UHPLC-ToF-MS as a High-Resolution Mass Spectrometry Tool for Veterinary Drug Quantification in Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Instrumentation
2.3. Sample Preparation
2.4. Validation Procedure
3. Results and Discussion
3.1. Scope of the Method
3.2. Validation
3.3. Analysis of Real Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gonzalez Ronquillo, M.; Angeles Hernandez, J.C. Antibiotic and Synthetic Growth Promoters in Animal Diets: Review of Impact and Analytical Methods. Food Control 2017, 72, 255–267. [Google Scholar] [CrossRef]
- Beyene, T. Veterinary Drug Residues in Food-Animal Products: Its Risk Factors and Potential Effects on Public Health. J. Vet. Sci. Technol. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Pereira, M.N.; Scussel, V.M. Resíduos de Antimicrobianos Em Leite Bovino: Fonte de Contaminação, Impactos e Controle. Revista de Ciências Agroveterinárias 2017, 16, 170–182. [Google Scholar] [CrossRef]
- Chen, J.; Ying, G.-G.; Deng, W.-J. Antibiotic Residues in Food: Extraction, Analysis, and Human Health Concerns. J. Agric. Food Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef] [PubMed]
- Kurjogi, M.; Issa Mohammad, Y.H.; Alghamdi, S.; Abdelrahman, M.; Satapute, P.; Jogaiah, S. Detection and Determination of Stability of the Antibiotic Residues in Cow’s Milk. PLoS ONE 2019, 14, e0223475. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.M.E.-D.; Ahmed, M.B.M. Necessary Usage of Antibiotics in Animals. In Antibiotic Use in Animals; InTech: London, UK, 2018. [Google Scholar]
- Daeseleire, E.; Van Pamel, E.; Van Poucke, C.; Croubels, S. Veterinary Drug Residues in Foods. In Chemical Contaminants and Residues in Food, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 117–153. ISBN 9780081006740. [Google Scholar]
- Nisha, A. Antibiotic Residues—A Global Health Hazard. Vet. World 2008, 2, 375. [Google Scholar] [CrossRef]
- Guimarães, D.O.; da Silva Momesso, L.; Pupo, M.T. Antibióticos: Importância Terapêutica e Perspectivas Para a Descoberta e Desenvolvimento de Novos Agentes. Quim. Nova 2010, 33, 667–679. [Google Scholar] [CrossRef]
- Chowdhury, R.; Haque, M.; Islam, K.; Khaleduzzaman, A. A Review On Antibiotics In An Animal Feed. Bangladesh J. Anim. Sci. 1970, 38, 22–32. [Google Scholar] [CrossRef]
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial Resistance: One Health Approach. Vet. World 2022, 15, 743–749. [Google Scholar] [CrossRef]
- FAO; WHO. Joint FAO/WHO Expert Meeting in Collaboration with OIE on Foodborne Antimicrobial Resistance: Role of the Environment, Crops and Biocides; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Albero, B.; Tadeo, J.L.; Miguel, E.; Pérez, R.A. Rapid Determination of Antibiotic Residues in Cereals by Liquid Chromatography Triple Mass Spectrometry. Anal. Bioanal. Chem. 2019, 411, 6129–6139. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, Q.; Luo, Y. Occurrence and Source Analysis of Typical Veterinary Antibiotics in Manure, Soil, Vegetables and Groundwater from Organic Vegetable Bases, Northern China. Environ. Pollut. 2010, 158, 2992–2998. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhang, X.; Chen, J.; Li, Y.; Liu, X.; Feng, Y.; Sun, Y. Source, Occurrence and Risks of Twenty Antibiotics in Vegetables and Soils from Facility Agriculture through Fixed-Point Monitoring and Numerical Simulation. J. Environ. Manag. 2022, 319, 115652. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhang, W.J.; Liu, Y.W.; Xue, J.M.; Zhang, S.Q.; Li, Z.J. A Simple, Sensitive, and Reliable Method for the Simultaneous Determination of Multiple Antibiotics in Vegetables through SPE-HPLC-MS/MS. Molecules 2018, 23, 1953. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Yang, L.; Chen, L.; Li, S.; Sun, L. Bioaccumulation of Antibiotics in Crops under Long-Term Manure Application: Occurrence, Biomass Response and Human Exposure. Chemosphere 2019, 219, 882–895. [Google Scholar] [CrossRef] [PubMed]
- European Parliament; Council of the European Union. COMMISSION REGULATION (EU) No 37/2010. Off. J. Eur. Union 2010, 32, 275–346. [Google Scholar]
- European Commission Commission Implementing Regulation (EU) 2018/470. Off. J. Eur. Union 2018, L79, 16–18.
- European Commission Commission Implementing Regulation (EU) 2021/808. Off. J. Eur. Union 2021, L180, 84–109.
