Viral Vector-Based Gene Therapy
Abstract
:1. Introduction
2. AAV Vectors
- (1)
- Insert size: The recommended maximum insert size for cloning into AAV vector is limited. In order to counter this problem, the AAV genome is combined, via homologous recombination, to the same inverted terminal repeat (ITR) sequences. Large volumes of gene expression cassettes are divided into two or more vectors and then transported to the same cells. Two or three separate AAV vectors have been delivered successfully in animals and enabled the successful expression of functional dystrophin. The other approach involves gene fragment cutting, which is aimed at larger gene fragments. Only the functional regions are intercepted, such as delivering the B-domain-deleted factor VIII gene [36]. In addition, essentially 96% of the AAV genome may be removed to permit the engineering of the AAV vector for gene therapy [37].
- (2)
- Targeted tissue specificity: In off-target tissues, cell gene expression may cause toxicity or induce unwanted immune responses. Christos Kiourtis et al. reported that AAV8-TBG vectors serve as reliable and efficient tools for hepatocyte-specific genetic manipulation with minimal off-target effects [38]. Moreover, Reifler Aaron et al. demonstrated that compared to Opn4Cre mice, a recombinant serotype-2 adeno-associated virus (rAAV2-Opn4-Cre)-mediated Cre recombinase expression in melanopsin ganglion cells occurred without leaky expression in rod/cone photoreceptors [39]. Improving the targeted tissue specificity in gene therapy would assist in enhancing the efficacy of the therapy. The tissue specificity of AAV vector-based tissue targeting is determined by the capsid proteins of AVV. Previous studies have used the capsid and viral machinery derived from the AAV serotype 2 (AAV2), which continues to be the basis for most AAV systems, although engineered capsids, such as DJ and DJ8, which exhibit tissue-specific tropisms or higher infectivity, have become available now [40]. Different AAV serotypes exhibit different tissue tropisms and are usually applied to different clinical studies (Table 3). In addition, selecting appropriate tissue-specific promoters is important [41]. Trials have reported the use of tissue-specific strong promoters, such as albumin and synapsin, to achieve an expression specific to a particular tissue [42,43]. Systemic diseases usually require high doses of particles to be administered for clinical trials [44]. While high doses are necessary to achieve sufficient transgene expression in the target cell populations, they may lead to severe adverse effects due to off-target expression, such as hepatotoxicity [45], neurotoxicity [46], atypical hemolytic uremic syndrome (aHUS) [47], and even death in critical cases [35,48,49,50]. Increased target specificity of rAAVs would reduce the necessary viral dose as well as the off-target adverse effects. Therefore, it is imperative to develop AAV gene delivery vectors that are optimized for cell-type-specific delivery.
- (3)
- Inefficient transduction: AAV vectors may be engineered at the transgene level, for example, to optimize codons, promoters, and cis-elements, which may have the greatest potential to positively impact all AAV vectors used in the clinic [37].
- (4)
- Immune response: According to published studies, >90% of humans have been infected with AAV, while ~50% of humans may have neutralizing antibodies (Nabs) [37,51,52]. These antibodies could stimulate the production of inflammatory molecules, activate cell-death pathways, and induce the development of killer T cells capable of targeting the AAV-containing cells for destruction. Further studies revealed a set of memory CD8+ T cells against AAV capsid in humans (who have been naturally infected with AAV), which could eliminate transduced hepatocytes [53]. In addition, a considerable prevalence of neutralizing antibodies against AAV (particularly against serotype 2) has been reported in the human population, which could block the gene transfer to the liver above a certain titer. While using AAV vectors alone does not elicit a strong immune response similar to that elicited upon using other viruses such as adenovirus, the above findings highlight that the immune system remains an obstacle in the in vivo gene transfer. Anastasia Conti reported that a drug named Anakinra reduces the inflammation induced by gene editing.
- (5)
- Impractical production strategies and low viral quantities [54]: Industries and research institutions should explore how to reduce the number of plasmids required for transient transfection and improve transfection efficiency. In addition, how to increase cell culture density, expand the production capacity, and remove the empty virus should be explored.
- (6)
- High cost: The high cost of gene therapy research (such as the high cost of plasmids) and development has led to extremely high terminal commercial pricing. For instance, Zolgensma costs $2.125 million. This high cost, combined with the lack of an insurance payment system, is an issue for patients unable to afford such high costs on their own. Evidently, the traditional payment mechanisms are not adequate for gene therapies, which raises the necessity of adopting novel and efficient payment mechanisms.
- (7)
- Disease case narrow: The analysis data demonstrate that the proportion of trials for agents targeting regions other than the eye, liver, muscle, and CNS is low. Major organs, such as the heart, the kidney, and the lung, continue to be almost inaccessible to AAV-based gene therapies [55]. Several ongoing AAV gene therapy trials could translate into novel products being approved for clinical use in the future [56].
