Wearable Biomechanical Energy Harvesting Technologies
Abstract
:1. Introduction
2. Biomechanical Energy Harvesting: Principles
2.1. Piezoelectric Energy Harvester (PEH)
2.2. Triboelectric Nanogenerator (TENG)
2.3. Electromagnetic Energy Harvester: Inertial Induction Type
2.4. Electromagnetic Energy Harvester: Gear-and-Generator Type
2.5. Device Efficiency
3. Review of High-Power Wearable Biomechanical Energy Harvesters
3.1. Figure-of-Merit for Wearable Biomechanical Energy Harvesting
3.2. COG Motion
3.3. Foot-Strike
3.4. Lower Limb (Leg Motion)
3.5. Knee Motion
4. Concluding Remarks and Future Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yuan, Y.; Liu, M.; Tai, W.-C.; Zuo, L. Design and experimental studies of an energy harvesting backpack with mechanical motion rectification. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, Portland, OR, USA, 12 April 2017. [Google Scholar]
- Wang, F.; Gao, C.; Kuklane, K.; Holmer, I. A review of technology of personal heating garments. Int. J. Occup. Saf. Ergon. 2010, 16, 387–404. [Google Scholar] [CrossRef] [PubMed]
- Power Knee™. Available online: https://www.ossur.com/prosthetic-solutions/products/dynamic-solutions/power-knee (accessed on 20 September 2017).
- Sue, C.Y.; Tsai, N.C. Human powered MEMS-based energy harvest devices. Appl. Energy 2012, 93, 390–403. [Google Scholar] [CrossRef]
- Kishi, M.; Nemoto, H.; Hamao, T.; Yamamoto, M.; Sudou, S.; Mandai, M.; Yamamoto, S. Micro thermoelectric modules and their application to wristwatches as an energy source. In Proceedings of the Eighteenth International Conference on Thermoelectrics, Baltimore, MD, USA, 29 August–2 September 1999; pp. 301–307. [Google Scholar] [CrossRef]
- Kim, S.J.; We, J.H.; Cho, B.J. A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 2014, 7, 1959. [Google Scholar] [CrossRef]
- Niu, P.; Chapman, P.; Riemer, R.; Zhang, X. Evaluation of motions and actuation methods for biomechanical energy harvesting. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), Aachen, Germany, 20–25 June 2004; Volume 3, pp. 2100–2106. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 9780470398180. [Google Scholar]
- Riemer, R.; Shapiro, A. Biomechanical energy harvesting from human motion: Theory, state of the art, design guidelines, and future directions. J. Neuroeng. Rehabil. 2011, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Dagdeviren, C.; Joe, P.; Tuzman, O.L.; Park, K.-I.; Lee, K.J.; Shi, Y.; Huang, Y.; Rogers, J.A. Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. Extrem. Mech. Lett. 2016, 9, 269–281. [Google Scholar] [CrossRef]
- Persano, L.; Dagdeviren, C.; Su, Y.; Zhang, Y.; Girardo, S.; Pisignano, D.; Huang, Y.; Rogers, J.A. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 2013, 4, 1633. [Google Scholar] [CrossRef] [PubMed]
- Granstrom, J.; Feenstra, J.; Sodano, H.A.; Farinholt, K. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater. Struct. 2007, 16, 1810–1820. [Google Scholar] [CrossRef]
- Feenstra, J.; Granstrom, J.; Sodano, H. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mech. Syst. Signal Process. 2008, 22, 721–734. [Google Scholar] [CrossRef]
