Chemical Profiling on Bioactive Stilbenoids in the Seeds of Paeonia Species Growing Wild in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Preparation of the Methanol Extract
2.4. UHPLC-HRMS Analysis
2.5. Fractionation and Purification Procedures
2.6. Nuclear Magnetic Resonance (NMR)
2.7. Total Phenolic Content (TPC)
2.8. DPPH (2,2-DiPhenyl-1-PicrylHydrazyl) Assay
2.9. Tyrosinase Inhibition
3. Results
3.1. Identification of Secondary Metabolites
3.2. Isolation of Secondary Metabolites
3.3. Total Phenolic Content (TPC) and DPPH Assay
3.4. Tyrosinase Inhibition Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sang, T.; Crawford, D.J.; Stuessy, T.F. Chloroplast DNA Phylogeny, Reticulate Evolution, and Biogeography of Paeonia (Paeoniaceae). Am. J. Bot. 1997, 84, 1120–1136. [Google Scholar] [CrossRef]
- Li, J.J. Chinese Tree and Herbaceous Peonies; China Forestry Publishing House: Beijing, China, 1999. [Google Scholar]
- Xiao, P.G. Modern Chinese Materia Medica; Chemical Industry Press: Beijing, China, 2002. [Google Scholar]
- Li, P.; Shen, J.; Wang, Z.; Liu, S.; Liu, Q.; Li, Y.; He, C.; Xiao, P. Genus Paeonia: A Comprehensive Review on Traditional Uses, Phytochemistry, Pharmacological Activities, Clinical Application, and Toxicology. J. Ethnopharmacol. 2021, 269, 113708. [Google Scholar] [CrossRef]
- Ding, H.-Y.; Lin, H.-C.; Teng, C.-M.; Wu, Y.-C. Phytochemical and Pharmacological Studies on Chinese Paeonia Species. J. Chin. Chem. Soc. 2000, 47, 381–388. [Google Scholar] [CrossRef]
- Li, S.-S.; Yuan, R.-Y.; Chen, L.-G.; Wang, L.-S.; Hao, X.-H.; Wang, L.-J.; Zheng, X.-C.; Du, H. Systematic Qualitative and Quantitative Assessment of Fatty Acids in the Seeds of 60 Tree Peony (Paeonia Section Moutan DC.) Cultivars by GC–MS. Food Chem. 2015, 173, 133–140. [Google Scholar] [CrossRef]
- Yu, S.; Du, S.; Yuan, J.; Hu, Y. Fatty Acid Profile in the Seeds and Seed Tissues of Paeonia L. Species as New Oil Plant Resources. Sci. Rep. 2016, 6, 26944. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, D.; Song, L.; Xu, Q.; Li, H.; Xu, H. Chemical Profile and Antioxidant Activity of the Oil from Peony Seeds (Paeonia suffruticosa Andr.). Oxidative Med. Cell. Longev. 2017, 2017, 9164905. [Google Scholar] [CrossRef]
- Gao, Y.; He, C.; Ran, R.; Zhang, D.; Li, D.; Xiao, P.-G.; Altman, E. The Resveratrol Oligomers, Cis- and Trans-Gnetin H, from Paeonia suffruticosa Seeds Inhibit the Growth of Several Human Cancer Cell Lines. J. Ethnopharmacol. 2015, 169, 24–33. [Google Scholar] [CrossRef]
- Yu Jin, X.P.-G. A Preliminary Study of the Chemistry and Systematics of Paeoniaceae. J. Syst. Evol. 1987, 25, 172–179. [Google Scholar]
- He, C.-N.; Peng, Y.; Zhang, Y.-C.; Xu, L.-J.; Gu, J.; Xiao, P.-G. Phytochemical and Biological Studies of Paeoniaceae. Chem. Biodivers. 2010, 7, 805–838. [Google Scholar] [CrossRef]