3. Ad Vectors
4. LV Vectors
5. Other Viral Vectors
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADA | adenosine deaminase CRISPR/Cas9: clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 |
ZFNs | zinc finger nucleases |
TALEN | transcription activation-like effector nuclease |
CAR-T | chimeric antigen receptor– T |
AAVs | adeno-associated viruses |
Ads | adenoviruses |
LVs | lentiviruses |
SMA | spinal muscular atrophy |
SMN1 | survival motor neuron 1 |
aHUS | atypical hemolytic uremic syndrome |
Kb | kilobases |
FGFR-1 | fibroblast growth factor receptor 1 |
c-Met | hepatocyte growth factor receptor |
ITR | inverted terminal repeat |
AAV2 | AAV serotype 2 |
Nabs | neutralizing antibodies |
dsDNA | double-stranded DNA |
CAR | coxsackie and adenovirus receptor |
DSG-2 | desmoglein-2 |
CAV-2 | canine adenovirus type 2 |
OVs | oncolytic viruses |
HAd2 | human adenovirus serotypes 2 |
CRAds | conditionally replicating adenoviruses |
ICPs | immune checkpoints |
CTLA-4 | cytotoxic T-lymphocyte-associated protein 4 |
PD1 | programmed cell death 1 |
PD-L1 | programmed cell death ligand 1 |
NSCLC | non-small-cell lung cancer |
RCC | renal cell carcinoma |
BAd3 | bovine Ad serotype 3 |
PAd3 | porcine Ad serotype 3 |
HAd | human Ad |
Ad5 | adenovirus serotype 5 |
LTR | long terminal repeat |
cPPT/CTS | central polypurine tract/chain termination sequence |
RRE | Rev responsive element |
VSV-G | vesicular stomatitis virus G protein |
B-ALL | B-cell acute lymphoblastic leukemia |
TDT | transfusion-dependent β-thalassemia |
HSC | hematopoietic stem cell |
HLA | human leukocyte antigen |
NILVs | non-integrating LVs |
ATMPs | advanced therapy medicinal products |
HSV | herpes simplex virus |
BCG | bacillus calmette-guérin |
NMIBC | non-muscle invasive bladder cancer |
CIS | carcinoma in situ |
LBCL | large B-cell lymphoma |
CALD | active cerebral adrenoleukodystrophy |
MCL | mantle cell lymphoma |
RBC | red blood cell |
MLD | metachromatic leukodystrophy |
ADA-SCID | severe combined immunodeficiency due to adenosine deaminase deficiency |
AADC | aromatic L-amino acid decarboxylase |
HSCT | hematopoietic stem cell transplantation |
References
- Kumar, S.R.; Markusic, D.M.; Biswas, M.; High, K.A.; Herzog, R.W. Clinical development of gene therapy: Results and lessons from recent successes. Mol. Ther. Methods Clin. Dev. 2016, 3, 16034. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.R.; Al-Zoubi, I.A.; Raghuram, P.H.; Misra, N.; Yadav, N.; Alam, M.K. Gene Therapy: A Comprehensive Review. Int. Med. J. 2018, 25, 361–364. [Google Scholar]
- Ledford, H. Gene therapy’s comeback: How scientists are trying to make it safer. Nature 2022, 606, 443–444. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, T. Stanfield Rogers: Insights into Virus Vectors and Failure of an Early Gene Therapy Model. Mol. Ther. 2001, 4, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.F. Human Gene Therapy. Science 1992, 256, 808–813. [Google Scholar] [CrossRef]
- Cepko, C.L.; Roberts, B.E.; Mulligan, R.C. Construction and applications of a highly transmissible murine retrovirus shuttle vector. Cell 1984, 37, 1053–1062. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- High, K.A.; Anguela, X.M. Adeno-associated viral vectors for the treatment of hemophilia. Hum. Mol. Genet. 2016, 25, R36–R41. [Google Scholar] [CrossRef]
- Munis, A.M. Gene Therapy Applications of Non-Human Lentiviral Vectors. Viruses 2020, 12, 1106. [Google Scholar] [CrossRef]
- Gene therapies should be for all. Nat. Med. 2021, 27, 1311. [CrossRef]
- Smith, A.J.; Bainbridge, J.W.B.; Ali, R.R. Gene supplementation therapy for recessive forms of inherited retinal dystrophies. Gene Ther. 2012, 19, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Occelli, L.M.; Schoen, C.; Seeliger, M.W.; Biel, M.; Michalakis, S.; Petersen-Jones, S.M.; Rd-Cure Consortium. Gene Supplementation Rescues Rod Function and Preserves Photoreceptor and Retinal Morphology in Dogs, Leading the Way Toward Treating Human PDE6A-Retinitis Pigmentosa. Hum Gene Ther. 2017, 28, 1189–1201. [Google Scholar] [CrossRef] [PubMed]
- Nóbrega, C.; Mendonça, L.; Matos, C.A. Gene Therapy Strategies: Gene Silencing. In A Handbook of Gene and Cell Therapy; Nóbrega, C., Mendonça, L., Matos, C.A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 127–146. [Google Scholar]
- Narayanaswami, P.; Živković, S. 11-Molecular and Genetic Therapies. In Neuromuscular Disorders, 2nd eds.; Bertorini, T.E., Ed.; Elsevier: St. Louis, MO, USA, 2022; pp. 225–246. [Google Scholar]
- Maeder, M.L.; Gersbach, C.A. Genome-editing Technologies for Gene and Cell Therapy. Mol. Ther. J. Am. Soc. Gene Ther. 2016, 24, 430–446. [Google Scholar] [CrossRef]
- Kobelt, D.; Pahle, J.; Walther, W. A Brief Introduction to Current Cancer Gene Therapy. Methods Mol. Biol. 2022, 2521, 346–358. [Google Scholar]
- Li, H.; Yang, Y.; Hong, W.; Huang, M.; Wu, M.; Zhao, X. Applications of genome editing technology in the targeted therapy of human diseases: Mech-anisms, advances and prospects. Signal Transduct. Target. Ther. 2020, 5, 1. [Google Scholar] [CrossRef]
- Tröder, S.E.; Zevnik, B. History of genome editing: From meganucleases to CRISPR. Lab. Anim. 2022, 56, 60–68. [Google Scholar] [CrossRef]
- Dimitri, A.; Herbst, F.; Fraietta, J.A. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol. Cancer 2022, 21, 78. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, Y. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein Cell 2017, 8, 634–643. [Google Scholar] [CrossRef]
- Brezgin, S.; Kostyusheva, A.; Kostyushev, D.; Chulanov, V. Dead Cas Systems: Types, Principles, and Applications. Int. J. Mol. Sci. 2019, 20, 6041. [Google Scholar] [CrossRef]
- Barrangou, R.; Horvath, P. A decade of discovery: CRISPR functions and applications. Nat. Microbiol. 2017, 2, 17092. [Google Scholar] [CrossRef]
- Paunovska, K.; Loughrey, D.; Dahlman, J.E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 2022, 23, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Borel, F.; Mueller, C. Design of AAV Vectors for Delivery of RNAi. Adeno-Assoc. Virus Vectors Des. Deliv. 2019, 1950, 3–18. [Google Scholar]
- Brommel, C.M.; Cooney, A.L.; Sinn, P.L. Adeno-Associated Virus-Based Gene Therapy for Lifelong Correction of Genetic Disease. Hum. Gene Ther. 2020, 31, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, E.; Ravanshad, M.; Xie, J.; Panigrahi, R.; Jubbal, S.S.; Guru, S.K.; Guangping, G.; Ziyaeyan, M.; Fingeroth, J. Serotype-dependent recombinant adeno-associated vector (AAV) infection of Ep-stein-Barr virus-positive B-cells, toward recombinant AAV-based therapy of focal EBV + lymphoproliferative disorders. Virol. J. 2021, 18, 223. [Google Scholar] [CrossRef]