- Shenck, N.S.; Paradiso, J.A. Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 2001, 21, 30–42. [Google Scholar] [CrossRef]
- Howells, C.A. Piezoelectric energy harvesting. Energy Convers. Manag. 2009, 50, 1847–1850. [Google Scholar] [CrossRef]
- Rocha, J.G.; Goncalves, L.M.; Rocha, P.F.; Silva, M.P.; Lanceros-Mendez, S. Energy harvesting from piezoelectric materials fully integrated in footwear. IEEE Trans. Ind. Electron. 2010, 57, 813–819. [Google Scholar] [CrossRef]
- Zhao, J.; You, Z. A Shoe-embedded piezoelectric energy harvester for wearable sensors. Sensors 2014, 14, 12497–12510. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.S.; Lee, M.J.; Kang, M.G.; Moon, H.G.; Yoon, S.J.; Baek, S.H.; Kang, C.Y. Powerful curved piezoelectric generator for wearable applications. Nano Energy 2015, 13, 174–181. [Google Scholar] [CrossRef]
- Fan, K.; Liu, Z.; Liu, H.; Wang, L.; Zhu, Y.; Yu, B. Scavenging energy from human walking through a shoe-mounted piezoelectric harvester. Appl. Phys. Lett. 2017, 110, 143902. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhu, M. Characterisation of a knee-joint energy harvester powering a wireless communication sensing node. Smart Mater. Struct. 2016, 25, 55013. [Google Scholar] [CrossRef]
- Kuang, Y.; Yang, Z.; Zhu, M. Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking. Smart Mater. Struct. 2016, 25, 85029. [Google Scholar] [CrossRef]
- Dagdeviren, C.; Li, Z.; Wang, Z.L. Energy harvesting from the animal/human body for self-powered electronics. Annu. Rev. Biomed. Eng. 2017, 19, 85–108. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.R.; Tian, Z.Q.; Wang, Z.L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Wang, Z.L.; Lin, L.; Chen, J.; Niu, S.; Zi, Y. Triboelectric Nanogenerators; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-40038-9. [Google Scholar]
- Yang, W.; Chen, J.; Zhu, G.; Yang, J.; Bai, P.; Su, Y.; Jing, Q.; Cao, X.; Wang, Z.L. Harvesting energy from the natural vibration of human walking. ACS Nano 2013, 7, 11317–11324. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.C.; Yang, Y.; Zhang, H.; Chen, J.; Chen, L.J.; Lin Wang, Z. Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2013, 2, 856–862. [Google Scholar] [CrossRef]
- Zhu, G.; Bai, P.; Chen, J.; Wang, Z.L. Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2013, 2, 688–692. [Google Scholar] [CrossRef]
- Huang, T.; Wang, C.; Yu, H.; Wang, H.; Zhang, Q.; Zhu, M. Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy 2015, 14, 226–235. [Google Scholar] [CrossRef]
- Cheng, X.; Meng, B.; Zhang, X.; Han, M.; Su, Z.; Zhang, H. Wearable electrode-free triboelectric generator for harvesting biomechanical energy. Nano Energy 2015, 12, 19–25. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, X.; Yang, Y.; Wang, Z.L. Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics. ACS Nano 2015, 9, 3521–3529. [Google Scholar] [CrossRef] [PubMed]
- Haque, R.I.; Farine, P.-A.; Briand, D. Fully casted soft power generating triboelectric shoe insole. J. Phys. Conf. Ser. 2016, 773, 12097. [Google Scholar] [CrossRef]
- Saha, C.R.; O’Donnell, T.; Wang, N.; McCloskey, P. Electromagnetic generator for harvesting energy from human motion. Sens. Actuators A Phys. 2008, 147, 248–253. [Google Scholar] [CrossRef]
