Improved Method for the Detection of Highly Polar Pesticides and Their Main Metabolites in Foods of Animal Origin: Method Validation and Application to Monitoring Programme
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Samples
2.3. Reference Materials and Working Solutions
2.4. Sample Preparation
2.4.1. Bovine Fat
2.4.2. Chicken Eggs
2.4.3. Cow Milk
2.4.4. Recovery Experiments
- RF was the response factor (the peak area ratio of the relevant analyte and the corresponding internal standard in the sample test solution or the peak area of the relevant analyte (only for maleic hydrazide in the eggs and in the milk matrix);
- a was the slope of the calibration curve from calibration data, in µg − 1;
- b was the intercept of the calibration curve from calibration data;
- DF was the dilution factor of the method (20).
2.5. LC–QTOF Analysis
2.6. Method Validation Procedure
2.6.1. Calibration Curves and Linearity Ranges
- (i)
- Bovine fat: 0–0.040 mg/kg for AMPA, ethephon, fosetyl Al, and glyphosate; 0–0.020 mg/kg for cyanuric acid, HEPA, and maleic hydrazide; 0–0.010 mg/kg for N-Acetyl-glyphosate; and 0–0.008 mg/kg for glufosinate ammonium, MPP, and NAG.
- (ii)
- Cow milk: 0–0.020 mg/kg for AMPA, fosetyl Al, glyphosate, HEPA, maleic hydrazide, and N-Acetyl-glyphosate; 0–0.040 mg/kg for cyanuric acid and ethephon; 0–0.008 mg/kg for glufosinate ammonium; and 0–0.004 mg/kg for MPP and NAG.
- (iii)
- Chicken eggs: 0–0.020 mg/kg for AMPA, cyanuric acid, ethephon, fosetyl Al, glyphosate, HEPA, maleic hydrazide, and N-Acetyl- glyphosate; and 0–0.004 mg/kg for glufosinate ammonium, MPP, and NAG.
2.6.2. LOQ, Recovery, Repeatability, and Within-Laboratory Reproducibility
2.6.3. Measurement Uncertainty
3. Results and Discussion
3.1. Set-Up of the Sample Pretreatment Method
3.2. In-House Verification of Method Performance
3.3. Application of the Implemented Method for Official Control Purposes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Castillo, M.; Carbonell, E.; González, C.; Miralles-Marco, A. Pesticide Residue Analysis in Animal Origin Food: Procedure Proposal and Evaluation for Lipophilic Pesticides. In Pesticides—Recent Trends in Pesticide Residue Assay; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef] [Green Version]
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, G.M.; Kroes, R.; Munro, I.C. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul. Toxicol. Pharmacol. RTP 2000, 31 Pt 1, 117–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borggaard, O.K.; Gimsing, A.L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review. Pest Manag. Sci. 2008, 64, 441–456. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, P.; Flores, F.; Mueller, J.F.; Carter, S.; Negri, A.P. Glyphosate persistence in seawater. Mar. Pollut. Bull. 2014, 85, 385–390. [Google Scholar] [CrossRef]
- Nørskov, N.P.; Jensen, S.K.; Sørensen, M.T. Robust and highly sensitive micro liquid chromatography–tandem mass spectrometry method for analyses of polar pesticides (glyphosate, aminomethylphosfonic acid, N-acetyl glyphosate and N-acetyl aminomethylphosfonic acid) in multiple biological matrices. J. Chromatogr. A 2019, 1605, 360343. [Google Scholar] [CrossRef]
- Takano, H.K.; Dayan, F.E. Glufosinate-ammonium: A review of the current state of knowledge. Pest Manag. Sci. 2020, 76, 3911–3925. [Google Scholar] [CrossRef]