- GuhaSarkar, D.; Neiswender, J.; Su, Q.; Gao, G.; Sena-Esteves, M. Intracranial AAV-IFN-β gene therapy eliminates invasive xenograft glio-blastoma and improves survival in orthotopic syngeneic murine model. Mol. Oncol. 2017, 11, 180–193. [Google Scholar] [CrossRef]
- Park, K.; Kim, W.J.; Cho, Y.H.; Lee, Y.I.; Lee, H.; Jeong, S.; Cho, E.S.; Chang, S.I.; Moon, S.K.; Kang, B.S.; et al. Cancer gene therapy using adeno-associated virus vectors. Front. Biosci. A J. Virtual Libr. 2008, 13, 2653–2659. [Google Scholar] [CrossRef]
- Hastie, E.; Samulski, R.J. Adeno-associated virus at 50: A golden anniversary of discovery, research, and gene therapy suc-cess--a personal perspective. Hum. Gene Ther. 2015, 26, 257–265. [Google Scholar] [CrossRef]
- McIntosh, N.L.; Berguig, G.Y.; Karim, O.A.; Cortesio, C.L.; De Angelis, R.; Khan, A.A.; Gold, D.; Maga, J.A.; Bhat, V.S. Comprehensive characterization and quantification of adeno associated vectors by size exclusion chromatography and multi angle light scattering. Sci. Rep. 2021, 11, 3012. [Google Scholar] [CrossRef]
- Smith, R.H.; Afione, S.A.; Kotin, R.M. Transposase-mediated construction of an integrated adeno-associated virus type 5 helper plasmid. Bio Tech. 2002, 33, 204–211. [Google Scholar] [CrossRef]
- Blackburn, S.D.; Steadman, R.A.; Johnson, F.B. Attachment of adeno-associated virus type 3H to fibroblast growth factor receptor 1. Arch. Virol. 2006, 151, 617–623. [Google Scholar] [CrossRef]
- Kaplitt, M.G.; Xiao, X.; Samulski, R.J.; Li, J.; Ojamaa, K.; Klein, I.L.; Makimura, H.; Kaplitt, M.J.; Strumpf, R.K.; Diethrich, E.B. Long-term gene transfer in porcine myocardium after coronary infusion of an adeno-associated virus vector. Ann. Thorac. Surg. 1996, 62, 1669–1676. [Google Scholar] [CrossRef] [PubMed]
- Dalwadi, D.A.; Calabria, A.; Tiyaboonchai, A.; Posey, J.; Naugler, W.E.; Montini, E.; Grompe, M. AAV integration in human hepatocytes. Mol. Ther. J. Am. Soc. Gene Ther. 2021, 29, 2898–2909. [Google Scholar] [CrossRef] [PubMed]
- Hinderer, C.; Katz, N.; Buza, E.L.; Dyer, C.; Goode, T.; Bell, P.; Richman, L.K.; Wilson, J.M.; Duan, D.; Calcedo, R.; et al. Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum. Gene Ther. 2018, 29, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Rosen, S.; Tiefenbacher, S.; Robinson, M.; Huang, M.; Srimani, J.; MacKenzie, D.; Christianson, T.; Pasi, K.J.; Rangarajan, S.; Symington, E.; et al. Activity of transgene-produced B-domain–deleted factor VIII in human plasma following AAV5 gene therapy. Blood 2020, 136, 2524–2534. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Samulski, R.J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 2020, 21, 255–272. [Google Scholar] [CrossRef]
- Kiourtis, C.; Wilczynska, A.; Nixon, C.; Clark, W.; May, S.; Bird, T.G. Specificity and off-target effects of AAV8-TBG viral vectors for the manipu-lation of hepatocellular gene expression in mice. Biol. Open 2021, 10, bio058678. [Google Scholar] [CrossRef]
- Reifler, A.N.; Wong, K.Y. Adeno-associated virus (AAV)-mediated Cre recombinase expression in melanopsin ganglion cells without leaky expression in rod/cone photoreceptors. J. Neurosci. Methods 2023, 384, 109762. [Google Scholar] [CrossRef]
- Grimm, D.; Lee, J.S.; Wang, L.; Desai, T.; Akache, B.; Storm, T.A.; Kay, M.A. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and re-targeting of adeno-associated viruses. J. Virol. 2008, 82, 5887–5911. [Google Scholar] [CrossRef]
- Sack, B.K.; Herzog, R.W. Evading the immune response upon in vivo gene therapy with viral vectors. Curr. Opin. Mol. Ther. 2009, 11, 493–503. [Google Scholar]
- Massaro, G.; Hughes, M.P.; Whaler, S.M.; Wallom, K.L.; Priestman, D.A.; Platt, F.M.; Waddington, S.N.; Rahim, A.A. Systemic AAV9 gene therapy using the synapsin I promoter rescues a mouse model of neuronopathic Gaucher disease but with limited cross-correction potential to astrocytes. Hum. Mol. Genet. 2020, 29, 1933–1949. [Google Scholar] [CrossRef]
- Jin, Q.; Qiao, C.; Li, J.; Li, J.; Xiao, X. An engineered serum albumin-binding AAV9 capsid achieves improved liver transduction after intravenous delivery in mice. Gene Ther. 2019, 27, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Kaemmerer, W.F.J.B.; Medicine, T. How will the field of gene therapy survive its success? Bioeng. Transl. Med. 2018, 3, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Ertl, H.C.J. Immunogenicity and toxicity of AAV gene therapy. Front. Immunol. 2022, 13, 975803. [Google Scholar] [CrossRef] [PubMed]
- Crunkhorn, S. Reducing AAV vector associated neurotoxicity. Nat. Rev. Drug Discov. 2020, 20, 20. [Google Scholar] [CrossRef]
- Kishimoto, T.K.; Samulski, R.J. Addressing high dose AAV toxicity–‘one and done’ or ‘slower and lower’? Expert Opin. Biol. Ther. 2022, 22, 1067–1071. [Google Scholar] [CrossRef]
- Srivastava, A. AAV Vectors: Are They Safe? Hum. Gene Ther. 2020, 31, 697–699. [Google Scholar] [CrossRef]
- Wilson, J.M.; Flotte, T.R. Moving Forward After Two Deaths in a Gene Therapy Trial of Myotubular Myopathy. Hum. Gene Ther. 2020, 31, 695–696. [Google Scholar] [CrossRef]
- Agarwal, S. High-dose AAV gene therapy deaths. Nat. Biotechnol. 2020, 38, 910. [Google Scholar]
- Louis Jeune, V.; Joergensen, J.A.; Hajjar, R.J.; Weber, T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum. Gene Ther. Methods 2013, 24, 59–67. [Google Scholar] [CrossRef]
- Vandamme, C.; Adjali, O.; Mingozzi, F. Unraveling the Complex Story of Immune Responses to AAV Vectors Trial After Trial. Hum. Gene Ther. 2017, 28, 1061–1074. [Google Scholar] [CrossRef]
- Hui, D.J.; Edmonson, S.C.; Podsakoff, G.M.; Pien, G.C.; Ivanciu, L.; Camire, R.M.; Ertl, H.; Mingozzi, F.; High, K.A.; Basner-Tschakarjan, E. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes. Mol. Ther. Methods Clin. Dev. 2015, 2, 15029. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Ferran, B.; Tsukahara, Y.; Shang, Q.; Desai, S.; Fedoce, A.; Pimentel, D.R.; Luptak, I.; Adachi, T.; Ido, Y.; et al. Production of adeno-associated virus vectors for in vitro and in vivo applications. Sci. Rep. 2019, 9, 13601. [Google Scholar] [CrossRef] [PubMed]
- Kuzmin, D.A.; Shutova, M.V.; Johnston, N.R.; Smith, O.P.; Fedorin, V.V.; Kukushkin, Y.S.; van der Loo, J.C.M.; Johnstone, E.C. The clinical landscape for AAV gene therapies. Nat. Rev. Drug Discov. 2021, 20, 173–174. [Google Scholar] [CrossRef]
- O’Neil, K.M.; Wang, B.J. An Analysis Of The Gene Therapy Viral Vector Landscape; 2021. Available online: https://www.cellandgene.com/doc/an-analysis-of-the-gene-therapy-viral-vector-landscape-0001 (accessed on 19 April 2023).