- Stearn, W.T.; Davis, P.H.; Tan, K. Peonies of Greece: A Taxonomic and Historical Survey of the Genus Paeonia in Greece; The Goulandris Natural History Museum: Kifissia, Greece, 1984. [Google Scholar]
- Klontza, V.; Graikou, K.; Cheilari, A.; Kasapis, V.; Ganos, C.; Aligiannis, N.; Chinou, I. Phytochemical Study on Seeds of Paeonia clusii subsp. rhodia—Antioxidant and Anti-Tyrosinase Properties. Int. J. Mol. Sci. 2023, 24, 4935. [Google Scholar] [CrossRef]
- Papandreou, V.; Magiatis, P.; Chinou, I.; Kalpoutzakis, E.; Skaltsounis, A.-L.; Tsarbopoulos, A. Volatiles with antimicrobial activity from the roots of Greek Paeonia taxa. J. Ethnopharmacol. 2002, 81, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Papandreou, V.; Magiatis, P.; Kalpoutzakis, E.; Skaltsounis, A.-L.; Harvala, C. Paeonicluside, a new salicylic glycoside from the Greek endemic species Paeonia clusii. Zeit. Naturforsch. C 2002, 57, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Kurt-Celep, İ.; Zengin, G.; Celep, E.; Dall’Acqua, S.; Sut, S.; Ferrase, I.; Ak, G.; Uba, A.I.; Polat, R.; Canlı, D.; et al. A multifunctional key to open a new window on the path to natural resources-lessons from a study on chemical composition and biological capability of Paeonia mascula L. from Turkey. Food Biosci. 2023, 51, 102194. [Google Scholar] [CrossRef]
- Xiong, P.; Qin, S.; Li, K.; Liu, M.; Zhu, L.; Peng, J.; Shi, S.; Tang, S.; Tian, A.; Cai, W. Identification of the Tannins in Traditional Chinese Medicine Paeoniae Radix Alba by UHPLC-Q-Exactive Orbitrap MS. Arab. J. Chem. 2021, 14, 103398. [Google Scholar] [CrossRef]
- Nie, R.; Zhang, Y.; Jin, Q.; Zhang, S.; Wu, G.; Chen, L.; Zhang, H.; Wang, X. Identification and Characterisation of Bioactive Compounds from the Seed Kernels and Hulls of Paeonia Lactiflora Pall by UPLC-QTOF-MS. Food Res. Int. 2021, 139, 109916. [Google Scholar] [CrossRef]
- Yan, Z.; Xie, L.; Tian, Y.; Li, M.; Ni, J.; Zhang, Y.; Niu, L. Insights into the Phytochemical Composition and Bioactivities of Seeds from Wild Peony Species. Plants 2020, 9, 729. [Google Scholar] [CrossRef]
- Bai, Z.-Z.; Tang, J.-M.; Ni, J.; Zheng, T.-T.; Zhou, Y.; Sun, D.-Y.; Li, G.-N.; Liu, P.; Niu, L.-X.; Zhang, Y.-L. Comprehensive Metabolite Profile of Multi-Bioactive Extract from Tree Peony (Paeonia ostii and Paeonia rockii) Fruits Based on MS/MS Molecular Networking. Food Res. Int. 2021, 148, 110609. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Zhang, Y.; Lyu, Y.-P.; Yao, Z.-J.; Hu, Y.-H. Lipidomic Profiling of the Developing Kernel Clarifies the Lipid Metabolism of Paeonia ostii. Sci. Rep. 2021, 11, 12605. [Google Scholar] [CrossRef]
- Available online: http://Dnp.Chemnetbase.com (accessed on 19 April 2023).
- Smith, C.A.; Maille, G.O.; Want, E.J.; Qin, C.; Trauger, S.A.; Brandon, T.R.; Custodio, D.E.; Abagyan, R.; Siuzdak, G. METLIN: A Metabolite Mass Spectral Database. Ther. Drug Monit. 2005, 27, 747–751. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef]
- Available online: www.Foodb.ca (accessed on 19 April 2023).