- Companyó, R.; Granados, M.; Guiteras, J.; Prat, M.D. Antibiotics in Food: Legislation and Validation of Analytical Methodologies. Anal. Bioanal. Chem. 2009, 395, 877–891. [Google Scholar] [CrossRef]
- Cháfer-Pericás, C.; Maquieira, Á.; Puchades, R.; Miralles, J.; Moreno, A.; Pastor-Navarro, N.; Espinós, F. Immunochemical Determination of Oxytetracycline in Fish: Comparison between Enzymatic and Time-Resolved Fluorometric Assays. Anal. Chim. Acta 2010, 662, 177–185. [Google Scholar] [CrossRef]
- Samanidou, V.; Nisyriou, S. Multi-residue Methods for Confirmatory Determination of Antibiotics in Milk. J. Sep. Sci. 2008, 31, 2068–2090. [Google Scholar] [CrossRef]
- Hu, M.; Ben, Y.; Wong, M.H.; Zheng, C. Trace Analysis of Multiclass Antibiotics in Food Products by Liquid Chromatography-Tandem Mass Spectrometry: Method Development. J. Agric. Food Chem. 2021, 69, 1656–1666. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.L.; Wai, H.K.F.; Wu, P.; Lai, S.W.; Chan, O.S.K.; Tun, H.M. A Universal LC-MS/MS Method for Simultaneous Detection of Antibiotic Residues in Animal and Environmental Samples. Antibiotics 2022, 11, 845. [Google Scholar] [CrossRef]
- Lopes, R.P.; Reyes, R.C.; Romero-González, R.; Vidal, J.L.M.; Frenich, A.G. Multiresidue Determination of Veterinary Drugs in Aquaculture Fish Samples by Ultra High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. J. Chromatogr. B 2012, 895–896, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Quesada, S.P.; Paschoal, J.A.R.; Reyes, F.G.R. Considerations on the Aquaculture Development and on the Use of Veterinary Drugs: Special Issue for Fluoroquinolones-A Review. J. Food Sci. 2013, 78, R1321–R1333. [Google Scholar] [CrossRef] [PubMed]
- Tylová, T.; Flieger, M.; Olšovská, J. Determination of Antibiotics in Influents and Effluents of Wastewater-Treatment-Plants in the Czech Republic—Development and Application of the SPE and a UHPLC-ToFMS Method. Anal. Methods 2013, 5, 2110. [Google Scholar] [CrossRef]
- Kang, J.; Park, S.-J.; Park, H.-C.; Hossain, M.A.; Kim, M.-A.; Son, S.-W.; Lim, C.-M.; Kim, T.-W.; Cho, B.-H. Multiresidue Screening of Veterinary Drugs in Meat, Milk, Egg, and Fish Using Liquid Chromatography Coupled with Ion Trap Time-of-Flight Mass Spectrometry. Appl. Biochem. Biotechnol. 2017, 182, 635–652. [Google Scholar] [CrossRef] [PubMed]
- Jongedijk, E.; Fifeik, M.; Arrizabalaga-Larrañaga, A.; Polzer, J.; Blokland, M.; Sterk, S. Use of High-Resolution Mass Spectrometry for Veterinary Drug Multi-Residue Analysis. Food Control 2023, 145, 109488. [Google Scholar] [CrossRef]
- Stolker, A.A.M.; Rutgers, P.; Oosterink, E.; Lasaroms, J.J.P.; Peters, R.J.B.; van Rhijn, J.A.; Nielen, M.W.F. Comprehensive Screening and Quantification of Veterinary Drugs in Milk Using UPLC–ToF-MS. Anal. Bioanal. Chem. 2008, 391, 2309–2322. [Google Scholar] [CrossRef]
- Zhu, C.; Lai, G.; Jin, Y.; Xu, D.; Chen, J.; Jiang, X.; Wang, S.; Liu, G.; Xu, N.; Shen, R.; et al. Suspect Screening and Untargeted Analysis of Veterinary Drugs in Food by LC-HRMS: Application of Background Exclusion-Dependent Acquisition for Retrospective Analysis of Unknown Xenobiotics. J. Pharm. Biomed. Anal. 2022, 210, 114583. [Google Scholar] [CrossRef]
- Martins, M.T.; Barreto, F.; Hoff, R.B.; Jank, L.; Arsand, J.B.; Motta, T.M.C.; Schapoval, E.E.S. Multiclass and Multi-Residue Determination of Antibiotics in Bovine Milk by Liquid Chromatography–Tandem Mass Spectrometry: Combining Efficiency of Milk Control and Simplicity of Routine Analysis. Int. Dairy J. 2016, 59, 44–51. [Google Scholar] [CrossRef]
- Freitas, A.; Barbosa, J.; Ramos, F. Development and Validation of a Multi-Residue and Multiclass Ultra-High-Pressure Liquid Chromatography-Tandem Mass Spectrometry Screening of Antibiotics in Milk. Int. Dairy. J. 2013, 33, 38–43. [Google Scholar] [CrossRef]
- Junza, A.; Amatya, R.; Barrón, D.; Barbosa, J. Comparative Study of the LC–MS/MS and UPLC–MS/MS for the Multi-Residue Analysis of Quinolones, Penicillins and Cephalosporins in Cow Milk, and Validation According to the Regulation 2002/657/EC. J. Chromatogr. B 2011, 879, 2601–2610. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, A.; Butcher, P.; Maden, K.; Walker, S.; Widmer, M. Development of an Improved High Resolution Mass Spectrometry Based Multi-Residue Method for Veterinary Drugs in Various Food Matrices. Anal. Chim. Acta 2011, 700, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, A.; Butcher, P.; Maden, K.; Widmer, M. Quantitative Multiresidue Method for about 100 Veterinary Drugs in Different Meat Matrices by Sub 2-Μm Particulate High-Performance Liquid Chromatography Coupled to Time of Flight Mass Spectrometry. J. Chromatogr. A 2008, 1194, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Ortelli, D.; Cognard, E.; Jan, P.; Edder, P. Comprehensive Fast Multiresidue Screening of 150 Veterinary Drugs in Milk by Ultra-Performance Liquid Chromatography Coupled to Time of Flight Mass Spectrometry. J. Chromatogr. B 2009, 877, 2363–2374. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. ICH Guideline Q2(R2) on Validation of Analytical Procedures; Food and Drug Administration: Silver Spring, MD, USA, 2022.