- Gallardo, J.; Pérez-Illana, M.; Martín-González, N.; San Martín, C. Adenovirus Structure: What Is New? Int. J. Mol. Sci. 2021, 22, 5240. [Google Scholar] [CrossRef]
- Usman, N.; Suarez, M. Adenoviruses; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Waddington, S.N.; McVey, J.H.; Bhella, D.; Parker, A.L.; Barker, K.; Atoda, H.; Pink, R.; Buckley, S.M.; Greig, J.A.; Denby, L.; et al. Adenovirus Serotype 5 Hexon Mediates Liver Gene Transfer. Cell 2008, 132, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Chillón, M.; Bosch, A. Adenovirus: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2014. [Google Scholar]
- Lee, C.S.; Bishop, E.S.; Zhang, R.; Yu, X.; Farina, E.M.; Yan, S.; Zhao, C.; Zeng, Z.; Shu, Y.; Wu, X.; et al. Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine. Genes Dis. 2017, 4, 43–63. [Google Scholar] [CrossRef] [PubMed]
- Stasiak, A.C.; Stehle, T. Human adenovirus binding to host cell receptors: A structural view. Med. Microbiol. Immunol. 2020, 209, 325–333. [Google Scholar] [CrossRef]
- Crystal, R.G. Adenovirus: The first effective in vivo gene delivery vector. Hum. Gene Ther. 2014, 25, 3–11. [Google Scholar] [CrossRef]
- Sato-Dahlman, M.; LaRocca, C.J.; Yanagiba, C.; Yamamoto, M. Adenovirus and Immunotherapy: Advancing Cancer Treatment by Combination. Cancers 2020, 12, 1295. [Google Scholar] [CrossRef]
- Shaw, A.R.; Suzuki, M. Immunology of Adenoviral Vectors in Cancer Therapy. Mol. Ther. Methods Clin. Dev. 2019, 15, 418–429. [Google Scholar] [CrossRef]
- La Salle, G.L.G.; Robert, J.J.; Berrard, S.; Ridoux, V.; Stratford-Perricaudet, L.D.; Perricaudet, M.; Mallet, J. An adenovirus vector for gene transfer into neurons and glia in the brain. Science 1993, 259, 988–990. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Beucher, B.; Lavigne, M.; Wehbi, A.; Gonzalez Dopeso-Reyes, I.; Saggio, I.; Kremer, E.J. CAV-2 Vector Development and Gene Transfer in the Central and Peripheral Nervous Systems. Front. Mol. Neurosci. 2019, 12, 71. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, P.; Wu, M.; Yang, K.; Guo, J.; Wang, X.; Li, J.; Fang, Z.; Wang, G.; Xing, M.; et al. Adenovirus delivery of encoded monoclonal antibody protects against different types of influenza virus infection. NPJ Vaccines 2020, 5, 57. [Google Scholar] [CrossRef] [PubMed]
- Santra, S.; Seaman, M.S.; Xu, L.; Barouch, D.H.; Lord, C.I.; Lifton, M.A.; Gorgone, D.A.; Beaudry, K.R.; Svehla, K.; Welcher, B.; et al. Replication-Defective Adenovirus Serotype 5 Vectors Elicit Durable Cellular and Humoral Immune Responses in Nonhuman Primates. J. Virol. 2005, 79, 6516–6522. [Google Scholar] [CrossRef] [PubMed]
- Bulcha, J.T.; Wang, Y.; Ma, H.; Tai, P.W.; Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 2021, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Schaack, J. Induction and Inhibition of Innate Inflammatory Responses by Adenovirus Early Region Proteins. Viral Immunol. 2005, 18, 79–88. [Google Scholar] [CrossRef]
- Wang, Q.; Finer, M.H. Second-generation adenovirus vectors. Nat. Med. 1996, 2, 714–716. [Google Scholar] [CrossRef]
- Alba, R.; Bosch, A.; Chillon, M. Gutless adenovirus: Last-generation adenovirus for gene therapy. Gene Ther. 2005, 12, S18–S27. [Google Scholar] [CrossRef]
- Wold, W.S.; Toth, K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr. Gene Ther. 2013, 13, 421–433. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- World Health Organization. Cancer Prevention; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Hu, S.; Alimire, A.; Lai, Y.; Hu, H.; Chen, Z.; Li, Y. Trends and Frontiers of Research on Cancer Gene Therapy From 2016 to 2020: A Bibliometric Analysis. Front. Med. 2021, 8, 740710. [Google Scholar] [CrossRef] [PubMed]
- Bar-Yosef, S.; Melamed, R.; Page, G.G.; Shakhar, G.; Shakhar, K.; Ben-Eliyahu, S. Attenuation of the Tumor-promoting Effect of Surgery by Spinal Blockade in Rats. Anesthesiology 2001, 94, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Zetter, B.R. Angiogenesis and tumor metastasis. Annu. Rev. Med. 1998, 49, 407–424. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, R.C. The basic science of gene therapy. Science 1993, 260, 926–932. [Google Scholar] [CrossRef]
- Cross, D.; Burmester, J.K. Gene therapy for cancer treatment: Past, present and future. Clin. Med. Res. 2006, 4, 218–227. [Google Scholar] [CrossRef]
- Kanerva, A.; Hemminki, A. Adenoviruses for treatment of cancer. Ann. Med. 2005, 37, 33–43. [Google Scholar] [CrossRef]
- Garofalo, M.; Pancer, K.W.; Wieczorek, M.; Staniszewska, M.; Salmaso, S.; Caliceti, P.; Kuryk, L. From Immunosuppression to Immunomodulation-Turning Cold Tu-mours into Hot. J. Cancer 2022, 13, 2884–2892. [Google Scholar] [CrossRef]
- Liikanen, I.; Basnet, S.; Quixabeira, D.C.A.; Taipale, K.; Hemminki, O.; Oksanen, M.; Kankainen, M.; Juhila, J.; Kanerva, A.; Joensuu, T.; et al. Oncolytic adenovirus decreases the proportion of TIM-3+ subset of tumor-infiltrating CD8+ T cells with correlation to improved survival in patients with cancer. J. Immunother. Cancer 2022, 10, e003490. [Google Scholar] [CrossRef]
- Gujar, S.; Pol, J.G.; Kim, Y.; Lee, P.W.; Kroemer, G. Antitumor Benefits of Antiviral Immunity: An Underappreciated Aspect of Oncolytic Viro-therapies. Trends Immunol. 2018, 39, 209–221. [Google Scholar] [CrossRef]
- Sharpe, A.H.; Wherry, E.J.; Ahmed, R.; Freeman, G.J. The function of programmed cell death 1 and its ligands in regulating auto-immunity and infection. Nat. Immunol. 2007, 8, 239–245. [Google Scholar] [CrossRef]