- Müller, B.P.; Zumdick, A.; Schuphan, I.; Schmidt, B. Metabolism of the herbicide glufosinate-ammonium in plant cell cultures of transgenic (rhizomania-resistant) and non-transgenic sugarbeet (Beta vulgaris), carrot (Daucus carota), purple foxglove (Digitalis purpurea) and thorn apple (Datura stramonium). Pest Manag. Sci. 2001, 57, 46–56. [Google Scholar] [CrossRef]
- Aris, A.; Leblanc, S. Maternal and fetal exposure to pesticides associated to genetically modified foods in Eastern Townships of Quebec, Canada. Reprod. Toxicol. 2011, 31, 528–533. [Google Scholar] [CrossRef]
- Dorne, J.L.; Doerge, D.R.; Vandenbroeck, M.; Fink-Gremmels, J.; Mennes, W.; Knutsen, H.K.; Vernazza, F.; Castle, L.; Edler, L.; Benford, D. Recent advances in the risk assessment of melamine and cyanuric acid in animal feed. Toxicol. Appl. Pharmacol. 2013, 270, 218–229. [Google Scholar] [CrossRef]
- Long, L.; Bu, Y.; Chen, B.; Sadiq, R. Removal of urea from swimming pool water by UV/VUV: The roles of additives, mechanisms, influencing factors, and reaction products. Water Res. 2019, 161, 89–97. [Google Scholar] [CrossRef]
- El-Okazy, A.M. The Effects of Combination of Gibberellic Acid-3 (GA3) and Ethephon (2-Chloroethyl Phosphonic Acid) (Plant Growth Regulators) on Some Physiological Parameters in Mice. J. Egypt. Public Health Assoc. 2008, 83, 67–86. [Google Scholar]
- Yamada, Y. ETHEPHON (106). In Proceedings of the Pesticide Residue in Food 2015, Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group, Geneva, Switzerland, 15–24 September 2015. [Google Scholar]
- Hacker, K.; Benkenstein, A.; Eichorn, E.; Kolberg, D.; Wildgrube, C.; Scherbaum, E.; Anastassiades, M. Fosetyl and Phosphonic Acid—Residue Situation and Some Interesting Facts. In Proceedings of the EPRW 2016, The Evagoras Lanitis Center, Limassol, Cyprus, 24–27 May 2016. [Google Scholar]
- Chamkasem, N. Determination of glyphosate, maleic hydrazide, fosetyl aluminum, and ethephon in grapes by liquid chromatography/tandem mass spectrometry. J. Agric. Food Chem. 2017, 65, 7535–7541. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. Off. J. Eur. Union 2005, 70, 1–17. [Google Scholar]
- European Food Safety Authority (EFSA). Review of the existing maximum residue levels for glyphosate according to Article 12 of Regulation (EC) No 396/2005–revised version to take into account omitted data. EFSA J. 2019, 17, e05862. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2021/601 of 13 April 2021 concerning a coordinated multiannual control programme of the Union for 2022, 2023 and 2024 to ensure compliance with maximum residue levels of pesticides and to assess the consumer exposure to pesticide residues in and on food of plant and animal origin. Off. J. Eur. Union L 127 2021, 64, 29. [Google Scholar]
- Gasparini, M.; Angelone, B.; Ferretti, E. Glyphosate and other highly polar pesticides in fruit, vegetables and honey using ion chromatography coupled with high resolution mass spectrometry: Method validation and its applicability in an official laboratory. J. Mass Spectrom. 2020, 55, e4624. [Google Scholar] [CrossRef]