- Yan, Y.; Zhang, H.; Ai, L.; Kang, W.; Lian, K.; Wang, J. Determination of Gamithromycin Residues in Eggs, Milk and Edible Tissue of Food-Producing Animals by Solid Phase Extraction Combined with Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B 2021, 1171, 122637. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Lin, K.; Huang, X.; Chen, M. A Simple and Fast Extraction Method for the Determination of Multiclass Antibiotics in Eggs Using LC-MS/MS. J. Agric. Food Chem. 2017, 65, 5064–5073. [Google Scholar] [CrossRef]
- Li, J.; Ren, X.; Diao, Y.; Chen, Y.; Wang, Q.; Jin, W.; Zhou, P.; Fan, Q.; Zhang, Y.; Liu, H. Multiclass Analysis of 25 Veterinary Drugs in Milk by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Chem. 2018, 257, 259–264. [Google Scholar] [CrossRef]
- Castilla-Fernández, D.; Moreno-González, D.; Beneito-Cambra, M.; Molina-Díaz, A. Critical Assessment of Two Sample Treatment Methods for Multiresidue Determination of Veterinary Drugs in Milk by UHPLC-MS/MS. Anal. Bioanal. Chem. 2019, 411, 1433–1442. [Google Scholar] [CrossRef]
- Wang, J.; Leung, D.; Chow, W.; Chang, J.; Wong, J.W. Target Screening of 105 Veterinary Drug Residues in Milk Using UHPLC/ESI Q-Orbitrap Multiplexing Data Independent Acquisition. Anal. Bioanal. Chem. 2018, 410, 5373–5389. [Google Scholar] [CrossRef]
- Jadhav, M.R.; Pudale, A.; Raut, P.; Utture, S.; Ahammed Shabeer, T.P.; Banerjee, K. A Unified Approach for High-Throughput Quantitative Analysis of the Residues of Multi-Class Veterinary Drugs and Pesticides in Bovine Milk Using LC-MS/MS and GC–MS/MS. Food Chem. 2019, 272, 292–305. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, J.; Wang, Z.; Wang, C.; Liu, Y.; Zhang, L. Rapid Determination of 88 Veterinary Drug Residues in Milk Using Automated TurborFlow Online Clean-up Mode Coupled to Liquid Chromatography-Tandem Mass Spectrometry. Talanta 2016, 148, 401–411. [Google Scholar] [CrossRef]
- Kim, Y.R.; Park, S.Y.; Lee, T.H.; Kim, J.Y.; Choi, J.-D.; Moon, G. Multi-Class, Multi-Residue Analysis of 59 Veterinary Drugs in Livestock Products for Screening and Quantification Using Liquid Chromatography-Tandem Mass Spectrometry. Korean J. Environ. Agric. 2022, 41, 288–309. [Google Scholar] [CrossRef]
- Wang, H.; Ren, L.; Yu, X.; Hu, J.; Chen, Y.; He, G.; Jiang, Q. Antibiotic Residues in Meat, Milk and Aquatic Products in Shanghai and Human Exposure Assessment. Food Control 2017, 80, 217–225. [Google Scholar] [CrossRef]
- Jank, L.; Martins, M.T.; Arsand, J.B.; Motta, T.M.C.; Feijó, T.C.; dos Santos Castilhos, T.; Hoff, R.B.; Barreto, F.; Pizzolato, T.M. Liquid Chromatography–Tandem Mass Spectrometry Multiclass Method for 46 Antibiotics Residues in Milk and Meat: Development and Validation. Food Anal. Methods 2017, 10, 2152–2164. [Google Scholar] [CrossRef]