- Egen, J.G.; Ouyang, W.; Wu, L.C. Human Antitumor Immunity: Insights from Immunotherapy Clinical Trials. Immunity 2020, 52, 36–54. [Google Scholar] [CrossRef] [PubMed]
- Rollier, C.S.; Spencer, A.J.; Sogaard, K.C.; Honeycutt, J.; Furze, J.; Bregu, M.; Gilbert, S.C.; Wyllie, D.; Hill, A.V. Modification of Adenovirus vaccine vector-induced immune responses by expression of a signalling molecule. Sci. Rep. 2020, 10, 5716. [Google Scholar] [CrossRef] [PubMed]
- Gatti-Mays, M.E.; Redman, J.M.; Donahue, R.N.; Palena, C.; Madan, R.A.; Karzai, F.; Bilusic, M.; Sater, H.A.; Marté, J.L.; Cordes, L.M.; et al. A Phase I Trial Using a Multitargeted Recombinant Adenovirus 5 (CEA/MUC1/Brachyury)-Based Immunotherapy Vaccine Regimen in Patients with Advanced Cancer. Oncologist 2020, 25, 479-e899. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Bates, T.M.; Kim, E.; Concha-Benavente, F.; Trivedi, S.; Mailliard, R.B.; Gambotto, A.; Ferris, R.L. Enhanced Cytotoxic CD8 T Cell Priming Using Dendritic Cell-Expressing Human Papillomavirus-16 E6/E7-p16INK4 Fusion Protein with Sequenced Anti-Programmed Death-1. J. Immunol. 2016, 196, 2870–2878. [Google Scholar] [CrossRef]
- Jacob-Dolan, C.; Barouch, D.H. COVID-19 Vaccines: Adenoviral Vectors. Annu. Rev. Med. 2022, 73, 41–54. [Google Scholar] [CrossRef]
- Dharmapuri, S.; Peruzzi, D.; Aurisicchio, L. Engineered adenovirus serotypes for overcoming anti-vector immunity. Expert Opin. Biol. Ther. 2009, 9, 1279–1287. [Google Scholar] [CrossRef]
- Somanathan, S.; Calcedo, R.; Wilson, J.M. Adenovirus-Antibody Complexes Contributed to Lethal Systemic Inflamma-tion in a Gene Therapy Trial. Mol. Ther. J. Am. Soc. Gene Ther. 2020, 28, 784–793. [Google Scholar] [CrossRef]
- Tysome, J.R.; Li, X.; Wang, S.; Wang, P.; Gao, D.; Du, P.; Chen, D.; Gangeswaran, R.; Chard, L.S.; Yuan, M.; et al. A Novel Therapeutic Regimen to Eradicate Established Solid Tumors with an Effective Induction of Tumor-Specific Immunity. Clin. Cancer Res. 2012, 18, 6679–6689. [Google Scholar] [CrossRef]
- Sharma, A.; Bangari, D.S.; Tandon, M.; Hogen Esch, H.; Mittal, S.K. Evaluation of innate immunity and vector toxicity following inoculation of bovine, porcine or human adenoviral vectors in a mouse model. Virus Res. 2010, 153, 134–142. [Google Scholar] [CrossRef]
- Young, L.S.; Mautner, V. The promise and potential hazards of adenovirus gene therapy. Gut 2001, 48, 733. [Google Scholar] [CrossRef]
- Wang, A.Y.; Peng, P.D.; Ehrhardt, A.; Storm, T.A.; Kay, M.A. Comparison of adenoviral and adeno-associated viral vectors for pancreatic gene delivery in vivo. Hum. Gene Ther. 2004, 15, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Acheampong, E.; Rosario-Otero, M.; Dornburg, R.; Pomerantz, R.J. Replication of lentiviruses. Front. Biosci. A J. Virtual Libr. 2003, 8, s156–s174. [Google Scholar]
- Gifford, R.J. Viral evolution in deep time: Lentiviruses and mammals. Trends Genet. TIG 2012, 28, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Cavalieri, V.; Baiamonte, E.; Iacono, M.L. Non-Primate Lentiviral Vectors and Their Applications in Gene Therapy for Ocular Disorders. Viruses 2018, 10, 316. [Google Scholar] [CrossRef]
- Johnson, N.M.; Alvarado, A.F.; Moffatt, T.N.; Edavettal, J.M.; Swaminathan, T.A.; Braun, S.E. HIV-based lentiviral vectors: Origin and sequence differences. Mol. Ther. Methods Clin. Dev. 2021, 21, 451–465. [Google Scholar] [CrossRef]
- Milone, M.C.; O’doherty, U. Clinical use of lentiviral vectors. Leukemia 2018, 32, 1529–1541. [Google Scholar] [CrossRef]
- Merten, O.W.; Hebben, M.; Bovolenta, C. Production of lentiviral vectors. Mol. Ther. Methods Clin. Dev. 2016, 3, 16017. [Google Scholar] [CrossRef]
- Gándara, C.; Affleck, V.; Stoll, E.A. Manufacture of Third-Generation Lentivirus for Preclinical Use, with Process De-velopment Considerations for Translation to Good Manufacturing Practice. Hum. Gene Ther. Methods 2018, 29, 1–15. [Google Scholar] [CrossRef]
- Custom, N.R. The Revival of Lentiviral Vectors. Nature. Available online: https://www.nature.com/articles/d42473-019-00271-9 (accessed on 19 April 2023).
- Tomás, H.A.; Rodrigues, A.F.; Alves, P.M.; Coroadinha, A.S. Lentiviral Gene Therapy Vectors: Challenges and Future Directions; Francisco Martin, M., Ed.; Gene Therapy; IntechOpen: Rijeka, Italy, 2013; Chapter 12. [Google Scholar]
- Kalidasan, V.; Ng, W.H.; Ishola, O.A.; Ravichantar, N.; Tan, J.J.; Das, K.T. A guide in lentiviral vector production for hard-to-transfect cells, using cardi-ac-derived c-kit expressing cells as a model system. Sci. Rep. 2021, 11, 19265. [Google Scholar] [CrossRef]
- Connolly, J.B. Lentiviruses in gene therapy clinical research. Gene Ther. 2002, 9, 1730–1734. [Google Scholar] [CrossRef]
- Brown, B.D. A shot in the bone corrects a genetic disease. Mol. Ther. J. Am. Soc. Gene Ther. 2015, 23, 614–615. [Google Scholar] [CrossRef] [PubMed]
- Abordo-Adesida, E.; Follenzi, A.; Barcia, C.; Sciascia, S.; Castro, M.G.; Naldini, L.; Lowenstein, P.R. Stability of Lentiviral Vector-Mediated Transgene Expression in the Brain in the Presence of Systemic Antivector Immune Responses. Hum. Gene Ther. 2005, 16, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Naldini, L.; Blömer, U.; Gallay, P.; Ory, D.; Mulligan, R.; Gage, F.H.; Verma, I.M.; Trono, D. In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector. Science 1996, 272, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Institute, N.C. Tisagenlecleucel. 2020. Available online: https://www.cancer.gov/about-cancer/treatment/drugs/tisagenlecleucel (accessed on 19 April 2023).