- Martinez-Haro, M.; Chinchilla, J.M.; Camarero, P.R.; Viñuelas, J.A.; Crespo, M.J.; Mateo, R. Determination of glyphosate exposure in the Iberian hare: A potential focal species associated to agrosystems. Sci. Total Environ. 2022, 823, 153677. [Google Scholar] [CrossRef]
- Zambrano-Intriago, L.A.; Amorim, C.G.; Rodríguez-Díaz, J.M.; Araújo, A.N.; Montenegro, M.C. Challenges in the design of electrochemical sensor for glyphosate-based on new materials and biological recognition. Sci. Total Environ. 2021, 793, 148496. [Google Scholar] [CrossRef]
- Zambrano-Intriago, L.A.; Amorim, C.G.; Araújo, A.N.; Gritsok, D.; Rodríguez-Díaz, J.M.; Montenegro, M.C. Development of an inexpensive and rapidly preparable enzymatic pencil graphite biosensor for monitoring of glyphosate in waters. Sci. Total Environ. 2023, 855, 158865. [Google Scholar] [CrossRef]
- Verdini, E.; Pecorelli, I. The Current Status of Analytical Methods Applied to the Determination of Polar Pesticides in Food of Animal Origin: A Brief Review. Foods 2022, 11, 1527. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, B.; Yuan, D.; Ma, J. A simple method for the determination of glyphosate and aminomethylphosphonic acid in seawater matrix with high performance liquid chromatography and fluorescence detection. Talanta 2016, 161, 700–706. [Google Scholar] [CrossRef] [PubMed]
- García de Llasera, M.P.; Gómez-Almaraz, L.; Vera-Avila, L.E.; Peña-Alvarez, A. Matrix solid-phase dispersion extraction and determination by high-performance liquid chromatography with fluorescence detection of residues of glyphosate and aminomethylphosphonic acid in tomato fruit. J. Chromatogr. A 2005, 1093, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Hogendoorn, E.A.; Ossendrijver, F.M.; Dijkman, E.; Baumann, R.A. Rapid determination of glyphosate in cereal samples by means of pre-column derivatisation with 9-fluorenylmethyl chloroformate and coupled-column liquid chromatography with fluorescence detection. J. Chromatogr. A 1999, 833, 67–73. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Nobile, M.; Panseri, S.; Arioli, F. Detection of glyphosate and its metabolites in food of animal origin based on ion-chromatography high resolution mass spectrometry (IC-HRMS). Food Addit. Contam. Part A 2019, 36, 592–600. [Google Scholar] [CrossRef]
- Dias, J.; Lopez, S.; Mol, H.; de Kok, A. Influence of different hydrophilic interaction liquid chromatography stationary phases on method performance for the determination of highly polar anionic pesticides in complex feed matrices. J. Sep. Sci. 2021, 44, 2165–2176. [Google Scholar] [CrossRef]
- Anastassiades, M.; Kolberg, D.I.; Eichhorn, E.; Wachtler, A.K.; Benkenstein, A.; Zechmann, S.; Mack, D.; Wildgrube, C.; Barth, A.; Sigalov, I.; et al. Quick Method for the Analysis of Numerous Highly Polar Pesticides in Food Involving Extraction with Acidified Methanol and LC-MS/MS Measurement. In Food of Animal Origin (QuPPe-AO-Method), Version 3.2. 2019. Available online: https://www.eurl-pesticides.eu/userfiles/file/meth_QuPPe_AO_V3_2.pdf (accessed on 5 January 2023).
- SANTE/11312/2021: Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed Implemented by 1 January 2022. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf (accessed on 24 November 2022).
- UNI CEI EN ISO/IEC 17025:2018; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2018.
