Application of Green Surfactants in the Remediation of Soils Contaminated by Hydrocarbons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Yeast Strain and Preparation of Inoculum
2.3. Biosurfactant Production
2.4. Biosurfactant Isolation
2.5. Formulation of the Commercial Biosurfactant
2.6. Evaluation of the Organoleptic Characteristics of the Commercial Biosurfactant
2.7. Determination of Surface Tension and Critical Micelle Concentration of the Surfactants
2.8. Determination of Emulsification Capacity of the Surfactants
2.9. Application of Surfactants in Hydrophobic Contaminant Spreading
2.10. Toxicity of Surfactants to Artemia salina as an Indicator
2.11. Application of Surfactans in Phytotoxycity Tests
- (1)
- Relative seed germination (%) = (number of seeds germinated in the extract/number of seeds germinated in the control) × 100.
- (2)
- Relative root elongation (%) = (mean root length in the extract/mean root length in the control) × 100.
- (3)
- GI (%) = (% relative seed germination) × (% relative root elongation)/100.
2.12. Soils Used in the Removal Experiments
2.13. Characterization of Soils
2.14. Application of Surfactants in the Removal of Motor Oil from Packed Columns through the Static Assay
2.15. Application of Surfactants in the Removal of Motor Oil from Flasks through the Kinetic Assay
2.16. Quantification of the Oil Removed in the Static and Kinetic Assays
- (1)
- Oil removed (%) = [initial oil concentration in the soil (g) before washing—final oil concentration in the soil after washing (g)]/[initial oil concentration in the soil (g) before washing] × 100.
- (2)
- The removal efficiency was also evaluated by gravimetry, in the same way as described above, after the treatment of the washing solution (surfactant solution containing the contaminant) with hexane.
2.17. Bioremediation Experiment with the Commercial Biosurfactant from Starmerella bombicola
2.18. Statistical Analysis
3. Results and Discussion
3.1. Production of the Commercial Biosurfactant from Starmerella bombicola
3.1.1. Production and Isolation of the Biosurfactant
3.1.2. Formulation of the Commercial Biosurfactant
3.2. Emulsification Capacity of the Surfactants
3.3. Application of the Surfactants in Hydrophobic Contaminant Spreading
3.4. Toxicity of the Surfactants to Artemia salina
3.5. Toxicity of the Surfactants towards Vegetables
3.6. Characterization of Soils
3.7. Application of Surfactants in the Removal of Motor Oil Adsorbed on Soils
3.7.1. Removal of Motor Oil from Packed Columns through the Static Assay
3.7.2. Removal of Motor Oil from Flasks through the Kinetic Assay
3.8. Influence of the Commercial Biosurfactant from Starmerella bombicola on the Bioremediation of Soil Contaminated with Motor Oil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Almeida, D.G.; Soares da Silva, R.d.C.F.; Luna, J.M.; Rufino, R.D.; Santos, V.A.; Banat, I.M.; Sarubbo, L.A. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances. Front. Microbiol. 2016, 7, 1718. [Google Scholar] [CrossRef] [Green Version]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 2016, 17, 401–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, D.G.; Soares da Silva, R.d.C.F.; Luna, J.M.; Rufino, R.D.; Santos, V.A.; Sarubbo, L.A. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida tropicalis on Industrial Waste Substrates. Front. Microbiol. 2017, 8, 157. [Google Scholar] [CrossRef] [Green Version]
- Gysel, N.; Dixit, P.; Schmitz, D.A.; Engling, G.; Cho, A.K.; Cocker, D.R.; Karavalakis, G. Chemical speciation, including polycyclic aromatic hydrocarbons (PAHs), and toxicity of particles emitted from meat cooking operations. Sci. Total Environ. 2018, 633, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, P.; Sreekrishnan, T.R.; Nema, A.K. Polyaromatic Hydrocarbons: Review of a Global Environmental Issue. J. Hazard. Toxic Radioact. Waste 2018, 22, 04018004. [Google Scholar] [CrossRef]