- Duffy, M.; Carroll, D. Electromagnetic generators for power harvesting. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), Aachen, Germany, 20–25 June 2004; Volume 3, pp. 2075–2081. [Google Scholar] [CrossRef]
- Rao, Y.; Cheng, S.; Arnold, D.P. An energy harvesting system for passively generating power from human activities. J. Micromech. Microeng. 2013, 23, 114012. [Google Scholar] [CrossRef]
- Ylli, K.; Hoffmann, D.; Willmann, A.; Becker, P.; Folkmer, B.; Manoli, Y. Energy harvesting from human motion: Exploiting swing and shock excitations. Smart Mater. Struct. 2015, 24, 25029. [Google Scholar] [CrossRef]
- Wu, S.; Luk, P.C.K.; Li, C.; Zhao, X.; Jiao, Z.; Shang, Y. An electromagnetic wearable 3-DoF resonance human body motion energy harvester using ferrofluid as a lubricant. Appl. Energy 2017, 197, 364–374. [Google Scholar] [CrossRef]
- Morais, R.; Silva, N.M.; Santos, P.M.; Frias, C.M.; Ferreira, J.A.F.; Ramos, A.M.; Simões, J.A.O.; Baptista, J.M.R.; Reis, M.C. Double permanent magnet vibration power generator for smart hip prosthesis. Sens. Actuators A Phys. 2011, 172, 259–268. [Google Scholar] [CrossRef]
- Dai, D.; Liu, J. Hip-mounted electromagnetic generator to harvest energy from human motion. Front. Energy 2014, 8, 173–181. [Google Scholar] [CrossRef]
- Geisler, M.; Boisseau, S.; Perez, M.; Gasnier, P.; Willemin, J.; Ait-Ali, I.; Perraud, S. Human-motion energy harvester for autonomous body area sensors. Smart Mater. Struct. 2017, 26, 35028. [Google Scholar] [CrossRef]
- Rome, L.C. Generating Electricity While Walking with Loads. Science 2005, 309, 1725–1728. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Cai, M. Development of a suspended backpack for harvesting biomechanical energy. J. Mech. Des. 2015, 137, 54503. [Google Scholar] [CrossRef]
- Hayashida, J.Y. Unobtrusive Integration of Magnetic Generator Systems into Common Footwear. Bachelor’s Thesis, Department of Mechanical Engineering, MIT Media Lab, Massachusetts Institute of Technolog, Cambridge, MA, USA, 2000. [Google Scholar]
- Purwadi, A.M.; Parasuraman, S.; Ahamed Khan, M.K.A.; Elamvazuthi, I. Development of biomechanical energy harvesting device using heel strike. Procedia Comput. Sci. 2015, 76, 270–275. [Google Scholar] [CrossRef]
- Xie, L.; Cai, M. An in-shoe harvester with motion magnification for scavenging energy from human foot strike. IEEE/ASME Trans. Mechatron. 2015, 20, 3264–3268. [Google Scholar] [CrossRef]
- Xie, L.; Li, J.; Cai, S.; Li, X. Design and experiments of a self-charged power bank by harvesting sustainable human motion. Adv. Mech. Eng. 2016, 8, 1–10. [Google Scholar] [CrossRef]
- Shepertycky, M.; Li, Q. Generating electricity during walking with a lower limb-driven energy harvester: Targeting a minimum user effort. PLoS ONE 2015, 10, e0127635. [Google Scholar] [CrossRef] [PubMed]
- Donelan, J.M.; Li, Q.; Naing, V.; Hoffer, J.A.; Weber, D.J.; Kuo, A.D. Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 2008, 319, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yin Chau, L.; Liao, W.-H. A knee-mounted biomechanical energy harvester with enhanced efficiency and safety. Smart Mater. Struct. 2017, 26, 65027. [Google Scholar] [CrossRef]