- Herrera López, S.; Dias, J.; de Kok, A. Analysis of highly polar pesticides and their main metabolites in animal origin matrices by hydrophilic interaction liquid chromatography and mass spectrometry. Food Control 2020, 115, 107289. [Google Scholar] [CrossRef]
- Van Eenennaam, A.L.; Young, A.E. Detection of dietary DNA, protein, and glyphosate in meat, milk, and eggs. J. Anim. Sci. 2017, 95, 3247–3269. [Google Scholar] [CrossRef]
- Schnabel, K.; Schmitz, R.; von Soosten, D.; Frahm, J.; Kersten, S.; Meyer, U.; Breves, G.; Hackenberg, R.; Spitzke, M.; Dänicke, S. Effects of glyphosate residues and different concentrate feed proportions on performance, energy metabolism and health characteristics in lactating dairy cows. Arch. Anim. Nutr. 2017, 71, 413–427. [Google Scholar] [CrossRef]
- Von Soosten, D.; Meyer, U.; Hüther, L.; Dänicke, S.; Lahrssen-Wiederholt, M.; Schafft, H.; Spolders, M.; Breves, G. Excretion pathways and ruminal disappearance of glyphosate and its degradation product aminomethylphosphon. J. Dairy Sci. 2016, 99, 5318–5324. [Google Scholar] [CrossRef] [Green Version]
- Zoller, O.; Rhyn, P.; Rupp, H.; Zarn, J.A.; Geiser, C. Glyphosate residues in Swiss market foods: Monitoring and risk evaluation. Food Addit. Contam. Part B Surveill. 2018, 11, 83–91. [Google Scholar] [CrossRef]
MRL (mg/kg) | |||
---|---|---|---|
Bovine Fat | Chicken Eggs | Cow Milk | |
AMPA (glyphosate metabolite) | n.i. | n.i. | n.i. |
Cyanuric Acid | not set | not set | not set |
Ethephon | 0.05 * | 0.05 * | 0.05 * |
Fosetyl Al (sum of fosetyl-al and phosphonic acid) | 0.5 * | 0.1 * | 0.5 |
Glufosinate Am (sum of glufosinate, MPP, and NAG) | 0.1 | 0.05 | 0.03 * |
HEPA (ethephon metabolite) | n.i. | n.i. | n.i. |
Glyphosate | 0.05 * | 0.05 * | 0.05 * |
Maleic hydrazide | 0.1 | 0.1 | 0.07 |
N Acetyl glyphosate (glyphosate metabolite) | n.i. | n.i. | n.i. |
Validation Levels (mg/kg) | ||||||
---|---|---|---|---|---|---|
Bovine Fat | Chicken Eggs | Cow Milk | ||||
Level 1 | Level 2 | Level 1 | Level 2 | Level 1 | Level 2 | |
AMPA (glyphosate metabolite) | 0.05 | 0.25 | 0.05 | 0.25 | 0.05 | 0.25 |
Cyanuric acid | 0.05 | 0.25 | 0.05 | 0.25 | 0.05 | 0.25 |
Ethephon | 0.05 | 0.25 | 0.05 | 0.25 | 0.05 | 0.25 |
Fosetyl Al | 0.05 | 0.25 | 0.05 | 0.25 | 0.05 | 0.25 |
Glyphosate | 0.05 | 0.25 | 0.05 | 0.25 | 0.05 | 0.25 |
Glufosinate Ammonium | 0.025 | 0.125 | 0.01 | 0.05 | 0.02 | 0.05 |
HEPA (ethephon metabolite) | 0.05 | 0.25 | 0.05 | 0.25 | 0.05 | 0.25 |
Maleic hydrazide | 0.05 | 0.25 | 0.05 | 0.25 | 0.05 | 0.25 |
MPP (glufosinate metabolite) | 0.025 | 0.125 | 0.01 | 0.05 | 0.005 | 0.05 |
N-acetyl glyphosate | 0.05 | 0.25 | 0.05 | 0.25 | 0.05 | 0.25 |
NAG (glufosinate metabolite) | 0.025 | 0.125 | 0.01 | 0.05 | 0.005 | 0.05 |
Bovine Fat | |||||||||
---|---|---|---|---|---|---|---|---|---|
Analytes | Level 1 (LOQ) (mg/kg) | Rec (%) | RSDr (%) | Level 2 (mg/kg) | Rec (%) | RSDr (%) | Reproducibility Level (mg/kg) | Rec (%) | RSDWR (%) |
AMPA | 0.05 | 93 | 6 | 0.25 | 96 | 6 | - | - | - |
Cyanuric acid | 0.05 | 94 | 5 | 0.25 | 100 | 3 | - | - | - |
Ethephon | 0.05 | 97 | 6 | 0.25 | 93 | 4 | - | - | - |
Fosetyl Al | 0.05 | 92 | 5 | 0.25 | 101 | 6 | - | - | - |
Glufosinate | 0.025 | 117 | 17 | 0.125 | 95 | 7 | 0.05 | 97 | 15 |
Glyphosate | 0.05 | 96 | 14 | 0.25 | 89 | 12 | 0.01 | 91 | 11 |
HEPA | 0.05 | 92 | 5 | 0.25 | 107 | 3 | - | - | - |
