Adherence to CPAP Therapy in Obstructive Sleep Apnea: A Prospective Study on Quality of Life and Determinants of Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Patients
2.3. Questionnaires
2.4. Data Collection and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.L.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Stradling, J. Obstructive sleep apnoea. BMJ 2007, 335, 313–314. [Google Scholar] [CrossRef] [PubMed]
- Madbouly, E.M.; Nadeem, R.; Nida, M.; Molnar, J.; Aggarwal, S.; Loomba, R. The role of severity of obstructive sleep apnea measured by apnea-hypopnea index in predicting compliance with pressure therapy, a meta-analysis. Am. J. Ther. 2014, 21, 260–264. [Google Scholar] [CrossRef] [PubMed]
- West, S.D.; Turnbull, C. Obstructive sleep apnoea. Eye 2018, 32, 889–903. [Google Scholar] [CrossRef]
- Rapelli, G.; Pietrabissa, G.; Manzoni, G.M.; Bastoni, I.; Scarpina, F.; Tovaglieri, I.; Perger, E.; Garbarino, S.; Fanari, P.; Lombardi, C.; et al. Improving CPAP Adherence in Adults With Obstructive Sleep Apnea Syndrome: A Scoping Review of Motivational Interventions. Front. Psychol. 2021, 12, 705364. [Google Scholar] [CrossRef]
- Wang, Y.; Shou, X.; Wu, Y.; Fan, Z.; Cui, J.; Zhuang, R.; Luo, R. Relationships Between Obstructive Sleep Apnea and Cardiovascular Disease: A Bibliometric Analysis (2010–2021). Med. Sci. Monit. 2022, 28, e933448. [Google Scholar] [CrossRef]
- Labarca, G.; Saavedra, D.; Dreyse, J.; Jorquera, J.; Barbe, F. Efficacy of CPAP for Improvements in Sleepiness, Cognition, Mood, and Quality of Life in Elderly Patients With OSA: Systematic Review and Meta-analysis of Randomized Controlled Trials. Chest 2020, 158, 751–764. [Google Scholar] [CrossRef]
- Gottlieb, D.J.; Punjabi, N.M. Diagnosis and Management of Obstructive Sleep Apnea: A Review. JAMA 2020, 323, 1389–1400. [Google Scholar] [CrossRef]
- Labarca, G.; Schmidt, A.; Dreyse, J.; Jorquera, J.; Enos, D.; Torres, G.; Barbe, F. Efficacy of continuous positive airway pressure (CPAP) in patients with obstructive sleep apnea (OSA) and resistant hypertension (RH): Systematic review and meta-analysis. Sleep Med. Rev. 2021, 58, 101446. [Google Scholar] [CrossRef]
- Zinchuk, A.V.; Gentry, M.J.; Concato, J.; Yaggi, H.K. Phenotypes in obstructive sleep apnea: A definition, examples and evolution of approaches. Sleep Med. Rev. 2017, 35, 113–123. [Google Scholar] [CrossRef]
- Gupta, M.A.; Simpson, F.C. Obstructive sleep apnea and psychiatric disorders: A systematic review. J. Clin. Sleep Med. 2015, 11, 165–175. [Google Scholar] [CrossRef]
- Pecotic, R.; Dodig, I.P.; Valic, M.; Galic, T.; Kalcina, L.L.; Ivkovic, N.; Dogas, Z. Effects of CPAP therapy on cognitive and psychomotor performances in patients with severe obstructive sleep apnea: A prospective 1-year study. Sleep Breath. 2019, 23, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Batool-Anwar, S.; Goodwin, J.L.; Kushida, C.A.; Walsh, J.A.; Simon, R.D.; Nichols, D.A.; Quan, S.F. Impact of continuous positive airway pressure (CPAP) on quality of life in patients with obstructive sleep apnea (OSA). J. Sleep Res. 2016, 25, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Brazier, J. Health, Health-Related Quality of Life, and Quality of Life: What is the Difference? Pharmacoeconomics 2016, 34, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Haraldstad, K.; Wahl, A.; Andenæs, R.; Andersen, J.R.; Andersen, M.H.; Beisland, E.; Borge, C.R.; Engebretsen, E.; Eisemann, M.; Halvorsrud, L.; et al. A systematic review of quality of life research in medicine and health sciences. Qual. Life Res. 2019, 28, 2641–2650. [Google Scholar] [CrossRef]