- Bai, P.; Zhu, G.; Lin, Z.H.; Jing, Q.; Chen, J.; Zhang, G.; Ma, J.; Wang, Z.L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 2013, 7, 3713–3719. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, D.; Kim, W.; Lee, S.; Kim, S.W.; Choi, D. Tandem triboelectric nanogenerators for optimally scavenging mechanical energy with broadband vibration frequencies. Nano Energy 2017, 33, 515–521. [Google Scholar] [CrossRef]
- Li, Q.; Naing, V.; Hoffer, J.A.; Weber, D.J.; Kuo, A.D.; Donelan, J.M. Biomechanical energy harvesting: Apparatus and method. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 3672–3677. [Google Scholar]
- Partridge, J.S.; Bucknall, R.W.G.; Chen, K. An analysis of the energy flow and energy potential from human energy harvesting with a focus on walking. Cogent Eng. 2016, 3, 1215203. [Google Scholar] [CrossRef]
- Richards, C.D.; Anderson, M.J.; Bahr, D.F.; Richards, R.F. Efficiency of energy conversion for devices containing a piezoelectric component. J. Micromech. Microeng. 2004, 14, 717–721. [Google Scholar] [CrossRef]
- Wang, G.; Luo, C.; Hofmann, H.; Rome, L. Power electronic circuitry for energy harvesting backpack. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 3544–3549. [Google Scholar] [CrossRef]
- Mitcheson, P.D.; Green, T.C.; Yeatman, E.M. Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers. Microsyst. Technol. 2007, 13, 1629–1635. [Google Scholar] [CrossRef] [Green Version]
- Szarka, G.D.; Stark, B.H.; Burrow, S.G. Review of power conditioning for kinetic energy harvesting systems. IEEE Trans. Power Electron. 2012, 27, 803–815. [Google Scholar] [CrossRef]
- Goldfarb, M.; Jones, L.D. On the efficiency of electric power generation with piezoelectric ceramic. J. Dyn. Syst. Meas. Control 1999, 121, 566–571. [Google Scholar] [CrossRef]
- Margaria, R. Positive and negative work performances and their efficiencies in human locomotion. Int. Z. Angew. Physiol. Einschließlich Arbeitsphysiol. 1968, 25, 339–351. [Google Scholar] [CrossRef]
- PowerWalk®. Available online: http://www.bionic-power.com/ (accessed on 20 September 2017).
- Wang, J.J.; Penamalli, G.P.; Zuo, L. Electromagnetic energy harvesting from train induced railway track vibrations. In Proceedings of the 2012 IEEE/ASME 8th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Suzhou, China, 8–10 July 2012; Volume 11787, pp. 29–34. [Google Scholar] [CrossRef]
Joint/Motion | Work (J/step) | Power (W) | Max Moment (Nm) | Negative Work (%) |
---|---|---|---|---|
Foot strike | 1–5 | 2–20 | - | 50 |
Ankle | 33.4 | 66.8 | 140 | 28.3 |
Knee | 18.2 | 36.4 | 40 | 92 |
Hip | 18.96 | 38 | 40–80 | 19 |
Elbow | 1.07 | 2.1 | 1.2 | 37 |
Center of gravity (COG) * | 10 | 20 | - | - |
Author, Year | Source | Material | Power (mW) | Size (mm3) | Weight (kg) | Reference |
---|---|---|---|---|---|---|
Granstrom, 2007 | COG | PVDF | 9.1 mW @ 1 Hz (1) | 1016 × 51 × 0.052 | 0.0035 | [12] |
Feenstra, 2008 | COG | PZT | 0.15 mW @ 1 Hz (2) | - | 0.3 | [13] |
Shenck, 2001 | Foot strike | PZT | 8.4 mW @ 1.1 Hz | 50 × 50 (insole) | - | [14] |
Howells, 2009 | Foot strike | PZT | 90.3 mW @ 1 Step | 88.9 × 79.4 × 42.9 | 0.455 | [15] |