Maleic hydrazide | 0.05 | 76 | 7 | 0.25 | 100 | 12 | - | - | - |
MPP | 0.025 | 91 | 16 | 0.125 | 101 | 9 | 0.05 | 92 | 13 |
N-acetyl glyphosate | 0.05 | 119 | 9 | 0.25 | 113 | 10 | - | - | - |
NAG | 0.025 | 108 | 9 | 0.125 | 102 | 8 | 0.05 | 104 | 16 |
Chicken Egg | |||||||||
Analytes | Level 1 (LOQ) (mg/kg) | Rec (%) | RSDr (%) | Level 2 (mg/kg) | Rec (%) | RSDr (%) | Reproducibility Level (mg/kg) | Rec (%) | RSDWR (%) |
AMPA | 0.05 | 81 | 18 | 0.25 | 88 | 12 | - | - | - |
Cyanuric acid | 0.05 | 86 | 14 | 0.25 | 108 | 6 | - | - | - |
Ethephon | 0.05 | 101 | 6 | 0.25 | 106 | 5 | - | - | - |
Fosetyl Al | 0.05 | 84 | 8 | 0.25 | 97 | 4 | - | - | - |
Glufosinate | 0.01 | 111 | 9 | 0.05 | 76 | 19 | 0.05 | 103 | 16 |
Glyphosate | 0.05 | 95 | 10 | 0.25 | 108 | 12 | 0.01 | 94 | 14 |
HEPA | 0.05 | 107 | 4 | 0.25 | 102 | 4 | - | - | - |
Maleic hydrazide | 0.05 | 90 | 11 | 0.25 | 91 | 13 | - | - | - |
MPP | 0.01 | 96 | 7 | 0.05 | 97 | 11 | 0.05 | 97 | 18 |
N-acetyl glyphosate | 0.05 | 96 | 17 | 0.25 | 98 | 8 | - | - | - |
NAG | 0.01 | 94 | 14 | 0.05 | 90 | 9 | 0.05 | 94 | 17 |
Cow Milk | |||||||||
Analytes | Level 1 (LOQ) (mg/kg) | Rec (%) | RSDr (%) | Level 2 (mg/kg) | Rec (%) | RSDr (%) | Reproducibility Level (mg/kg) | Rec (%) | RSDWR (%) |
AMPA | 0.05 | 114 | 14 | 0.25 | 93 | 11 | - | - | - |
Cyanuric acid | 0.05 | 107 | 12 | 0.25 | 94 | 5 | - | - | - |
Ethephon | 0.05 | 109 | 3 | 0.25 | 96 | 6 | - | - | - |
Fosetyl Al | 0.05 | 85 | 6 | 0.25 | 95 | 6 | - | - | - |
Glufosinate | 0.02 | 100 | 14 | 0.05 | 96 | 9 | 0.05 | 105 | 9 |
Glyphosate | 0.05 | 86 | 17 | 0.25 | 97 | 9 | 0.01 | 104 | 4 |
HEPA | 0.05 | 97 | 11 | 0.25 | 87 | 7 | - | - | - |
Maleic hydrazide | 0.05 | 100 | 11 | 0.25 | 108 | 6 | - | - | - |
MPP | 0.005 | 100 | 16 | 0.05 | 93 | 18 | 0.05 | 104 | 8 |
N-acetyl glyphosate | 0.05 | 111 | 8 | 0.25 | 89 | 7 | - | - | - |
NAG | 0.005 | 94 | 12 | 0.05 | 94 | 15 | 0.05 | 104 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdini, E.; Lattanzio, V.M.T.; Ciasca, B.; Fioroni, L.; Pecorelli, I. Improved Method for the Detection of Highly Polar Pesticides and Their Main Metabolites in Foods of Animal Origin: Method Validation and Application to Monitoring Programme. Separations 2023, 10, 44. https://doi.org/10.3390/separations10010044
Verdini E, Lattanzio VMT, Ciasca B, Fioroni L, Pecorelli I. Improved Method for the Detection of Highly Polar Pesticides and Their Main Metabolites in Foods of Animal Origin: Method Validation and Application to Monitoring Programme. Separations. 2023; 10(1):44. https://doi.org/10.3390/separations10010044
Chicago/Turabian StyleVerdini, Emanuela, Veronica Maria Teresa Lattanzio, Biancamaria Ciasca, Laura Fioroni, and Ivan Pecorelli. 2023. "Improved Method for the Detection of Highly Polar Pesticides and Their Main Metabolites in Foods of Animal Origin: Method Validation and Application to Monitoring Programme" Separations 10, no. 1: 44. https://doi.org/10.3390/separations10010044
APA StyleVerdini, E., Lattanzio, V. M. T., Ciasca, B., Fioroni, L., & Pecorelli, I. (2023). Improved Method for the Detection of Highly Polar Pesticides and Their Main Metabolites in Foods of Animal Origin: Method Validation and Application to Monitoring Programme. Separations, 10(1), 44. https://doi.org/10.3390/separations10010044