processes 2021, 9, 1433. https://doi.org/10.3390/pr9081433
Musilová L, Mráček A, Azevedo EFG, Rodrigo MM, Valente AJM, Esteso MA, Ribeiro ACF. Dependence of Viscosity and Diffusion on β-Cyclodextrin and Chloroquine Diphosphate Interactions. Processes. 2021; 9(8):1433. https://doi.org/10.3390/pr9081433
Chicago/Turabian StyleMusilová, Lenka, Aleš Mráček, Eduarda F. G. Azevedo, M. Melia Rodrigo, Artur J. M. Valente, Miguel A. Esteso, and Ana C. F. Ribeiro. 2021. "Dependence of Viscosity and Diffusion on β-Cyclodextrin and Chloroquine Diphosphate Interactions" Processes 9, no. 8: 1433. https://doi.org/10.3390/pr9081433
APA StyleMusilová, L., Mráček, A., Azevedo, E. F. G., Rodrigo, M. M., Valente, A. J. M., Esteso, M. A., & Ribeiro, A. C. F. (2021). Dependence of Viscosity and Diffusion on β-Cyclodextrin and Chloroquine Diphosphate Interactions. Processes, 9(8), 1433. https://doi.org/10.3390/pr9081433