- Flemons, W.W.; Reimer, M.A. Measurement properties of the calgary sleep apnea quality of life index. Am. J. Respir. Crit. Care Med. 2002, 165, 159–164. [Google Scholar] [CrossRef]
- Kuhn, E.; Schwarz, E.I.; Bratton, D.J.; Rossi, V.A.; Kohler, M. Effects of CPAP and Mandibular Advancement Devices on Health-Related Quality of Life in OSA: A Systematic Review and Meta-analysis. Chest 2017, 151, 786–794. [Google Scholar] [CrossRef]
- Bakker, J.P.; Weaver, T.E.; Parthasarathy, S.; Aloia, M.S. Adherence to CPAP: What Should We Be Aiming For, and How Can We Get There? Chest 2019, 155, 1272–1287. [Google Scholar] [CrossRef]
- Battan, G.; Kumar, S.; Panwar, A.; Atam, V.; Kumar, P.; Gangwar, A.; Roy, U. Effect of CPAP Therapy in Improving Daytime Sleepiness in Indian Patients with Moderate and Severe OSA. J. Clin. Diagn. Res. 2016, 10, OC14–OC16. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Pecotic, R.; Dodig, I.P.; Valic, M.; Ivkovic, N.; Dogas, Z. The evaluation of the Croatian version of the Epworth sleepiness scale and STOP questionnaire as screening tools for obstructive sleep apnea syndrome. Sleep Breath. 2012, 16, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Walker, N.A.; Sunderram, J.; Zhang, P.; Lu, S.E.; Scharf, M.T. Clinical utility of the Epworth sleepiness scale. Sleep Breath. 2020, 24, 1759–1765. [Google Scholar] [CrossRef]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Flemons, W.W.; Reimer, M.A. Development of a disease-specific health-related quality of life questionnaire for sleep apnea. Am. J. Respir. Crit. Care Med. 1998, 158, 494–503. [Google Scholar] [CrossRef]
- Olsen, S.; Smith, S.; Oei, T.P.; Douglas, J. Cues to starting CPAP in obstructive sleep apnea: Development and validation of the cues to CPAP Use Questionnaire. J. Clin. Sleep Med. 2010, 6, 229–237. [Google Scholar] [CrossRef]
- AASM International Classification of Sleep Disorders—Third Edition (ICSD-3). Available online: https://learn.aasm.org/Listing/a1341000002XmRvAAK (accessed on 25 March 2023).
- Kribbs, N.B.; Pack, A.I.; Kline, L.R.; Smith, P.L.; Schwartz, A.R.; Schubert, N.M.; Redline, S.; Henry, J.N.; Getsy, J.E.; Dinges, D.F. Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea. Am. Rev. Respir. Dis. 1993, 147, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Gay, P.; Weaver, T.; Loube, D.; Iber, C.; Positive Airway Pressure Task Force; Standards of Practice Committee; American Academy of Sleep Medicine. Evaluation of positive airway pressure treatment for sleep related breathing disorders in adults. Sleep 2006, 29, 381–401. [Google Scholar] [CrossRef]
- Kim, T. Quality of Life in Metabolic Syndrome Patients Based on the Risk of Obstructive Sleep Apnea. Behav. Sci. 2024, 14, 127. [Google Scholar] [CrossRef]
- Lee, W.; Lee, S.A.; Ryu, H.U.; Chung, Y.S.; Kim, W.S. Quality of life in patients with obstructive sleep apnea: Relationship with daytime sleepiness, sleep quality, depression, and apnea severity. Chron. Respir. Dis. 2016, 13, 33–39. [Google Scholar] [CrossRef]