- Cobaleda, C.; Sánchez-García, I. B-cell acute lymphoblastic leukaemia: Towards understanding its cellular origin. Bioessays 2009, 31, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Yeung DT, O.; Osborn, M.P.; White, D.L. B-cell acute lymphoblastic leukaemia: Recent discoveries in molecular pathology, their prognostic significance, and a review of the current classification. Br. J. Haematol. 2022, 197, 13–27. [Google Scholar] [CrossRef]
- Safarzadeh Kozani, P.; Safarzadeh Kozani, P.; Rahbarizadeh, F. Optimizing the Clinical Impact of CAR-T Cell Therapy in B-Cell Acute Lymphoblastic Leukemia: Looking Back While Moving Forward. Front. Immunol. 2021, 12, 4453. [Google Scholar] [CrossRef]
- Poorebrahim, M.; Sadeghi, S.; Fakhr, E.; Abazari, M.F.; Poortahmasebi, V.; Kheirollahi, A.; Askari, H.; Rajabzadeh, A.; Rastegarpanah, M.; Linē, A.; et al. Production of CAR T-cells by GMP-grade lentiviral vectors: Latest advances and future prospects. Crit. Rev. Clin. Lab. Sci. 2019, 56, 393–419. [Google Scholar] [CrossRef]
- Olweus, J. Manufacture of CAR-T cells in the body. Nat. Biotechnol. 2017, 35, 520–521. [Google Scholar] [CrossRef]
- Miliotou, A.N.; Papadopoulou, L.C. CAR T-cell Therapy: A New Era in Cancer Immunotherapy. Curr. Pharm. Biotechnol. 2018, 19, 5–18. [Google Scholar] [CrossRef]
- June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365. [Google Scholar] [CrossRef]
- Feins, S.; Kong, W.; Williams, E.F.; Milone, M.C.; Fraietta, J.A. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am. J. Hematol. 2019, 94, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Indraccolo, S.; Habeler, W.; Tisato, V.; Stievano, L.; Piovan, E.; Tosello, V.; Esposito, G.; Wagner, R.; Uberla, K.; Chieco-Bianchi, L.; et al. Gene transfer in ovarian cancer cells: A comparison between retroviral and lentiviral vectors. Cancer Res. 2002, 62, 6099–6107. [Google Scholar] [PubMed]
- Zheng, J.-Y.; Chen, D.; Chan, J.; Yu, D.; Ko, E.; Pang, S. Regression of prostate cancer xenografts by a lentiviral vector specifically expressing diphtheria toxin A. Cancer Gene Ther. 2003, 10, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Gerolami, R.; Uch, R.; Faivre, J.; Garcia, S.; Hardwigsen, J.; Cardoso, J.; Mathieu, S.; Bagnis, C.; Brechot, C.; Mannoni, P. Herpes simplex virus thymidine kinase-mediated suicide gene therapy for hepatocel-lular carcinoma using HIV-1-derived lentiviral vectors. J. Hepatol. 2004, 40, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Gene therapy needs a long-term approach. Nat. Med. 2021, 27, 563. [CrossRef] [PubMed]
- Goyal, S.; Tisdale, J.; Schmidt, M.; Kanter, J.; Jaroscak, J.; Whitney, D.; Bitter, H.; Gregory, P.D.; Parsons, G.; Foos, M.; et al. Acute Myeloid Leukemia Case after Gene Therapy for Sickle Cell Disease. N. Engl. J. Med. 2022, 386, 138–147. [Google Scholar] [CrossRef]
- Gurumoorthy, N.; Nordin, F.; Tye, G.J.; Zaman, W.S.W.K.; Ng, M.H. Non-Integrating Lentiviral Vectors in Clinical Applications: A Glance Through. Biomedicines 2022, 10, 107. [Google Scholar] [CrossRef]
- Burns, J.C.; Friedmann, T.; Driever, W.; Burrascano, M.; Yee, J.K. Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 1993, 90, 8033–8037. [Google Scholar] [CrossRef]
- Transfiguracion, J.; Jaalouk, D.E.; Ghani, K.; Galipeau, J.; Kamen, A. Size-Exclusion Chromatography Purification of High-Titer Vesicular Stomatitis Virus G Glycoprotein-Pseudotyped Retrovectors for Cell and Gene Therapy Applications. Hum. Gene Ther. 2003, 14, 1139–1153. [Google Scholar] [CrossRef]
- Sakuma, T.; Barry, M.A.; Ikeda, Y. Lentiviral vectors: Basic to translational. Biochem. J. 2012, 443, 603–618. [Google Scholar] [CrossRef]
- Parker, C.L.; Jacobs, T.M.; Huckaby, J.T.; Harit, D.; Lai, S.K. Efficient and Highly Specific Gene Transfer Using Mutated Lentiviral Vectors Redirected with Bispecific Antibodies. mBio 2020, 11, e02990-19. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Huang, B.; Deng, L.; Hu, Z. Progress in gene therapy using oncolytic vaccinia virus as vectors. J. Cancer Res. Clin. Oncol. 2018, 144, 2433–2440. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.S.; Bartlett, D.L. Vaccinia as a vector for gene delivery. Expert Opin. Biol. Ther. 2004, 4, 901–917. [Google Scholar] [CrossRef]
- Deng, L.; Yang, X.; Ding, Y.; Fan, J.; Peng, Y.; Xu, D.; Huang, B.; Hu, Z. Oncolytic therapy with vaccinia virus carrying IL-24 for hepatocellular carcinoma. Virol. J. 2022, 19, 44. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Vossen, A.; Ikeda, Y.; Devaux, P. Measles vector as a multigene delivery platform facilitating iPSC reprogramming. Gene Ther. 2019, 26, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Latchman, D.S. Herpes simplex virus vectors for gene therapy. Mol. Biotechnol. 1994, 2, 179–195. [Google Scholar] [CrossRef]
- Lundstrom, K. Alphaviruses in Gene Therapy. Viruses 2015, 7, 2321–2333. [Google Scholar] [CrossRef]
- Melzer, M.K.; Zeitlinger, L.; Mall, S.; Steiger, K.; Schmid, R.M.; Ebert, O.; Krackhardt, A.; Altomonte, J. Enhanced Safety and Efficacy of Oncolytic VSV Therapy by Combination with T Cell Receptor Transgenic T Cells as Carriers. Mol. Ther. Oncolytics 2019, 12, 26–40. [Google Scholar] [CrossRef]