- He, J.; Dong, Y.; Liu, X.; Wan, Y.; Gu, T.; Zhou, X.; Liu, M. Comparison of Chemical Compositions, Antioxidant, and Anti-Photoaging Activities of Paeonia suffruticosa Flowers at Different Flowering Stages. Antioxidants 2019, 8, 345. [Google Scholar] [CrossRef]
- Sun, Z.; Zuo, L.; Sun, T.; Tang, J.; Ding, D.; Zhou, L.; Kang, J.; Zhang, X. Chemical Profiling and Quantification of XueBiJing Injection, a Systematic Quality Control Strategy Using UHPLC-Q Exactive Hybrid Quadrupole-Orbitrap High-Resolution Mass Spectrometry. Sci. Rep. 2017, 7, 16921. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.-H.; Qi, L.-W.; Li, B.; Peng, Y.-B.; Li, P.; Li, C.-Y.; Cao, J. High-Speed Separation and Characterization of Major Constituents in Radix Paeoniae Rubra by Fast High-Performance Liquid Chromatography Coupled with Diode-Array Detection and Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-L.; Song, J.-Z.; Choi, F.F.K.; Qiao, C.-F.; Zhou, Y.; Han, Q.-B.; Xu, H.-X. Chemical Profiling of Radix Paeoniae Evaluated by Ultra-Performance Liquid Chromatography/Photo-Diode-Array/Quadrupole Time-of-Flight Mass Spectrometry. J. Pharm. Biomed. Anal. 2009, 49, 253–266. [Google Scholar] [CrossRef]
- Shi, Y.-H.; Zhu, S.; Ge, Y.-W.; Toume, K.; Wang, Z.; Batkhuu, J.; Komatsu, K. Characterization and Quantification of Monoterpenoids in Different Types of Peony Root and the Related Paeonia Species by Liquid Chromatography Coupled with Ion Trap and Time-of-Flight Mass Spectrometry. J. Pharm. Biomed. Anal. 2016, 129, 581–592. [Google Scholar] [CrossRef]
- Sut, S.; Zengin, G.; Dall’Acqua, S.; Gazdová, M.; Šmejkal, K.; Bulut, G.; Dogan, A.; Haznedaroglu, M.Z.; Aumeeruddy, M.Z.; Maggi, F.; et al. Paeonia arietina and Paeonia kesrounansis Bioactive Constituents: NMR, LC-DAD-MS Fingerprinting and in Vitro Assays. J. Pharm. Biomed. Anal. 2019, 165, 1–11. [Google Scholar] [CrossRef]
- Flamini, R.; De Rosso, M. High-Resolution Mass Spectrometry and Biological Properties of Grapevine and Wine Stilbenoids. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; Volume 61, pp. 175–210. ISBN 978-0-444-64183-0. [Google Scholar]
- Soares, J.C.; Rosalen, P.L.; Lazarini, J.G.; Massarioli, A.P.; da Silva, C.F.; Nani, B.D.; Franchin, M.; de Alencar, S.M. Comprehensive Characterization of Bioactive Phenols from New Brazilian Superfruits by LC-ESI-QTOF-MS, and Their ROS and RNS Scavenging Effects and Anti-Inflammatory Activity. Food Chem. 2019, 281, 178–188. [Google Scholar] [CrossRef]
- Du, L.; Zhao, M.; Tao, J.; Qian, D.; Jiang, S.; Shang, E.; Guo, J.; Liu, P.; Su, S.; Duan, J. The Metabolic Profiling of Isorhamnetin-3-O-Neohesperidoside Produced by Human Intestinal Flora Employing UPLC-Q-TOF/MS. J. Chrom. Sci. 2017, 55, 243–250. [Google Scholar] [CrossRef]
- Flamini, R.; Zanzotto, A.; de Rosso, M.; Lucchetta, G.; Vedova, A.D.; Bavaresco, L. Stilbene Oligomer Phytoalexins in Grape as a Response to Aspergillus Carbonarius Infection. Physiol. Mol. Plant Pathol. 2016, 93, 112–118. [Google Scholar] [CrossRef]
- Zhang, C.-C.; Geng, C.-A.; Chen, J.-J. A Fragmentation Study on Four Oligostilbenes by Electrospray Tandem Mass Spectrometry. Nat. Prod. Bioprospect. 2019, 9, 279–286. [Google Scholar] [CrossRef]