- Al-Hawash, A.B.; Dragh, M.A.; Li, S.; Alhujaily, A.; Abbood, H.A.; Zhang, X.; Ma, F. Principles of microbial degradation of petroleum hydrocarbons in the environment. Egypt. J. Aquat. Res. 2018, 44, 71–76. [Google Scholar] [CrossRef]
- Nazifa, T.H.; Bin Ahmad, M.A.; Hadibarata, T.; Aris, A. Bioremediation of diesel oil spill by filamentous fungus Trichoderma reesei H002 in aquatic environment. Int. J. Integr. Eng. 2018, 10, 14–19. [Google Scholar] [CrossRef]
- Calvo, C.; Manzanera, M.; Silva-Castro, G.A.; Uad, I.; González-López, J. Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Sci. Total Environ. 2009, 407, 3634–3640. [Google Scholar] [CrossRef]
- Farias, C.B.B.; Almeida, F.C.G.; Silva, I.A.; Souza, T.C.; Meira, H.M.; Soares da Silva, R.d.C.F.; Luna, J.M.; Santos, V.A.; Converti, A.; Banat, I.M.; et al. Production of green surfactants: Market prospects. Electron. J. Biotechnol. 2021, 51, 28–39. [Google Scholar] [CrossRef]
- da Silva, S.; Gonçalves, I.; Gomes de Almeida, F.C.; Padilha da Rocha e Silva, N.M.; Casazza, A.A.; Converti, A.; Asfora Sarubbo, L. Soil Bioremediation: Overview of Technologies and Trends. Energies 2020, 13, 4664. [Google Scholar] [CrossRef]
- Das, N.; Chandran, P. Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnol. Res. Int. 2011, 2011, 941810. [Google Scholar] [CrossRef] [Green Version]
- Moldes, A.B.; Rodríguez-López, L.; Rincón-Fontán, M.; López-Prieto, A.; Vecino, X.; Cruz, J.M. Synthetic and Bio-Derived Surfactants Versus Microbial Biosurfactants in the Cosmetic Industry: An Overview. Int. J. Mol. Sci. 2021, 22, 2371. [Google Scholar] [CrossRef]
- Silva, E.J.; Correa, P.F.; Almeida, D.G.; Luna, J.M.; Rufino, R.D.; Sarubbo, L.A. Recovery of contaminated marine environments by biosurfactant-enhanced bioremediation. Coll. Surf. B Biointerfaces 2018, 172, 127–135. [Google Scholar] [CrossRef]
- Soares da Silva, R.d.C.F.; Almeida, D.G.; Meira, H.M.; Silva, E.J.; Farias, C.B.B.; Rufino, R.D.; Luna, J.M.; Sarubbo, L.A. Production and characterization of a new biosurfactant from Pseudomonas cepacia grown in low-cost fermentative medium and its application in the oil industry. Biocatal. Agric. Biotechnol. 2017, 12, 206–215. [Google Scholar] [CrossRef]
- Chaprão, M.J.; Ferreira, I.N.S.; Correa, P.F.; Rufino, R.D.; Luna, J.M.; Silva, E.J.; Sarubbo, L.A. Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand. Electron. J. Biotechnol. 2015, 18, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Konishi, M.; Yoshida, Y.; Horiuchi, J. Efficient production of sophorolipids by Starmerella bombicola using a corncob hydrolysate medium. J. Biosci. Bioeng. 2015, 119, 317–322. [Google Scholar] [CrossRef]
- Hu, Y.; Ju, L.-K. Purification of lactonic sophorolipids by crystallization. J. Biotechnol. 2001, 87, 263–272. [Google Scholar] [CrossRef]
- D’León, L.F.P. Estudos de Estabilidade de Produtos Cosméticos. Cosmet. Toilet. 2001, 13, 54–64. [Google Scholar]
- Cooper, D.G.; Goldenberg, B.G. Surface-Active Agents from Two Bacillus Species. Appl. Environ. Microbiol. 1987, 53, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.R.; Teixeira, J.A.; van der Mei, H.C.; Oliveira, R. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf. B Biointerfaces 2006, 49, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Pornsunthorntawee, O.; Wongpanit, P.; Chavadej, S.; Abe, M.; Rujiravanit, R. Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour. Technol. 2008, 99, 1589–1595. [Google Scholar] [CrossRef]