Antibiotic | Molecular Formula | Mass (Da) | [M+H]+ (m/z) | Max. ∆ppm | RT (min) | MRL or (*)VL (µg kg−1) | CCβ (µg L−1) | LoD (µg L−1) | LoQ (µg L−1) | Recovery (%) | Precision | Linearity (R2) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intra-Day (%) | Inter-Day (%) | ||||||||||||
Acetyltylosin, 3-O- | C48H79NO18 | 957.52971 | 958.53675 | 0.96 | 5.36 | 50 | 12.5 | 0.03 | 0.10 | 105.6 | 5.5 | 8.1 | 0.9995 |
Amoxicillin | C16H19N3O5S | 365.10454 | 366.11182 | 1.49 | 3.6 | 4 | 2 | 0.67 | 1.22 | 84.3 | 15.5 | 20.6 | 0.9978 |
Ampicillin | C16H19N3O4S | 349.10963 | 350.11690 | 0.60 | 4.2 | 4 | 2 | 0.31 | 1.04 | 96.1 | 10.6 | 15.9 | 0.9967 |
Bacitracin | C66H103N17O16S | 1421.74894 | 711.88226 | 0.76 | 4.75 | 100 | 25 | 1.41 | 4.27 | 111.8 | 6.4 | 11.6 | 0.9968 |
Baquiloprim | C17H20N6 | 308.17494 | 309.18200 | −4.54 | 3.3 | 30 | 7.5 | 0.09 | 0.28 | 106.5 | 20.3 | 28.8 | 0.9951 |
Benzylpenicillin | C16H18N2O4S | 334.09873 | 335.10601 | −0.24 | 4.4 | 4 | 2 | 0.53 | 1.76 | 83.1 | 8.9 | 13.4 | 0.9953 |
Cefacetrile | C13H13N3O6S | 339.05251 | 340.05978 | −3.70 | 4.9 | 125 | 12.5 | 2.42 | 8.06 | 85.8 | 11.3 | 17.0 | 0.9988 |
Cefalonium | C20H18N4O5S2 | 458.07186 | 459.07927 | 0.81 | 4.3 | 20 | 10 | 0.08 | 0.23 | 103.9 | 10.63 | 13.6 | 0.9990 |
Cefapirin | C17H17N3O6S2 | 423.05588 | 424.06316 | 0.79 | 4.0 | 60 | 6 | 0.06 | 0.21 | 114.5 | 7.0 | 10.4 | 0.9958 |
Cefazolin | C14H14N8O4S3 | 454.03002 | 455.03729 | 3.77 | 4.6 | 50 | 5 | 0.06 | 0.18 | 129.4 | 13.0 | 19.4 | 0.9973 |
Cefoperazon | C25H27N9O8S2 | 645.14240 | 646.14968 | −0.72 | 4.9 | 50 | 5 | 0.87 | 2.88 | 80.7 | 14.7 | 25.0 | 0.9800 |
Cefquinome | C23H24N6O5S2 | 528.12496 | 529.13224 | −3.93 | 3.9 | 20 | 2 | 0.38 | 1.28 | 122.0 | 13.0 | 16.5 | 0.9925 |
Ceftiofur | C19H17N5O7S3 | 523.02901 | 524.03629 | 2.59 | 5.2 | 100 | 10 | 0.003 | 0.010 | 96.2 | 8.9 | 13.3 | 0.9906 |
Cephalexin | C16H17N3O4S | 347.09398 | 348.10125 | 0.65 | 4.2 | 100 | 10 | 0.94 | 3.15 | 117.8 | 10.2 | 15.3 | 0.9842 |
Chlortetracyclin | C22H23ClN2O8 | 478.11429 | 479.12157 | −0.10 | 4.6 | 100 | 10 | 0.07 | 0.24 | 101.0 | 10.7 | 16.1 | 0.9865 |
Cinoxacin (a) | C12H10N2O5 | 262.05897 | 263.06625 | −0.30 | 5.0 | 30* | 3 | 0.01 | 0.02 | 92.1 | 11.7 | 17.5 | 0.9984 |
Ciprofloxacin | C17H18FN3O3 | 331.13322 | 332.14050 | 0.95 | 4.4 | 100 | 10 | 0.08 | 0.28 | 108.0 | 11.0 | 16.4 | 0.9996 |
Clindamycin (a) | C18H33ClN2O5S | 424.17987 | 425.18745 | 0.71 | 5.9 | 100* | 10 | 0.15 | 0.44 | 106.4 | 5.0 | 8.6 | 0.9995 |
Cloxacillin | C19H18ClN3O5S | 435.06557 | 436.07285 | 0.65 | 5.9 | 30 | 3 | 0.03 | 0.11 | 99.1 | 4.1 | 4.7 | 0.9992 |
Danofloxacin | C19H20FN3O3 | 357.14887 | 358.15615 | 1.34 | 4.4 | 30 | 3 | 0.13 | 0.42 | 116.6 | 10.3 | 15.5 | 0.9989 |
Dapsone (b) | C12H12N2O2S | 248.06195 | 249.06923 | −0.99 | 4.8 | 10* | 2.5 | 0.47 | 1.58 | 109.1 | 7.1 | 10.7 | 0.9975 |