- Zengin, G.; Zheleva-Dimitrova, D.; Gevrenova, R.; Nedialkov, P.; Mocan, A.; Ćirić, A.; Glamočlija, J.; Soković, M.; Aktumsek, A.; Mahomoodally, M.F. Identification of Phenolic Components via LC–MS Analysis and Biological Activities of Two Centaurea Species: C. drabifolia subsp. drabifolia and C. lycopifolia. J. Pharm. Biomed. Anal. 2018, 149, 436–441. [Google Scholar] [CrossRef]
- Salama, M.M.; Ezzat, S.M.; Sleem, A.A. A New Hepatoprotective Flavone Glycoside from the Flowers of Onopordum alexandrinum Growing in Egypt. Zeit. Naturforsch. C 2011, 66, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-C.; Ding, H.-Y.; Wu, T.-S.; Wu, P.-L. Monoterpene Glycosides from Paeonia suffruticosa. Phytochemistry 1996, 41, 237–242. [Google Scholar] [CrossRef]
- Matsuda, H.; Ohta, T.; Kawaguchi, A.; Yoshikawa, M. Bioactive Constituents of Chinese Natural Medicines. VI. Moutan Cortex. (2): Structures and Radical Scavenging Effects of Suffruticosides A, B, C, D, and E and Galloyl-Oxypaeoniflorin. Chem. Pharm. Bull. 2001, 49, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Gao, Z.; Huang, X.-Y.; Chen, J.-J.; Geng, C.-A. Chemical and Biological Comparison of Different Parts of Paeonia suffruticosa (Mudan) Based on LCMS-IT-TOF and Multi-Evaluation in Vitro. Ind. Crops Prod. 2020, 144, 112028. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L.; Zu, Y.; Zhao, X. Microwave-assisted simultaneous extraction of luteolin and apigenin from tree peony pod and evaluation of its antioxidant activity. Sci. World J. 2014, 2014, 506971. [Google Scholar] [CrossRef]
- Atif, M.; Ali, I.; Hussain, A.; Hyder, S.V.; Niaz, B.; Khan, F.A.; Maalik, A.; Farooq, U. Pharmacological assessment of hispidulin—A natural bioactive flavone. Acta Pol. Pharm. 2015, 72, 829–842. [Google Scholar]
- Yang, Y.; He, C.; Wu, Y.; Yu, X.; Li, S.; Wang, L. Characterization of Stilbenes, in Vitro Antioxidant and Cellular Anti-Photoaging Activities of Seed Coat Extracts from 18 Paeonia Species. Ind. Crops Prod. 2022, 177, 114530. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Shi, Q.-Q.; Ji, D.; Niu, L.-X.; Zhang, Y.-L. Determination of the Phenolic Content, Profile, and Antioxidant Activity of Seeds from Nine Tree Peony (Paeonia Section Moutan DC.) Species Native to China. Food Res. Int. 2017, 97, 141–148. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Zhang, G.; Jin, M.; Niu, L.-X.; Zhang, Y.-L. Variation in Phenolic Content, Profile, and Antioxidant Activity of Seeds among Different Paeonia ostii Cultivated Populations in China. Chem. Biodivers. 2018, 15, e1800093. [Google Scholar] [CrossRef]
- Sevim, D.; Senol, F.S.; Gulpinar, A.R.; Orhan, I.E.; Kaya, E.; Kartal, M.; Sener, B. Discovery of Potent in Vitro Neuroprotective Effect of the Seed Extracts from Seven Paeonia L. (Peony) Taxa and Their Fatty Acid Composition. Ind. Crops Prod. 2013, 49, 240–246. [Google Scholar] [CrossRef]