- Meyer, B.; Ferrigni, N.; Putnam, J.; Jacobsen, L.; Nichols, D.; McLaughlin, J. Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef]
- Tiquia, S.M.; Tam, N.F.Y.; Hodgkiss, I.J. Effects of composting on phytotoxicity of spent pig-manure sawdust litter. Environ. Pollut. 1996, 93, 249–256. [Google Scholar] [CrossRef]
- ABNT. Associação Brasileira de Normas Técnicas, 1984a. NBR 7181: Solos: Análise Granulométrica Conjunta; ABNT: Rio de Janeiro, Brasil, 1948. [Google Scholar]
- ABNT. Associação Brasileira de Normas Técnicas, 1984b. NBR 6459: Solos: Determinação Do Limite de Liquidez; ABNT: Rio de Janeiro, Brasil, 1948. [Google Scholar]
- ABNT. Associação Brasileira de Normas Técnicas, 1984c. NBR 7180: Solos: Determinação Do Limite de Plasticidade; ABNT: Rio de Janeiro, Brasil, 1948. [Google Scholar]
- ABNT. Associação Brasileira de Normas Técnicas, 1984d. NBR 6508: Massa Específica Dos Grãos Dos Solos; ABNT: Rio de Janeiro, Brasil, 1948. [Google Scholar]
- ABNT. Associação Brasileira de Normas Técnicas (1986). NBR 7182: Solo-Ensaio de Compactação; ABNT: Rio de Janeiro, Brasil, 1986. [Google Scholar]
- Rufino, R.D.; Luna, J.M.; Marinho, P.H.C.; Farias, C.B.B.; Ferreira, S.R.M.; Sarubbo, L.A. Removal of petroleum derivative adsorbed to soil by biosurfactant Rufisan produced by Candida lipolytica. J. Pet. Sci. Eng. 2013, 109, 117–122. [Google Scholar] [CrossRef]
- Luna, J.M.; Sarubbo, L.; de Campos-Takaki, G.M. A new Biosurfactant produced by Candida glabrata UCP 1002: Characteristics of stability and application in Oil Recovery. Braz. Arch. Biol. Technol. 2009, 52, 785–793. [Google Scholar] [CrossRef]
- Sharma, V.; Sharma, D. Microbial biosurfactants: Future active food ingredients. In Microbial Bioprospecting for Sustainable Development; Singh, J., Sharma, D., Kumar, G., Sharma, N.R., Eds.; Springer: Singapore, 2018; pp. 265–276. [Google Scholar] [CrossRef]
- Luna, J.M.; Santos Filho, A.; Rufino, R.D.; Sarubbo, L.A. Production of Biosurfactant from Candida bombicola URM 3718 for Environmental Applications. Chem. Eng. Trans. 2016, 49, 583–588. [Google Scholar] [CrossRef]
- Rufino, R.D.; Sarubbo, L.A.; Campos-Takaki, G.M. Enhancement of stability of biosurfactant produced by Candida lipolytica using industrial residue as substrate. World J. Microbiol. Biotechnol. 2007, 23, 729–734. [Google Scholar] [CrossRef]
- Sarubbo, L.A.; Luna, J.M.D.; Campos-Takaki, G.M. de Production and stability studies of the bioemulsifier obtained from a new strain of Candida glabrata UCP 1002. Electron. J. Biotechnol. 2006, 9, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Gallert, C.; Winter, J. Solid and liquid residues as raw materials for biotechnology. Naturwissenschaften 2002, 89, 483–496. [Google Scholar] [CrossRef]
- Shepherd, R.; Rockey, J.; Sutherland, I.W.; Roller, S. Novel bioemulsifiers from microorganisms for use in foods. J. Biotechnol. 1995, 40, 207–217. [Google Scholar] [CrossRef]
- Pinto, M.I.S.; Ribeiro, B.G.; Guerra, J.M.C.; Rufino, R.D.; Sarubbo, L.A.; Santos, V.A.; Luna, J.M. Production in bioreactor, toxicity and stability of a low-cost biosurfactant. Chem. Eng. Trans. 2018, 64, 595–600. [Google Scholar] [CrossRef]
- Nurdin, S.; Kamin, N.H.; Sivaguru, M.V.; Ghazali, N.S.; Sahad, M.Z.; Haron, S.F. Future prospects of biobased detergent derived from Jatropha c. seeds oil (JSO). Aust. J. Basic Appl. Sci. 2017, 11, 79–84. [Google Scholar]
- Rocha e Silva, N.M.P.; Almeida, F.C.G.; Rocha e Silva, F.C.P.; Luna, J.M.; Sarubbo, L.A. Formulation of a Biodegradable Detergent for Cleaning Oily Residues Generated during Industrial Processes. J. Surfactants Deterg. 2020, 23, 1111–1123. [Google Scholar] [CrossRef]