Desacetylcephapirin | C15H15N3O5S2 | 381.04531 | 382.05275 | 0.10 | 2.7 | 60 | 6 | 0.36 | 1.09 | 108.6 | 8.1 | 11.7 | 0.9984 |
Dicloxacillin | C19H17Cl2N3O5S | 469.02660 | 470.03387 | −0.81 | 6.2 | 30 | 3 | 0.13 | 0.43 | 107.7 | 5.1 | 7.6 | 0.9986 |
Difloxacin | C21H19F2N3O3 | 399.13944 | 400.14648 | 0.80 | 4.7 | 30 | 7.5 | 0.04 | 0.13 | 104.2 | 5.6 | 7.7 | 0.9998 |
Doxycycline (c) | C22H24N2O8 | 444.15327 | 445.16054 | 1.00 | 4.9 | 4* | 2 | 0.28 | 0.95 | 117.6 | 13.4 | 20.1 | 0.9875 |
Enoxacin (a) | C15H17FN4O3 | 320.12847 | 321.13575 | 1.70 | 4.3 | 30* | 3 | 0.02 | 0.08 | 107.0 | 7.9 | 10.4 | 0.9982 |
Enrofloxacin | C19H22FN3O3 | 359.16452 | 360.17180 | 0.10 | 4.5 | 100 | 10 | 0.17 | 0.56 | 114.4 | 11.9 | 17.8 | 0.9992 |
epi-Chlortetracyclin | C22H23ClN2O8 | 478.11429 | 479.12157 | −0.36 | 4.4 | 100 | 10 | 0.17 | 0.58 | 118.2 | 11.0 | 16.6 | 0.9988 |
epi-Oxytetracyclin | C22H24N2O9 | 460.14818 | 461.15546 | 0.38 | 3.9 | 100 | 10 | 0.26 | 0.86 | 95.2 | 8.5 | 12.8 | 0.9996 |
epi-Tetracyclin | C22H24N2O8 | 444.15327 | 445.16054 | −0.15 | 4.3 | 100 | 10 | 0.14 | 0.48 | 112.7 | 8.2 | 12.3 | 0.9954 |
Erythromycin | C37H67NO13 | 733.46124 | 734.46852 | 0.90 | 5.2 | 40 | 10 | 1.75 | 5.82 | 110.3 | 7.5 | 11.3 | 0.9988 |
Florfenicol | C12H14Cl2FNO4S | 357.00046 | 358.00741 | 3.94 | 4.5 | 50 | 5 | 1.77 | 5.35 | 103.4 | 9.3 | 12.2 | 0.9981 |
Florfenicol amine | C10H14FNO3S | 247.06784 | 248.07521 | −2.89 | 1.35 | 50 | 12.5 | 0.17 | 0.52 | 103.4 | 5.5 | 9.3 | 0.9995 |
Flumequine | C14H12FNO3 | 261.08012 | 262.08740 | 0.77 | 5.7 | 50 | 5 | 0.01 | 0.05 | 107.5 | 5.3 | 7.9 | 0.9998 |
Gamithromycin | C40H76N2O12 | 776.53982 | 777.54708 | −0.10 | 4.8 | 50 | 12.5 | 0.05 | 0.14 | 102.8 | 6.3 | 8.4 | 0.9996 |
Josamycin | C42H69NO15 | 827.46672 | 828.47402 | 1.03 | 5.6 | 50 | 12.5 | 0.02 | 0.05 | 106.4 | 4.5 | 8.6 | 0.9990 |
Lincomycin | C18H34N2O6S | 406.21375 | 407.22145 | 1.35 | 4.1 | 150 | 12.5 | 0.07 | 0.21 | 106.6 | 6.0 | 8.7 | 0.9991 |
Marbofloxacin | C17H19FN4O4 | 362.13903 | 363.14631 | 1.51 | 4.3 | 75 | 7.5 | 0.14 | 0.47 | 101.3 | 5.6 | 8.5 | 0.9997 |
Nafcillin | C21H22N2O5S | 414.12494 | 415.13222 | 0.84 | 6.0 | 30 | 3 | 0.07 | 0.22 | 105.4 | 5.1 | 7.7 | 0.9994 |
Nalidixic acid (a) | C12H12N2O3 | 232.08479 | 233.09207 | 0.29 | 5.6 | 30* | 3 | 0.01 | 0.04 | 106.3 | 5.6 | 7.2 | 0.9996 |
Neospiramycin | C36H62N2O11 | 698.43536 | 699.44297 | 0.47 | 4.7 | 200 | 100 | 0.11 | 0.34 | 113.7 | 12.4 | 19.9 | 0.9930 |
Norfloxacin (a) | C16H18FN3O3 | 319.13322 | 320.14050 | 0.96 | 4.3 | 30* | 3 | 0.02 | 0.06 | 114.9 | 9.4 | 14.2 | 0.9984 |
Novobiocin | C31H36N2O11 | 698.43536 | 699.44199 | −0.28 | 7.0 | 50 | 12.5 | 0.46 | 1.40 | 110.1 | 8.4 | 12.1 | 0.9969 |
Ofloxacin (a) | C18H20FN3O4 | 361.14378 | 362.15106 | 0.59 | 4.3 | 30* | 3 | 0.01 | 0.04 | 110.8 | 8.8 | 13.1 | 0.9994 |