- Hamada, S.; Togawa, J.; Sunadome, H.; Nagasaki, T.; Takahashi, N.; Hirai, T.; Sato, S. Sleep Restfulness in Patients with Obstructive Sleep Apnea Undergoing Continuous Positive Airway Pressure Therapy. Sleep Sci. 2024, 17, e37–e44. [Google Scholar] [CrossRef]
- Sgaria, V.P.; Cielo, C.A.; Bortagarai, F.M.; Fleig, A.H.D.; Callegaro, C.C. CPAP Treatment Improves Quality of Life and Self-perception of Voice Impairment in Patients with OSA. J. Voice 2024, in press. [Google Scholar] [CrossRef]
- Singh, A.; Bhat, A.; Saroya, J.; Chang, J.; Durr, M.L. Sociodemographic and Healthcare System Barriers to PAP Alternatives for Adult OSA: A Scoping Review. Laryngoscope 2024. epub ahead of print. [Google Scholar]
- Sun, L.; Chang, Y.F.; Wang, Y.F.; Xie, Q.X.; Ran, X.Z.; Hu, C.Y.; Luo, B.; Ning, B. Effect of Continuous Positive Airway Pressure on Blood Pressure in Patients with Resistant Hypertension and Obstructive Sleep Apnea: An Updated Meta-analysis. Curr. Hypertens. Rep. 2024. epub ahead of print. [Google Scholar]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e56–e67. [Google Scholar] [CrossRef] [PubMed]
- Weaver, T.E.; Grunstein, R.R. Adherence to continuous positive airway pressure therapy: The challenge to effective treatment. Proc. Am. Thorac. Soc. 2008, 5, 173–178. [Google Scholar] [CrossRef]
- Franke, C.; Piezonna, F.; Schäfer, R.; Grimm, A.; Loris, L.M.; Schwaibold, M. Effect of a digital patient motivation and support tool on CPAP/APAP adherence and daytime sleepiness: A randomized controlled trial. Sleep Biol. Rhythm. 2023, 22, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Schisano, M.; Libra, A.; Rizzo, L.; Morana, G.; Mancuso, S.; Ficili, A.; Campagna, D.; Vancheri, C.; Bonsignore, M.R.; Spicuzza, L. Distance follow-up by a remote medical care centre improves adherence to CPAP in patients with obstructive sleep apnoea over the short and long term. J. Telemed. Telecare 2024, 1357633X241238483. [Google Scholar] [CrossRef]
- Fiorita, A.; Scarano, E.; Mastrapasqua, R.; Picciotti, P.M.; Loperfido, A.; Rizzotto, G.; Paludetti, G. Moderate OSAS and turbinate decongestion: Surgical efficacy in improving the quality of life and compliance of CPAP using Epworth score and SNOT-20 score. Acta Otorhinolaryngol. Ital. 2018, 38, 214–221. [Google Scholar] [CrossRef]
- Gabryelska, A.; Sochal, M.; Wasik, B.; Szczepanowski, P.; Białasiewicz, P. Factors Affecting Long-Term Compliance of CPAP Treatment-A Single Centre Experience. J. Clin. Med. 2021, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.E.; Jung, J.H.; Kang, J.M.; Cho, M.Y.; Lee, Y.S.; Kang, S.G.; Kim, S.T. Predictors of Continuous Positive Airway Pressure Adherence and Comparison of Clinical Factors and Polysomnography Findings Between Compliant and Non-Compliant Korean Adults With Obstructive Sleep Apnea. Psychiatry Investig. 2024, 21, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Kasetti, P.; Husain, N.F.; Skinner, T.C.; Asimakopoulou, K.; Steier, J.; Sathyapala, S.A. Personality traits and pre-treatment beliefs and cognitions predicting patient adherence to continuous positive airway pressure: A systematic review. Sleep Med. Rev. 2024, 74, 101910. [Google Scholar] [CrossRef]