- Almeida, D.G.; Soares da Silva, R.d.C.F.; Meira, H.M.; Brasileiro, P.P.F.; Silva, E.J.; Luna, J.M.; Rufino, R.D.; Sarubbo, L.A. Production, Characterization and Commercial Formulation of a Biosurfactant from Candida tropicalis UCP0996 and Its Application in Decontamination of Petroleum Pollutants. Processes 2021, 9, 885. [Google Scholar] [CrossRef]
- Silva, I.A.; Bezerra, K.G.O.; Durval, I.J.B.; Farias, C.B.B.; Da Silva, C.J.G.; Da Silva Santos, E.M.; De Luna, J.M.; Sarubbo, L.A. Evaluation of the emulsifying and antioxidant capacity of the biosurfactant produced by Candida bombicola URM 3718. Chem. Eng. Trans. 2020, 79, 67–72. [Google Scholar] [CrossRef]
- Dhanya, M.S. Cap.10-Biosurfactant-enhanced bioremediation of petroleum hydrocarbons: Potential issues, challenges, and future prospects. In Bioremediation for Environmental Sustainability; Saxena, G., Kumar, V., Shah, M.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; p. 692. ISBN 9780128205242. [Google Scholar]
- Goswami, T.; Tack, F.M.G.; McGachy, L.; Šír, M. Remediation of Aviation Kerosene-Contaminated Soil by Sophorolipids from Candida bombicola CB 2107. Appl. Sci. 2020, 10, 1981. [Google Scholar] [CrossRef] [Green Version]
- Minucelli, T.; Ribeiro-Viana, R.M.; Borsato, D.; Andrade, G.; Cely, M.V.T.; de Oliveira, M.R.; Baldo, C.; Celligoi, M.A.P.C. Sophorolipids Production by Candida bombicola ATCC 22214 and Its Potential Application in Soil Bioremediation. Waste Biomass Valoriz. 2017, 8, 743–753. [Google Scholar] [CrossRef]
- Ribeiro, B.G.; Guerra, J.M.C.; Sarubbo, L.A. Biosurfactants: Production and application prospects in the food industry. Biotechnol. Prog. 2020, 36, e3030. [Google Scholar] [CrossRef]
- Feng, L.; Jiang, X.; Huang, Y.; Wen, D.; Fu, T.; Fu, R. Petroleum hydrocarbon-contaminated soil bioremediation assisted by isolated bacterial consortium and sophorolipid. Environ. Pollut. 2021, 273, 116476. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Borah, S.N.; Bora, A.; Deka, S. Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microb. Cell Fact. 2017, 16, 95. [Google Scholar] [CrossRef] [Green Version]
- Elshafie, A.E.; Joshi, S.J.; Al-Wahaibi, Y.M.; Al-Bemani, A.S.; Al-Bahry, S.N.; Al-Maqbali, D.; Banat, I.M. Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery. Front. Microbiol. 2015, 6, 1324. [Google Scholar] [CrossRef] [Green Version]
- Andrade, R.F.S.; Silva, T.A.L.; Ribeaux, D.R.; Rodriguez, D.M.; Souza, A.F.; Lima, M.A.B.; Lima, R.A.; Alves da Silva, C.A.; Campos-Takaki, G.M. Promising Biosurfactant Produced by Cunninghamella echinulata UCP 1299 Using Renewable Resources and Its Application in Cotton Fabric Cleaning Process. Adv. Mater. Sci. Eng. 2018, 2018, 1624573. [Google Scholar] [CrossRef] [Green Version]
- Persoone, G.; Wells, P. Artemia in aquatic toxicology: A review. Artemia Res. Appl. 1987, 1, 259–275. [Google Scholar]
- Lewan, L.; Andersson, M.; Morales-Gomez, P. The Use of Artemia Salina in Toxicity Testing. Altern. Lab. Anim. 1992, 20, 297–301. [Google Scholar] [CrossRef]
- Jimoh, A.A.; Lin, J. Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicol. Environ. Saf. 2019, 184, 109607. [Google Scholar] [CrossRef] [PubMed]
- Libralato, G.; Prato, E.; Migliore, L.; Cicero, A.M.; Manfra, L. A review of toxicity testing protocols and endpoints with Artemia spp. Ecol. Indic. 2016, 69, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Durval, I.; Rufino, R.; Sarubbo, L. Biosurfactant as an Environmental Remediation Agent: Toxicity, Formulation, and Application in the Removal of Petroderivate in Sand and Rock Walls. Biointerface Res. Appl. Chem. 2021, 12, 34–48. [Google Scholar] [CrossRef]