Oleandomycin | C35H61NO12 | 687.41938 | 688.42640 | 0.35 | 5.1 | 50 | 12.5 | 0.11 | 0.33 | 105.5 | 6.6 | 8.6 | 0.9996 |
Ormetoprim (a) | C14H18N4O2 | 274.14298 | 275.15025 | 0.97 | 4.4 | 50* | 5 | 0.13 | 0.45 | 103.2 | 4.3 | 3.4 | 0.9981 |
Oxacillin | C19H19N3O5S | 401.10454 | 402.11182 | 0.84 | 5.8 | 30 | 3 | 0.18 | 0.61 | 111.2 | 8.0 | 11.9 | 0.9985 |
Oxolinic acid (c) | C13H11NO5 | 261.06372 | 262.07100 | 0.96 | 5.2 | 30 | 3 | 0.001 | 0.004 | 107.9 | 8.4 | 12.7 | 0.9974 |
Oxytetracycline | C22H24N2O9 | 460.14818 | 461.15546 | 0.51 | 4.1 | 100 | 10 | 0.09 | 0.29 | 106.0 | 6.2 | 9.3 | 0.9994 |
Phenoxymethylpenicillin | C16H18N2O5S | 350.09364 | 351.10084 | 0.77 | 5.7 | 4 | 2 | 0.08 | 0.24 | 128.8 | 12.6 | 20.9 | 0.9876 |
Pirlimycin | C17H31ClN2O5S | 410.16422 | 411.17164 | 0.46 | 4.7 | 100 | 10 | 0.29 | 0.89 | 106.2 | 5.0 | 7.7 | 0.9998 |
Rifaximin | C43H51N3O11 | 785.35236 | 786.35924 | 1.25 | 6.5 | 60 | 15 | 0.63 | 1.91 | 107.1 | 17.1 | 25.6 | 0.9962 |
Roxithromycin | C41H76N2O15 | 836.52457 | 837.53246 | 0.68 | 5.5 | 50 | 5 | 0.05 | 0.15 | 107.6 | 4.4 | 8.9 | 0.9994 |
Sarafloxacin (a) | C20H17F2N3O3 | 385.12380 | 386.13107 | −0.22 | 4.7 | 30* | 3 | 0.09 | 0.30 | 104.9 | 4.5 | 6.8 | 0.9999 |
Spiramycin | C43H74N2O14 | 842.51401 | 843.52128 | −0.37 | 4.6 | 200 | 20 | 0.27 | 0.90 | 119.2 | 10.1 | 12.2 | 0.9911 |
Sulfabenzamide | C13H12N2O3S | 276.05686 | 277.06438 | −0.47 | 5.2 | 100 | 10 | 0.11 | 0.33 | 95.9 | 7.9 | 16.8 | 0.9952 |
Sulfacetamide | C8H10N2O3S | 214.04121 | 215.04849 | −0.85 | 3.5 | 100 | 10 | 7.22 | 24.06 | 108.4 | 12.9 | 19.3 | 0.9976 |
Sulfachloropyridazine | C10H9ClN4O2S | 284.01348 | 285.02075 | −0.26 | 4.9 | 100 | 10 | 0.11 | 0.36 | 112.4 | 13.0 | 19.6 | 0.9947 |
Sulfaclozine | C10H9ClN4O2S | 284.01348 | 285.02075 | 0.27 | 5.3 | 100 | 10 | 0.14 | 0.48 | 99.0 | 3.1 | 4.7 | 0.9999 |
Sulfadiazine | C10H10N4O2S | 250.05245 | 251.05972 | 0.80 | 4.0 | 100 | 10 | 0.39 | 1.30 | 81.6 | 8.1 | 12.1 | 0.9895 |
Sulfadimethoxine | C12H14N4O4S | 310.07358 | 311.08085 | 1.58 | 5.3 | 100 | 10 | 0.04 | 0.14 | 104.9 | 4.1 | 6.1 | 0.9973 |
Sulfadimidin | C12H14N4O2S | 278.08375 | 279.09102 | 0.96 | 4.6 | 100 | 10 | 1.02 | 3.39 | 107.7 | 5.7 | 8.6 | 0.9945 |
Sulfadoxine | C12H14N4O4S | 310.07358 | 311.08085 | 0.75 | 5.0 | 100 | 10 | 0.04 | 0.15 | 114.0 | 13.3 | 19.9 | 0.9992 |
Sulfaguanidin | C7H10N4O2S | 214.05245 | 215.05972 | 0.78 | 1.2 | 100 | 10 | 1.10 | 3.65 | 98.1 | 6.0 | 9.0 | 0.9967 |
Sulfamerazine | C11H12N4O2S | 264.06809 | 265.07566 | 1.21 | 4.3 | 100 | 25 | 0.16 | 0.48 | 98.4 | 5.9 | 8.7 | 0.9995 |
Sulfamethizol | C9H10N4O2S2 | 270.02452 | 271.03180 | 0.61 | 4.6 | 100 | 10 | 1.23 | 4.10 | 107.7 | 6.6 | 10.4 | 0.9991 |