- Yang, C.S.; Ho, C.-T.; Zhang, J.; Wan, X.; Zhang, K.; Lim, J. Antioxidants: Differing Meanings in Food Science and Health Science. J. Agric. Food Chem. 2018, 66, 3063–3068. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, X.; Wu, K.; Wang, M.; Liu, P.; Wang, X.; Deng, R. Antioxidant Activities and Chemical Constituents of Flavonoids from the Flower of Paeonia ostii. Molecules 2016, 22, 5. [Google Scholar] [CrossRef] [PubMed]
- Picerno, P.; Mencherini, T.; Sansone, F.; Del Gaudio, P.; Granata, I.; Porta, A.; Aquino, R.P. Screening of a Polar Extract of Paeonia rockii: Composition and Antioxidant and Antifungal Activities. J. Ethnopharmacol. 2011, 138, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Chang, E.J.; Cho, S.H.; Chung, S.K.; Park, H.D.; Choi, S.W. Antioxidative Activity of Resveratrol and Its Derivatives Isolated from Seeds of Paeonia lactiflora. Biosci. Biotechnol. Biochem. 2002, 66, 1990–1993. [Google Scholar] [CrossRef]
- Fauconneau, B.; Waffo-Teguo, P.; Huguet, F.; Barrier, L.; Decendit, A.; Merillon, J.-M. Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro tests. Life Sci. 1997, 61, 2103–2110. [Google Scholar] [CrossRef]
- Zhou, H.; Li, T.; Li, B.; Sun, S. Skin health properties of Paeonia lactiflora flower extracts and tyrosinase inhibitors and free radical scavengers identified by HPLC post-column bioactivity assays. Heliyon 2023, 9, e18569. [Google Scholar] [CrossRef]
- Yang, J.; Wang, C.; Li, N.; Wu, L.; Huang, Z.; Hu, Z.; Li, X.; Qu, Z. Phytochemicals and anti-tyrosinase activities of Paeonia ostii leaves and roots. Plant Physiol. Biochem. 2022, 181, 50–60. [Google Scholar] [CrossRef]
- Wang, B.; An, X.; Qu, L.; Wang, F. Review on oral plant extracts in Skin Whitening. Food Sci. Technol. 2022, 42, e83922. [Google Scholar] [CrossRef]
No | [a] | [b] | Compound | Molecular Formula | m/z | Ion Mode | MS/MS Fragment Mass | Literature |
---|---|---|---|---|---|---|---|---|
1 | √ | bis-hexoses | C12H22O11 | 341.1092 | [Μ-H]− | 89, 59 | [25] | |
2 | √ | √ | trisaccharides | C18H32O16 | 533.1730 | [Μ + FA-H]− | 341, 179 | [25] |
3 | √ | quinic acid | C7H12O6 | 191.0554 | [Μ-H]− | 85, 127, 173 | [18] | |
4 | √ | malic acid | C4H6O5 | 133.0132 | [Μ-H]− | 115, 71, 133, 89 | [18] | |
5 | √ | citric acid | C6H8O7 | 191.0192 | [Μ-H]− | 85, 127, 111, 173, 150 | [18] | |
6 | √ | desbenzoylpaeoniflorin | C16H24O10 | 375.1301 | [Μ-H]− | 165, 345, 89 | [18,26] | |
7 | √ | √ | glucogallin | C13H16O10 | 331.0676 | [Μ-H]− | 169, 211, 151, 271 | [18,26] |
8 | √ | gallic acid | C7H6O5 | 169.0135 | [Μ-H]− | 169 | [18,26] | |
9 | √ | √ | benzoylpaeoniflorin | C30H32O12 | 583.1892 | [Μ-H]− | 165, 121, 333 | [18] |
10 | √ | deoxyloganin acid | C16H24O9 | 405.1408 | [Μ + FA-H]− | 179, 197 | [25] | |
11 | √ | √ | loganin | C17H26O10 | 389.1455 | [Μ-H]− | 69, 163, 309, 181 | [26] |
12 | √ | oxypaeoniflorin isomer | C23H28O12 | 495.1512 | [Μ-H]− | 137, 281, 165 | [21,27] | |
13 | √ | methyl gallate | C8H8O5 | 183.029 | [Μ-H]− | 183, 168 | [18,28] | |
14 | √ | oxypaeoniflorin isomer | C23H28O12 | 495.1510 | [Μ-H]− | 137, 281, 165 | [21,27] | |
15 | √ | √ | resveratrol diglucoside | C26H32O13 | 597.1836 | [Μ + FA-H]− | 227 | [25] |
16 | √ | mudanpioside E | C24H30O13 | 525.1611 | [Μ-H]− | 121, 167 | [18] | |