- Dos Santos, R.A.; Rodríguez, D.M.; Ferreira, I.N.d.S.; de Almeida, S.M.; Takaki, G.M.d.C.; de Lima, M.A.B. Novel production of biodispersant by Serratia marcescens UCP 1549 in solid-state fermentation and application for oil spill bioremediation. Environ. Technol. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Sahgal, G.; Ramanathan, S.; Sasidharan, S.; Mordi, M.N.; Ismail, S.; Mansor, S.M. Brine shrimp lethality and acute oral toxicity studies on Swietenia mahagoni (Linn.) Jacq. seed methanolic extract. Pharmacogn. Res. 2010, 2, 215. [Google Scholar] [CrossRef] [Green Version]
- Mnif, I.; Ghribi, D. Microbial derived surface active compounds: Properties and screening concept. World J. Microbiol. Biotechnol. 2015, 31, 1001–1020. [Google Scholar] [CrossRef]
- Daylin, R.-R.; Rosileide, F.d.S.A.; Goretti, S.d.S.; Rodrigo, A.d.H.; Milagre, A.P.; Patricia, N.; Jose, C.V.J.; Maria, A.d.R.-S.; Campos-Takaki, G.M. Promising biosurfactant produced by a new Candida tropicalis UCP 1613 strain using substrates from renewable-resources. Afr. J. Microbiol. Res. 2017, 11, 981–991. [Google Scholar] [CrossRef] [Green Version]
- Gálvez, A.; López-Galindo, A.; Peña, A. Effect of different surfactants on germination and root elongation of two horticultural crops: Implications for seed coating. N. Z. J. Crop. Hortic. Sci. 2019, 47, 83–98. [Google Scholar] [CrossRef]
- Lira, I.R.A.d.S.; Santos, E.M.d.S.; Filho, A.A.; Selva, P.; Farias, C.B.B.; Guerra, J.M.; Sarubbo, L.A.; de Luna, J.M. Biosurfactant Production from Candida Guilliermondii and Evaluation of its Toxicity. Chem. Eng. Trans. 2020, 79, 457–462. [Google Scholar] [CrossRef]
- Luna, J.M.; Rufino, R.D.; Sarubbo, L.A. Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process. Saf. Environ. Prot. 2016, 102, 558–566. [Google Scholar] [CrossRef]
- Rufino, R.D.; de Luna, J.M.; de Campos Takaki, G.M.; Sarubbo, L.A. Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron. J. Biotechnol. 2014, 17, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Kage, H.; Kochler, M.; Stützel, H. Root growth of cauliflower (Brassica oleracea L. botrytis) under unstressed conditions: Measurement and modelling. Plant Soil 2000, 223, 131–145. [Google Scholar] [CrossRef]
- Al-Mharib, M.Z.K.; Al-Saadi, F.M.J.; Almashhadany, A.H. Studies on growth and yield indicators for kohlrabi (Brassica oleracea) plant treated with mineral fertilizers and root enhancers. Res. Crops 2020, 21, 333–338. [Google Scholar] [CrossRef]
- Abdel-Farid, I.B.; Marghany, M.R.; Rowezek, M.M.; Sheded, M.G. Effect of salinity stress on growth and metabolomic profiling of Cucumis sativus and Solanum lycopersicum. Plants 2020, 9, 1626. [Google Scholar] [CrossRef]
- Skempton, A.W. The colloidal “activity” of clays. Sel. Pap. Soil Mech. 1984, 3, 60–64. [Google Scholar] [CrossRef]
- Pastore, E.L.; Fontes, R.M. Caracterização e classificação dos solos. In Geologia de Engenharia; Oliveira, A.M.S., Brito, S.N.A., Eds.; Oficina de Textos: São Paulo, Brazil, 1998; pp. 199–210. ISBN 8572700021. [Google Scholar]
- Mao, X.; Jiang, R.; Xiao, W.; Yu, J. Use of surfactants for the remediation of contaminated soils: A review. J. Hazard. Mater. 2015, 285, 419–435. [Google Scholar] [CrossRef]
- Haftka, J.J.-H.; Hammer, J.; Hermens, J.L.M. Mechanisms of Neutral and Anionic Surfactant Sorption to Solid-Phase Microextraction Fibers. Environ. Sci. Technol. 2015, 49, 11053–11061. [Google Scholar] [CrossRef] [PubMed]
- Ogunmokun, F.A.; Liu, Z.; Wallach, R. The influence of surfactant-application method on the effectiveness of water-repellent soil remediation. Geoderma 2020, 362, 114081. [Google Scholar] [CrossRef]
- Firoozi, A.A.; Firoozi, A.A.; Shojaei, M. A Review of Clayey Soils. Asian J. Appl. Sci. 2017, 4, 13. Available online: https://www.ajouronline.com/index.php/AJAS/article/view/4301 (accessed on 6 August 2021).