Rocha, 2010 | Foot strike | PVDF | 0.013 mW @ 1 Step | Outsole | - | [16] |
Zhao, 2014 | Foot strike | PVDF | 1 mW @ 1 Hz | 80 × 50 (insole) | - | [17] |
Jung, 2015 | Foot strike | PVDF | 0.5 mW @ 0.5 Hz | 70 × 40 × 0.6 | 0.018 | [18] |
Fan, 2017 | Foot strike | PZT | 0.35 mW @ 8 km/h | 45 × 30 × 24 | 0.0223 | [19] |
Kuang, 2016 | Knee | PZT | 3.5 mW @ 0.9 Hz | 226000 | 0.235 | [20] |
Kuang, 2016 | Knee | PZT | 5.8 mW @ 0.9 Hz | - | - | [21] |
Author, Year | Source | Power | Size (mm3) | Weight (kg) | Reference |
---|---|---|---|---|---|
Yang, 2013 | COG | VOC = 428 V, ISC = 1395 μA 1.17 W (peak) | - | 2 | [25] |
Hou, 2013 | Foot strike | 1.4 mW (peak) | 270 × 50 × 3 | - | [26] |
Zhu, 2013 | Foot strike | VOC = 220 V, ISC = 600 μA | Insole | - | [27] |
Huang, 2015 | Foot strike | 2.1 mW @ 1.8 Hz | Insole | - | [28] |
Cheng, 2015 | Foot strike | VOC = 810 V, ISC = 17.7 μA | Insole | - | [29] |
Zhang, 2015 | Foot strike | 4.9 mW (peak) | 50 × 50 × 25 | 0.06 | [30] |
Haque, 2016 | Foot strike | 0.25 mW @ 0.9 Hz (rms) | 13,300 × 2 | - | [31] |
Author, Year | Source | Power (mW) | Size (mm3) | Weight (kg) | Reference |
---|---|---|---|---|---|
Saha, 2008 | COG | 2.5 mW @ 2.75 Hz | Φ17 × 55 | - | [32] |
Duffy, 2004 | Foot | 8.5 mW @ 1 Hz | Φ15 × 45 | - | [33] |
Rao, 2013 | Foot | 0.3 mW @ 4 km/h | 100,000 | 0.217 | [34] |
Ylli, 2015 | Foot | 0.84 mW @ 6 km/h | 21,000 | - | [35] |
Wu, 2017 | Foot | 2.3 mW @ running | 46 × 51 × 10 | - | [36] |
Morais, 2011 | Hip | 6.5 mW @ 1.85 Hz | 3760 | 0.0153 | [37] |
Dai, 2014 | Hip | 0.1 mW @ 5.3 km/h | Φ80 × 10 (except link) | 0.48 | [38] |
Geisler, 2017 | Arm | 3.94 mW @ 6.4 km/h | 9000 | 0.02 | [39] |
Author, Year | Source | Power (W) | Size (mm3) or Shape | Weight (kg) | Efficiency (%) | Reference |
---|---|---|---|---|---|---|
Rome, 2005 | COG | 5.6 W @ 5.6 km/h | Backpack | 38 | 30–40 | [40] |
Xie, 2015 | COG | 4.1 W @ 5.6 km/h | Backpack | 15 | - | [41] |
Yuan, 2017 | COG | 4.8 W @ 5.6 km/h | Backpack | 15 | - | [1] |
Hayashida, 2000 | Foot | 0.059 W @ 1 Hz | Outsole | - | - | [42] |
Purwadi, 2015 | Foot | 1.1 W @ 7.2 km/h | 59 × 31 × 25 | 0.5 | 26.7–42.9 | [43] |
Xie, 2015 | Foot | 1.39 W @ 5 km/h | 80 × 47 × 22 | 0.137 | 57 | [44] |
Xie, 2016 | Foot | 0.35 W @ 7.2 km/h | 98 × 70 × 20 | 0.126 | 51 | [45] |
Shepertycky, 2015 | Lower limb | 5.2 W @ 5.6 km/h | - | 2.66 | 70 | [46] |
Donelan, 2008 | Knee | 4.8 W @ 5.4 km/h | Knee brace | 1.6 | 56 | [47] |
Chen, 2017 | Knee | 3.6 W @ 5.4 km/h | 145 × 66 ×67 | 0.44 | - | [48] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.-M.; Lee, M.G.; Jeon, Y. Wearable Biomechanical Energy Harvesting Technologies. Energies 2017, 10, 1483. https://doi.org/10.3390/en10101483
Choi Y-M, Lee MG, Jeon Y. Wearable Biomechanical Energy Harvesting Technologies. Energies. 2017; 10(10):1483. https://doi.org/10.3390/en10101483
Chicago/Turabian StyleChoi, Young-Man, Moon Gu Lee, and Yongho Jeon. 2017. "Wearable Biomechanical Energy Harvesting Technologies" Energies 10, no. 10: 1483. https://doi.org/10.3390/en10101483
APA StyleChoi, Y.-M., Lee, M. G., & Jeon, Y. (2017). Wearable Biomechanical Energy Harvesting Technologies. Energies, 10(10), 1483. https://doi.org/10.3390/en10101483