Sulfamethoxazole | C10H11N3O3S | 253.05211 | 254.05939 | 0.67 | 5.0 | 100 | 10 | 0.20 | 0.66 | 105.7 | 12.1 | 18.2 | 0.9968 |
Sulfamethoxypyridazine | C11H12N4O3S | 280.06301 | 281.07029 | 0.96 | 4.6 | 100 | 10 | 0.59 | 1.98 | 100.0 | 2.2 | 3.3 | 0.9996 |
Sulfamonomethoxine | C11H12N4O3S | 280.06301 | 281.07029 | 0.76 | 4.8 | 100 | 10 | 0.84 | 2.81 | 99.5 | 3.3 | 4.9 | 0.9996 |
Sulfamoxol | C11H13N3O3S | 267.06776 | 268.07504 | 0.82 | 4.5 | 100 | 10 | 0.61 | 2.03 | 102.9 | 3.2 | 4.8 | 0.9986 |
Sulfanilamide | C6H8N2O2S | 172.03065 | 173.03793 | −0.85 | 1.4 | 100 | 50 | 9.13 | 30.45 | 109.2 | 7.2 | 10.8 | 0.9927 |
Sulfapyridin | C11H11N3O2S | 249.05720 | 250.06447 | 0.78 | 4.2 | 100 | 10 | 0.24 | 0.81 | 102.3 | 8.3 | 12.5 | 0.9951 |
Sulfaquinoxaline | C14H12N4O2S | 300.06810 | 301.07537 | 0.87 | 5.3 | 100 | 10 | 0.43 | 1.42 | 104.1 | 4.8 | 7.2 | 0.9940 |
Sulfasalazine | C18H14N4O5S | 398.06849 | 399.07577 | 0.83 | 5.5 | 100 | 10 | 0.11 | 0.36 | 101.2 | 3.7 | 5.5 | 0.9995 |
Sulfathiazole | C9H9N3O2S2 | 255.01362 | 256.02090 | 0.90 | 4.2 | 100 | 10 | 0.18 | 0.59 | 101.9 | 6.6 | 10.0 | 0.9994 |
Sulfisomidine | C12H14N4O2S | 278.08375 | 279.09102 | 0.62 | 3.9 | 100 | 10 | 2.82 | 9.40 | 120.8 | 11.3 | 17.0 | 0.9966 |
Sulfisoxazole | C11H13N3O3S | 267.06776 | 268.07504 | 0.69 | 5.1 | 100 | 10 | 0.09 | 0.29 | 112.2 | 12.7 | 19.0 | 0.9965 |
Tetracycline | C22H24N2O8 | 444.15327 | 445.16054 | 0.88 | 4.5 | 100 | 10 | 0.42 | 1.40 | 97.7 | 3.4 | 5.1 | 0.9959 |
Thiamphenicol | C12H15Cl2NO5S | 355.00480 | 356.01230 | −1.40 | 4.5 | 50 | 5 | 1.18 | 3.58 | 106.5 | 8.3 | 12.5 | 0.9989 |
Tiamulin (a) | C28H47NO4S | 493.32258 | 494.32986 | 0.47 | 5.4 | 50* | 5 | 0.07 | 0.24 | 103.3 | 4.2 | 6.2 | 0.9998 |
Tildipirosin | C41H71N3O8 | 733.52412 | 734.53192 | 0.94 | 4.0 | 50 | 5 | 0.01 | 0.02 | 110.8 | 8.0 | 15.2 | 0.9986 |
Tilmicosin | C46H80N2O13 | 868.56604 | 869.57332 | −0.86 | 4.9 | 50 | 25 | 0.23 | 0.84 | 99.5 | 10.2 | 13.5 | 0.9986 |
Trimethoprim | C14H18N4O3 | 290.13789 | 291.14517 | 1.57 | 4.3 | 50 | 5 | 0.17 | 0.57 | 108.7 | 4.7 | 10.1 | 0.9998 |
Tulathromycin | C41H79N3O12 | 805.56638 | 806.57344 | 0.20 | 4.3 | 50 | 5 | 0.05 | 0.16 | 115.6 | 8.4 | 15.1 | 0.9962 |
Tylosin A | C46H77NO17 | 915.51915 | 916.52643 | −0.36 | 5.3 | 50 | 5 | 0.02 | 0.07 | 117.8 | 9.1 | 13.6 | 0.9984 |
Tylvylosin | C53H87NO19 | 1041.58723 | 348.20294 | 1.70 | 5.5 | 50 | 5 | 0.03 | 0.08 | 105.1 | 5.4 | 8.8 | 0.9998 |
Valnemulin (a) | C31H52N2O5S | 564.35970 | 565.36697 | −0.89 | 5.6 | 50* | 5 | 0.01 | 0.03 | 118.6 | 9.4 | 14.1 | 0.9998 |
Virginiamycin M1 | C28H35N3O7 | 525.24750 | 526.25497 | 1.10 | 5.8 | 50 | 5 | 0.84 | 2.55 | 103.9 | 6.4 | 8.7 | 0.9999 |
Virginiamycin S1 | C43H49N7O10 | 823.35409 | 824.36136 | 0.56 | 6.4 | 50 | 5 | 0.07 | 0.23 | 106.1 | 4.7 | 7.7 | 0.9986 |
Origin | Milk Source | Types of Milk | Detected Compounds | Antibiotic Group | Concentration (µg kg−1) |