- Tonni, L.; Gottard, G. Assessing compressibility characteristics of silty soils from CPTU: Lessons learnt from the Treporti Test Site, Venetian Lagoon (Italy). AIMS Geosci. 2019, 5, 117–144. [Google Scholar] [CrossRef]
- Jimoh, A.A.; Lin, J. Bioremediation of contaminated diesel and motor oil through the optimization of biosurfactant produced by Paenibacillus sp. D9 on waste canola oil. Bioremediat. J. 2020, 24, 21–40. [Google Scholar] [CrossRef]
- Rocha e Silva, N.M.P.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Screening of Pseudomonas species for biosurfactant production using low-cost substrates. Biocatal. Agric. Biotechnol. 2014, 3, 132–139. [Google Scholar] [CrossRef]
- Silva, S.N.R.L.; Farias, C.B.B.; Rufino, R.D.; Luna, J.M.; Sarubbo, L.A. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Coll. Surf. B Biointerfaces 2010, 79, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, V.V.; Yadav, A.; Shouche, Y.S.; Aphale, S.; Moghe, A.; Pillai, S.; Arora, A.; Bhadekar, R.K. Studies on biosurfactant from Oceanobacillus sp. BRI 10 isolated from Antarctic sea water. Desalination 2013, 318, 64–71. [Google Scholar] [CrossRef]
- Joo, H.-S.; Ndegwa, P.M.; Shoda, M.; Phae, C.-G. Bioremediation of oil-contaminated soil using Candida catenulata and food waste. Environ. Pollut. 2008, 156, 891–896. [Google Scholar] [CrossRef]
Experiment | Composition |
---|---|
Set 1 | Contaminated oil + sugarcane molasses + S. bombicola |
Set 2 | Contaminated oil + sugarcane molasses + S. bombicola + biosurfactant at the CMC |
Set 3 | Contaminated oil + sugarcane molasses + S. bombicola + biosurfactant at twice the CMC |
Control | Contaminated oil + sugarcane molasses |
Time (h) | Surface Tension (mN/m) | Optical Density at 600 nm | pH |
---|---|---|---|
0 | 72.00 ± 0.2 | 0.576 ± 0.2 | 6.0 ± 0.3 |
24 | 45.67 ± 0.1 | 1.619 ± 0.5 | 5.2 ± 0.1 |
48 | 37.03 ± 0.5 | 2.548 ± 0.3 | 4.6 ± 0.1 |
72 | 35.01 ± 0.5 | 2.765 ± 0.1 | 4.5 ± 0.2 |
96 | 34.27 ± 0.5 | 2.835 ± 0.1 | 5.0 ± 0.5 |
120 | 33.87 ± 0.3 | 2.838 ± 0.5 | 5.2 ± 0.5 |
144 | 33.45 ± 0.2 | 2.857 ± 0.3 | 5.2 ± 0.2 |
168 | 32.52 ± 0.1 | 2.888 ± 0.2 | 5.4 ± 0.3 |
192 | 32.30 ± 0.1 | 2.892 ± 0.2 | 5.3 ± 0.1 |
Surfactant | Emulsification Index (%) | |||||
---|---|---|---|---|---|---|
Diesel Oil | Kerosene | Motor Oil | n-Hexadecane | Petroleum | Global Mean | |
Biobased 1 | 57.9 ± 3.6 | 56.6 ± 1.2 | 51.7 ± 2.5 | 57.7 ± 1.5 | 61.1 ± 7.7 | 57.0 ± 4.6 |
Biobased 2 | 24.9 ± 2.3 | 25.8 ± 3.8 | 98.6 ± 2.3 | 28.8 ± 6.1 | 66.6 ± 3.3 | 48.9 ± 3.5 |