- Kojima, S.; Saito, A.; Sasaki, F.; Hayashi, M.; Mieno, Y.; Sakakibara, H.; Hashimoto, S. Associations of self-efficacy and outcome expectancy with adherence to continuous positive airway pressure therapy in Japanese patients with obstructive sleep apnea. Fujita Med. J. 2023, 9, 142–146. [Google Scholar]
- Laratta, C.R.; Ayas, N.T.; Povitz, M.; Pendharkar, S.R. Diagnosis and treatment of obstructive sleep apnea in adults. Can. Med. Assoc. J. 2017, 189, E1481–E1488. [Google Scholar] [CrossRef] [PubMed]
- Bailly, S.; Grote, L.; Hedner, J.; Schiza, S.; McNicholas, W.T.; Basoglu, O.K.; Lombardi, C.; Dogas, Z.; Roisman, G.; Pataka, A.; et al. Clusters of sleep apnoea phenotypes: A large pan-European study from the European Sleep Apnoea Database (ESADA). Respirology 2021, 26, 378–387. [Google Scholar] [CrossRef] [PubMed]
Parameters | Total Patients (n = 87) |
---|---|
Age (years, mean, and SD) | 55.6 ± 12.5 |
Sex | |
Men (n, %) | 67 (77%) |
Women (n, %) | 20 (23%) |
Height (cm, mean, and SD) | 179.3 ± 9.2 |
Weight (kg, mean, and SD) | 108.9 ± 24.7 |
Body mass index (kg/m2, mean, and SD) * | 33.2 ± 7.4 |
18.5 ≤ 25 (n, %) | 5 (6.5%) |
25 ≤ 30 (n, %) | 19 (24.7%) |
30 ≤ 35 (n, %) | 24 (31.2%) |
35 ≤ 40 (n, %) | 20 (26%) |
≥40 (n, %) | 9 (11.7%) |
Neck circumference (cm, mean, and SD) | 45.4 ± 5.0 |
Waist circumference (cm, mean, and SD) | 118.0 ± 16.0 |
Hip circumference (cm, mean, and SD) | 115.6 ± 12.4 |
Apnea–hypopnea index (/hour, mean, and SD) | 50.5 ± 19.1 |
Oxygen desaturation index (/hour, mean, and SD) | 51.0 ± 22.8 |
Mean saturation (%, mean, and SD) | 92.8 ± 3.6 |
Time below 90% saturation (hours, mean, and SD) | 1.4 ± 1.8 |
Lowest saturation (%, mean, and SD) | 72.3 ± 11.8 |
Smoker (n, %) | 25 (28.7%) |
Arterial hypertension (n, %) | 57 (65.5%) |
Diabetes mellitus type II (n, %) | 22 (25.3%) |
Depression (n, %) | 4 (4.6%) |
Asthma (n, %) | 8 (9.2%) |
Gastroesophageal reflux disease (n, %) | 17 (19.5%) |
Allergic rhinitis (n, %) | 10 (11.5%) |
Previous rhinoplasty (n, %) | 9 (10.3%) |
ECOG Performance Status Scale | |
0 (n, %) | 33 (37.9%) |
1 (n, %) | 54 (62.1%) |
2 (n, %) | 0 (0%) |
3 (n, %) | 0 (0%) |
4 (n, %) | 0 (0%) |
5 (n, %) | 0 (0%) |
Parameters | Total (n = 55) | CPAP Non-Compliant (n = 21) | CPAP Compliant (n = 34) | p-Value † |
---|---|---|---|---|
Average usage on all days (hours) * | 5.1 ± 1.9 | 3.3 ± 1.2 | 6.3 ± 1.2 | <0.001 |
Average usage on days when CPAP was used (hours) * | 5.7 ± 1.7 | 4.3 ± 1.2 | 6.6 ± 1.2 | <0.001 |
Total days with device usage (n) * | 26.8 ± 7.4 | 23.6 ± 10.3 | 28.8 ± 3.5 | 0.011 |
Percentage of days with device usage (%) | 88% ± 17.8% | 78.3% ± 23.1% | 94.4% ± 9% | <0.001 |
Total days with CPAP usage ≥ 4 h (n) | 20.5 ± 9.3 | 10.7 ± 5.8 | 26.5 ± 4.8 | <0.001 |
Percentage of days with CPAP usage ≥ 4 h (%) | 69.8% ± 28.7% | 37.9% ± 19% | 89.4% ± 9.5% | <0.001 |
Average apnea–hypopnea index (n) | 4.7 ± 4.6 | 6.5 ± 6.3 | 3.5 ± 2.8 | 0.018 |
Parameters | Before CPAP | After One Month of CPAP | p-Value * |
---|---|---|---|
Domain A | 2.9 ± 1.2 | 2.1 ± 1.2 | <0.001 |
Domain B | 2.9 ± 1.2 | 2.1 ± 1.2 | <0.001 |
Domain C | 2.8 ± 1.3 | 2.2 ± 1.1 | <0.001 |
Domain D † | 5.2 ± 1.7 | 3.3 ± 1.7 | <0.001 |
Domain E † | - | 2.8 ± 1.5 | - |
Total SAQLI † | 3.4 ± 1.1 | 1.7 ± 0.9 | <0.001 |