---|---|---|---|---|---|
Animal | Cow | Raw | - | - | - |
Animal | Cow | Semi-skimmed milk | Gamithromycin Tilmicosin | Macrolides | 10.70 <LOQ |
Animal | Cow | Semi-skimmed milk | - | - | - |
Animal | Cow | Semi-skimmed milk | - | - | - |
Animal | Cow | Semi-skimmed milk | - | - | - |
Animal | Cow | Semi-skimmed milk | - | - | - |
Animal | Cow | Semi-skimmed milk | - | - | - |
Animal | Cow | Semi-skimmed milk | - | - | - |
Animal | Cow | Semi-skimmed milk | - | - | - |
Animal | Cow | Semi-skimmed milk | - | - | - |
Animal | Cow | Semi-skimmed milk | - | - | - |
Animal | Cow | Semi-skimmed milk | - | - | - |
Animal | Cow | Semi-skimmed milk | - | - | - |
Animal | Cow | Semi-skimmed milk | - | - | - |
Animal | Cow | Semi-skimmed milk | - | - | - |
Animal | Cow | Semi-skimmed milk (Fresh milk) | - | - | - |
Animal | Cow | Skimmed milk | Tildipirosin | Macrolides | 3.33 |
Animal | Cow | Skimmed milk | - | - | - |
Animal | Cow | Skimmed milk | - | - | - |
Animal | Cow | Skimmed milk | Tildipirosin | Macrolides | 2.89 |
Animal | Cow | Skimmed milk | - | - | - |
Animal | Cow | Skimmed milk | - | - | - |
Animal | Cow | Skimmed milk | - | - | - |
Animal | Cow | Whole milk | - | - | - |
Animal | Cow | Whole milk | - | - | - |
Animal | Grazing cow | Semi-skimmed milk | - | - | - |
Plant-based | Oats | - | - | - | - |
Plant-based | Oats | - | - | - | - |
Plant-based | Oats | - | - | - | - |
Plant-based | Soya | - | - | - | |
Plant-based | Soya | - | Sulfamerazin | Sulfonamides | 4.25 |
Plant-based | Soya | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, M.; Marques, A.R.; Vila Pouca, A.S.; Barros, S.C.; Barbosa, J.; Ramos, F.; Afonso, I.M.; Freitas, A. UHPLC-ToF-MS as a High-Resolution Mass Spectrometry Tool for Veterinary Drug Quantification in Milk. Separations 2023, 10, 457. https://doi.org/10.3390/separations10080457
Leite M, Marques AR, Vila Pouca AS, Barros SC, Barbosa J, Ramos F, Afonso IM, Freitas A. UHPLC-ToF-MS as a High-Resolution Mass Spectrometry Tool for Veterinary Drug Quantification in Milk. Separations. 2023; 10(8):457. https://doi.org/10.3390/separations10080457
Chicago/Turabian StyleLeite, Marta, Ana Rita Marques, Ana Sofia Vila Pouca, Silvia Cruz Barros, Jorge Barbosa, Fernando Ramos, Isabel Maria Afonso, and Andreia Freitas. 2023. "UHPLC-ToF-MS as a High-Resolution Mass Spectrometry Tool for Veterinary Drug Quantification in Milk" Separations 10, no. 8: 457. https://doi.org/10.3390/separations10080457
APA StyleLeite, M., Marques, A. R., Vila Pouca, A. S., Barros, S. C., Barbosa, J., Ramos, F., Afonso, I. M., & Freitas, A. (2023). UHPLC-ToF-MS as a High-Resolution Mass Spectrometry Tool for Veterinary Drug Quantification in Milk. Separations, 10(8), 457. https://doi.org/10.3390/separations10080457