- Li, J.; Arévalo, M.T.; Zeng, M. Engineering influenza viral vectors. Bioengineered 2013, 4, 9–14. [Google Scholar] [CrossRef]
- Ono, C.; Okamoto, T.; Abe, T.; Matsuura, Y. Baculovirus as a Tool for Gene Delivery and Gene Therapy. Viruses 2018, 10, 510. [Google Scholar] [CrossRef]
- Arsenijevic, Y.; Berger, A.; Udry, F.; Kostic, C. Lentiviral Vectors for Ocular Gene Therapy. Pharmaceutics 2022, 14, 1605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B. CRISPR/Cas gene therapy. J. Cell. Physiol. 2021, 236, 2459–2481. [Google Scholar] [CrossRef] [PubMed]
- Montes-Galindo, D.A.; Espiritu-Mojarro, A.C.; Melnikov, V.; Moy-López, N.A.; Soriano-Hernandez, A.D.; Galvan-Salazar, H.R.; Guzman-Muñiz, J.; Guzman-Esquivel, J.; Martinez-Fierro, M.L.; Rodriguez-Sanchez, I.P.; et al. Adenovirus 5 produces obesity and adverse met-abolic, morphological, and functional changes in the long term in animals fed a balanced diet or a high-fat diet: A study on hamsters. Arch. Virol. 2019, 164, 775–786. [Google Scholar] [CrossRef] [PubMed]
Drug | Development Stage | Mechanism of Action/Target Gene | Indication | Manufacture | Vector |
---|---|---|---|---|---|
ET140203 | Phase II Clinical Trial | Immuno-oncology therapy | Hepatocellular (liver) cancer (HCC) (including secondary metastases) | Eureka Therapeutics | Lentivirus |
OTOF-GT | Preclinical | Otoferlin | Hearing loss general | Sensorion | Adeno-associated virus |
AVR-RD-02 | Phase II Clinical Trial | Glucocerebrosidase beta | Gaucher’s disease | Avrobio | lentivirus |
LX1004 | Phase II Clinical Trial | CLN2 | Neuronal ceroid lipofuscinosis (NCL) | Lexeo Therapeutics | Adeno-associated virus |
SRP-9001 | Pre-registration | Micro-dystrophin | Duchenne muscular dystrophy (DMD) | Sarepta Therapeutics | Adeno-associated virus |
Vyjuvek | Pre-registration | COL7A1 | Epidermolysis bullosa | Krystal Biotech | Herpes simplex virus |
OCU400 | Phase II Clinical Trial | NR2E3 | Retinitis pigmentosa (RP) (ophthalmology) | Ocugen | Adeno-associated virus |
Lumevoq | Pre-registration | ND4 | Leber’s hereditary optic neuropathy (LHON) | Genethon and GenSight Biologics | Adeno-associated virus |
AVB-PGRN | Preclinical | Progranulin | Dementia, frontotemporal | AviadoBio | Adeno-associated virus |
ADVM-022 | Phase II Clinical Trial | Aflibercept | wet age-related macular degeneration; diabetic retinopathy and other retinal conditions | Adverum Biotechnologies | Adeno-associated virus |
ADVM-062 | Preclinical | L-opsin | Achromatopsia | Adverum Biotechnologies | Adeno-associated virus |
4D-125 | Phase II Clinical Trial | Retinitis pigmentosa GTPase regulator | Retinitis pigmentosa | 4D Molecular Therapeutics Roche | Adeno-associated virus |
NR-082 | Phase III Clinical Trial | NADH dehydrogenase subunit 4 | Leber’s hereditary optic neuropathy | Wuhan Neurophth Biotechnology | Adeno-associated virus |
ATA-100 | Phase II Clinical Trial | Fukutin related protein | Dystrophy, limb-girdle muscular, type 2I | Atamyo Therapeutics | Adeno-associated virus |
SBT101 | Phase II Clinical Trial | ATP binding cassette subfamily D member 1 | Adrenoleukodystrophy | SwanBio Therapeutics | Adeno-associated virus |
ASC-618 | Phase II Clinical Trial | B domain deleted liver-codon optimized factor VIII | Hemophilia A | ASC Therapeutics | Adeno-associated virus |
Trade Name | Generic Name | Locations Approved | Price * | Indication | Manufacturer | Vector |
---|---|---|---|---|---|---|
ABECMA | Idecabtagene vicleucel | US, EU, JP, CAN | $419,500 | Multiple myeloma. | Celgene Corporation, a Bristol Myers Squibb Company. | Lentiviral |
ADSTILADRIN | Nadofaragene firadenovec | US | $158,600–$262,000 | High-risk Bacillus Calmette-Guérin (BCG)—unresponsive. Non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) and with or without papillary tumors | Ferring Pharmaceuticals A/S. | Adenoviral |
BREYANZI | Lisocabtagene maraleucel | US, EU, CAN, JP, UK, CH | $470,939.53 | Large B-cell lymphoma (LBCL). | Juno Therapeutics, Inc., a Bristol Myers Squibb Company. | Lentiviral |
CARVYKTI | Ciltacabtagene autoleucel | US, EU, UK, JP, CAN | $465,000 | Relapsed or refractory multiple myeloma. | Janssen Biotech, Inc. | Lentiviral |
HEMGENIX | Etranacogene dezaparvovec | US | $3,500,000 | Hemophilia B (congenital Factor IX deficiency). | CSL Behring LLC. | Adeno-associated virus |
IMLYGIC | Talimogene laherparepvec | US, EU, CHN, UK, AUS | $65,000 | Unresectable cutaneous, subcutaneous, and nodal lesions in patients with recurrent melanoma after the initial surgery. | BioVex Inc., a wholly owned subsidiary of Amgen, Inc. | Herpes simplex virus –1 |
KYMRIAH | Tisagenlecleucel | US, EU, UK, CAN, JP, AUS, KR, CH | $475,000 | Relapsed or refractory follicular lymphoma. | Novartis Pharmaceuticals Corporation. | Lentiviral |
LUXTURNA | Voretigene neparvovec | US, EU, UK, AUS, CAN, KR | $850,000 | Confirmed biallelic RPE65 mutation-associated retinal dystrophy | Spark Therapeutics, Inc. | Adeno-associated virus |
SKYSONA | Elivaldogene autotemcel | US, EU, UK # | $3,000,000 | Neurological dysfunction in boys aged 4–17 years with early, active cerebral adrenoleukodystrophy (CALD). | Bluebird Bio, Inc. | Lentiviral |