Commercial biosurfactant | 55.0 ± 0.5 | 75.3 ± 0.3 | 100.0 ± 0.0 | 64.1 ± 1.0 | 99.0 ± 0.3 | 87.5 ± 0.5 |
Tween 80 | 0.0 ± 0.0 | 0.0 ± 0.0 | 73.1 ± 0.03 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Surfactants | Surfactant/Distilled Water Ratio (v/v), and Concentration Tested (%) | |||||
---|---|---|---|---|---|---|
1:2, 1 | 1:2, 2 | 1:5, 1 | 1:5, 2 | 1:10, 1 | 1:10, 2 | |
Biobased 1 | 10.0 ± 1.6% | 0.0 ± 0.0% | 90.0 ± 1.0% | 83.0 ± 1.0% | 100.0 ± 0.0% | 100.0 ± 0.0% |
Biobased 2 | 93.0 ± 0.6% | 97.0 ± 1.2% | 90.0 ± 1.0% | 95.0 ± 0.6% | 90.0 ± 1.0% | 93.0 ± 1.2% |
Commercial biosurfactant | 100.0 ± 0.0% | 90.0 ± 1.0% | 93.0 ± 0.6% | 97.0 ± 0.6% | 77.0 ± 0.65 | 80.0% ± 0.1% |
Tween 80 | 47.0 ± 0.6% | 50.0 ± 1.0% | 90.0 ± 1.0% | 77.0 ± 1.0% | 80.0 ± 10.1% | 90.0 ± 1.0% |
Parameters | Soil | |||
---|---|---|---|---|
Beach Sand | Sandy | Silty | Clay | |
Granulometry (%) | ||||
Sand | 98 | 56 | 30 | 26 |
Silt | 1 | 5 | 39 | 30 |
Clay | 1 | 39 | 31 | 44 |
% Liquidity–plasticity (LP) < 2 μm | 0.6 | 37 | 45 | 53 |
Consistency | ||||
Liquid limit (%) | 0 | 47 | 71 | 66 |
Plasticity index (PI) (%) | 0 | 10 | 26 | 13 |
Ia 1 | 0 | 0.29 | 1.0 | 0.59 |
Compaction | ||||
Optimum moisture (%) | 6.5 | 34 | 26 | 22 |
μdmax 2 (kN/m3) | 14.7 | 26.5 | 27.6 | 26.8 |
Unified classification | SP | SC | MH | CH |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, I.G.S.; de Almeida, F.C.G.; da Rocha e Silva, N.M.P.; de Oliveira, J.T.R.; Converti, A.; Sarubbo, L.A. Application of Green Surfactants in the Remediation of Soils Contaminated by Hydrocarbons. Processes 2021, 9, 1666. https://doi.org/10.3390/pr9091666
da Silva IGS, de Almeida FCG, da Rocha e Silva NMP, de Oliveira JTR, Converti A, Sarubbo LA. Application of Green Surfactants in the Remediation of Soils Contaminated by Hydrocarbons. Processes. 2021; 9(9):1666. https://doi.org/10.3390/pr9091666
Chicago/Turabian Styleda Silva, Israel Gonçalves Sales, Fabíola Carolina Gomes de Almeida, Nathália Maria Padilha da Rocha e Silva, Joaquim Teodoro Romão de Oliveira, Attilio Converti, and Leonie Asfora Sarubbo. 2021. "Application of Green Surfactants in the Remediation of Soils Contaminated by Hydrocarbons" Processes 9, no. 9: 1666. https://doi.org/10.3390/pr9091666
APA Styleda Silva, I. G. S., de Almeida, F. C. G., da Rocha e Silva, N. M. P., de Oliveira, J. T. R., Converti, A., & Sarubbo, L. A. (2021). Application of Green Surfactants in the Remediation of Soils Contaminated by Hydrocarbons. Processes, 9(9), 1666. https://doi.org/10.3390/pr9091666