Domain F I † | - | 7.0 ± 2.4 | - |
Domain F II † | - | 3.6 ± 3.3 | - |
Epworth Sleepiness Scale ‡ | 7.2 ± 5.1 | 4.6 ± 4.2 | 0.004 |
Parameters | Total (n = 50) | CPAP Non-Compliant (n = 20) | CPAP Compliant (n = 30) | p-Value * | OR (95%CI) | p-Value † |
---|---|---|---|---|---|---|
Q1 My sleep physician said that I should | 44 (88%) | 19 (95%) | 23 (76.7%) | 0.214 | 0.263 (0.028–2.443) | 0.381 |
Q2 I was worried about my heart | 30 (60%) | 16 (80%) | 14 (46.7%) | 0.018 | 0.219 (0.059–0.810) | 0.022 |
Q3 Partner could not sleep because of my snoring | 29 (58%) | 10 (50%) | 19 (63.3%) | 0.349 | 1.727 (0.548–5.448) | 0.393 |
Q4 My sleep physician was worried about my OSA | 42 (84%) | 18 (90%) | 24 (80%) | 0.345 | 0.444 (0.080–2.465) | 0.450 |
Q5 Advice from a friend/acquaintance (who does not have OSA) | 11 (22%) | 7 (35%) | 4 (13.3%) | 0.070 | 0.286 (0.071–1.155) | 0.090 |
Q6 Partner encouraged me to start CPAP ‡ | 34 (69.4%) | 14 (70%) | 20 (69%) | 0.938 | 0.952 (0.276–3.286) | 1.000 |
Q7 I was worried about the health consequences of my sleep problem | 39 (78%) | 17 (85%) | 22 (73.3%) | 0.329 | 0.485 (0.112–2.111) | 0.489 |
Q8 I was so tired all of the time | 36 (72%) | 16 (80%) | 20 (66.7%) | 0.304 | 0.500 (0.132–1.896) | 0.353 |
Q9 I was worried that I would have a car accident | 10 (20%) | 5 (25%) | 5 (16.7%) | 0.470 | 0.600 (0.149–0.421) | 0.494 |
Variable | Unstandardized Coefficients | Standard Error | Standardized Coefficients | T | p-Value |
---|---|---|---|---|---|
Apnea–hypopnea index * | −0.342 | 0.990 | −0.051 | −0.345 | 0.732 |
Epworth sleepiness scale * | −8.653 | 3.684 | −0.387 | −2.349 | 0.024 |
Total SAQLI score * | 48.263 | 16.647 | 0.481 | 2.899 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the University Association of Education and Psychology. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milinovic, K.; Pavlinac Dodig, I.; Lusic Kalcina, L.; Pecotic, R.; Ivkovic, N.; Valic, M.; Dogas, Z. Adherence to CPAP Therapy in Obstructive Sleep Apnea: A Prospective Study on Quality of Life and Determinants of Use. Eur. J. Investig. Health Psychol. Educ. 2024, 14, 2463-2475. https://doi.org/10.3390/ejihpe14090163
Milinovic K, Pavlinac Dodig I, Lusic Kalcina L, Pecotic R, Ivkovic N, Valic M, Dogas Z. Adherence to CPAP Therapy in Obstructive Sleep Apnea: A Prospective Study on Quality of Life and Determinants of Use. European Journal of Investigation in Health, Psychology and Education. 2024; 14(9):2463-2475. https://doi.org/10.3390/ejihpe14090163
Chicago/Turabian StyleMilinovic, Karla, Ivana Pavlinac Dodig, Linda Lusic Kalcina, Renata Pecotic, Natalija Ivkovic, Maja Valic, and Zoran Dogas. 2024. "Adherence to CPAP Therapy in Obstructive Sleep Apnea: A Prospective Study on Quality of Life and Determinants of Use" European Journal of Investigation in Health, Psychology and Education 14, no. 9: 2463-2475. https://doi.org/10.3390/ejihpe14090163
APA StyleMilinovic, K., Pavlinac Dodig, I., Lusic Kalcina, L., Pecotic, R., Ivkovic, N., Valic, M., & Dogas, Z. (2024). Adherence to CPAP Therapy in Obstructive Sleep Apnea: A Prospective Study on Quality of Life and Determinants of Use. European Journal of Investigation in Health, Psychology and Education, 14(9), 2463-2475. https://doi.org/10.3390/ejihpe14090163