TECARTUS | Brexucabtagene autoleucel | US, EU, UK, CAN | $373,000 | Relapsed or refractory mantle cell lymphoma (MCL) and B-cell precursor acute lymphoblastic leukemia (ALL). | Kite Pharma, Inc. | Retroviral |
YESCARTA | Axicabtagene ciloleucel | US, EU, UK, JP, CHN, CAN | $373,000 | Large B-cell lymphoma. | Kite Pharma Inc. | Retroviral |
ZYNTEGLO | Betibeglogene autotemcel | US, CAN, EU # | $2,800,000 | Adult and pediatric patients with ß-thalassemia who require regular red blood cell (RBC) transfusions. | Bluebird bio Inc. | Lentiviral |
ZOLGENSMA | Onasemnogene abeparvovec | US, EU, JP, AUS, CAN, BRA, TWN, KR, ISL, NO, LIE, UK | $2,125,000 | Spinal muscular atrophy (Type I) | Novartis Gene Therapies, Inc. | Adeno-associated virus |
GLYBERA | Alipogene tiparvovec | EU # | $1,000,000 | Lipoprotein lipase deficiency. | uniQure biopharma. | Adeno-associated virus |
LIBMELDY | Atidarsagene autotemcel | EU, UK, ISL, NO | $3,780,000 | Metachromatic leukodystrophy (MLD). | Orchard Therapeutics (Netherlands). | Lentiviral |
ROCTAVIAN | Valoctocogene roxaparvovec | EU, UK | Around $2,500,000 | Hemophilia A (congenital factor VIII [FVIII] deficiency). | BioMarin International Limited. | Adeno associated virus |
STRIMVELIS | autologous CD34+ enriched cells | EU, UK | $665,000 | Severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID). | Orchard Therapeutics (Netherlands). | Retroviral |
UPSTAZA | Eladocagene exuparvovec | EU, UK | more than $3,600,000 | Severe deficiency of aromatic L-amino acid decarboxylase (AADC). | PTC Therapeutics International Limited. | adeno associated virus |
GENDICINE | Recombinant p53 gene | CHN | N/A | Head and neck cancer. | Shenzhen SiBiono GeneTech Co. Ltd. | Adenoviral |
ONCORINE | E1B/E3 deficient adenovirus | CHN | N/A | Head and neck cancer; Nasopharyngeal cancer. | Shanghai Sunway Biotech Co. Ltd. | Adenoviral |
REXIN | G mutant cyclin-G1 gene | PHL | N/A | Solid tumors. | Epeius Biotechnologies. | Retroviral |
DELYTACT | Teserpaturev | JP | $12,500 | Malignant glioma. | Daiichi Sankyo. | Herpes simplex virus –1 |
RELMA-CEL | Relmacabtagene autoleucel | CHN | N/A | Diffuse large B-cell lymphoma | JW Therapeutics. | Lentiviral |
ZALMOXIS | N/A | EU # | $263,000 | Haploidentical hematopoietic stem cell transplantation (HSCT) of adult patients at a high risk of hematological malignancies. | MolMed S.p.A. | Retroviral |
INVOSSA-K | N/A | KR # | N/A | Osteoarthritis. | Kolon Life Science. | Retroviral |
RIGVIR | N/A | LV, EE, PL, AM, BLR | N/A | Local treatment of skin and subcutaneous metastases of melanoma. | SIA Latima. | Echovirus 7 |
AAV Serotype | Tissue-Specific Tropisms | Key Pipeline | Disease | The Delivered Gene | Sponsor (s) | The Clinical Trial Stage |
---|---|---|---|---|---|---|
AAV1 | Muscle, heart, skeletal muscle (including cardiac muscle), nerve tissue | Glybera | Lipoprotein lipase deficiency | Lipoprotein lipase | UniQure | Approved # |
AAV2 | Central nervous system, muscle, liver, brain tissue, eye | BIIB111 | Hereditary ophthalmopathy | Rab escort protein 1 | NightstaRx Ltd., a Biogen Company | Phase III completed, suspended |
AAV3 | Muscles, liver, lung, eye | N/A | N/A | N/A | N/A | N/A |
AAV4 | Central nervous system, muscle, eye, brain | N/A | N/A | N/A | N/A | N/A |
AAV5 | Lung, eye, central nerve, joint synovium, pancreas | BMN 270 | Hemophilia type-A | Coagulation factor VIII | BioMarin Pharmaceutical | Approved |
AAV6 | Lung, heart | SB-525 | Hemophilia type-A | Coagulation factor VIII | Pfizer | Phase III |
AAV7 | Muscle, liver | N/A | N/A | N/A | N/A | N/A |
AAV8 | Liver, eye, central nerve, muscle | BIIB112 | X-linked retinoschisis | Pigmentosa GTPase regulator | NightstaRx Ltd., a Biogen Company | Phase III, suspended |
AAV9 | Heart, muscle, lung(alveolar), liver, central nervous system | PF-06939926 | Duchenne muscular dystrophy | Truncated dystrophin | Pfizer | Phase III |
AAV-DJ | Liver, retina, lung, kidney | N/A | N/A | N/A | N/A | N/A |
AAV-DJ/8 | Liver, eye, central nervous system, muscle | N/A | N/A | N/A | N/A | N/A |
AAV-Rh10 | Lung, heart, muscle, central nervous system, liver | LYS-GM101 | GM1 gangliosidosis | beta-galactosidase | Lysogene | Phase II |
AAV11 | Unknown | N/A | N/A | N/A | N/A | N/A |
AAV12 | Nasal | N/A | N/A | N/A | N/A | N/A |
AAV13 | Unknown | N/A | N/A | N/A | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Le, Y.; Zhang, Z.; Nian, X.; Liu, B.; Yang, X. Viral Vector-Based Gene Therapy. Int. J. Mol. Sci. 2023, 24, 7736. https://doi.org/10.3390/ijms24097736
Li X, Le Y, Zhang Z, Nian X, Liu B, Yang X. Viral Vector-Based Gene Therapy. International Journal of Molecular Sciences. 2023; 24(9):7736. https://doi.org/10.3390/ijms24097736
Chicago/Turabian StyleLi, Xuedan, Yang Le, Zhegang Zhang, Xuanxuan Nian, Bo Liu, and Xiaoming Yang. 2023. "Viral Vector-Based Gene Therapy" International Journal of Molecular Sciences 24, no. 9: 7736. https://doi.org/10.3390/ijms24097736
APA StyleLi, X., Le, Y., Zhang, Z., Nian, X., Liu, B., & Yang, X. (2023). Viral Vector-Based Gene Therapy. International Journal of Molecular Sciences, 24(9), 7736. https://doi.org/10.3390/ijms24097736