17 | √ | √ | isomaltopaeoniflorin | C29H38O16 | 687.2152 | [M + FA-H]− | 121, 165 | [18,29,30] |
18 | √ | √ | paeoniflorin isomer | C23H28O11 | 479.1559 525.1617 | [Μ-H]−, [M + FA-H]− | 121, 165 | [18,27] |
19 | √ | √ | trigalloyl glucose | C8H8O2 | 635.0906 | [M-H]− | 169, 313, 465 | [2,31,32] |
20 | √ | √ | glucopyranosylalbiflorin | C29H38O16 | 687.2152 | [M + FA-H]− | 121, 165 | [18,29,30] |
21 | √ | √ | cis-resveratrol-4′-O-β-D-glucopyranoside | C20H22O8 | 389.1248 | [M-H]− | 227, 185 | [18,32] |
22 | √ | √ | methyldesbenzoylpaeoniflorin | C17H26O10 | 435.1299 | [M-H]− | 227, 389 | [18] |
23 | √ | √ | paeoniflorin/albiflorin | C23H28O11 | 479.1559525.1618 | [M-H]− [M + FA-H]− | 121, 165 | [18] |
24 | √ | oxypaeoniflorin | C23H28O12 | 495.1513 | [M-H]− | 137, 165 | [13,27] | |
25 | √ | kaempferol dihexoside | C30H25O14 | 609.1472 | [M-H]− | 285, 447 | [18,33] | |
26 | √ | √ | tetragalloyl glucose | C8H8O2 | 787.1014 | [M-H]− | 169, 465, 313 | [27,29,31] |
27 | √ | √ | luteolin-7-O-glucopyranoside | C21H20O11 | 447.0936 | [M-H]− | 285 | [13,18,23] |
28 | √ | luteolin 3′,4′-di-O-β-D-glucopyranoside | C27H30O16 | 609.1462655.1524 | [M-H]−[M + FA-H]− | 285, 447 | [18] | |
29 | √ | √ | astragalin | C21H20O11 | 447.0933 | [M-H]− | 285 | [13,18,23] |
30 | √ | √ | apigenin hexoside | C21H20O10 | 431.0986 | [M-H]− | 269, 121, 225 | [13,33] |
31 | √ | galloyl paeoniflorin | C30H32O11 | 631.1676 | [M-H]− | 169, 313, 211, 271, 121, 399 | [27,29,30] | |
32 | √ | √ | trans-resveratrol-4′-O-β-D-glucopyranoside | C20H22O8 | 389.1249 | [M-H]− | 227 | [13,32] |
33 | √ | √ | apigenin hexoside | C21H20O10 | 431.0987 | [M-H]− | 269, 121, 225 | [13,33] |
34 | √ | √ | kaempferol hexoside | C21H20O11 | 447.0938 | [M-H]− | 285 | [13,33] |
35 | √ | √ | isorhamnetin glucopyranoside | C22H22O12 | 477.1046 | [M-H]− | 121, 315, 299 | [13,34] |
36 | √ | √ | trihydroxy methoxyflavone hexoside | C22H22O11 | 461.1096 | [M-H]− | 283, 446 | [23,29] |
37 | √ | galloyl albiflorin | C30H32O11 | 631.1676 | [M-H]− | 629 | [27,29,30] | |
38 | √ | √ | cis-resveratrol | C14H12O3 | 227.0712 | [M-H]− | 185, 143, 183 | [18,32] |
39 | √ | √ | luteolin-3′-O-β-D-glucopyranoside | C21H20O11 | 447.0938 | [M-H]− | 285 | [18] |
40 | √ | √ | albiflorin isomer | C23H28O11 | 525.1617 | [M + FA-H]− | 121, 165 | [18,20] |
41 | √ | phloridzin | C21H24O10 | 435.1297 | [M-H]− | 167, 273 | [18] | |
42 | √ | paeoniflorin isomer | C23H28O11 | 539.1777 | [M + Hac-H]− | 121 | [18,25] | |
43 | √ | √ | lactiflorin | C23H26O10 | 507.1510 | [M + FA-H]− | 121, 299, 284, 177 | [18] |
44 | √ | benzoyloxypaeoniflorin | C30H32O13 | 599.1779 | [M-H]− | 137, 121, 281 | [27,29] | |
45 | √ | √ | kaempferol | C15H10O6 | 285.0406 | [M-H]− | 151, 175 | [18] |
46 | √ | cis-ε-viniferin hexoside | C34H32O11 | 615.1873 | [M-H]− | 453, 347, 359, 333, 227 | [18] | |
47 | √ | √ | kaempferol arabinoside | C20H18O10 | 417.0833 | [M-H]− | 285 | [29] |
48 | √ | √ | luteolin | C15H10O6 | 285.0408 | [M-H]− | 151, 175 | [18] |
49 | √ | √ | methyl paeoniflorin | C24H29O11 | 493.1722 | [M-H]− | 121, 165 | [30] |
50 | √ | √ | trans-resveratrol | C14H12O3 | 227.0711 | [M-H]− | 185, 143, 183 | [18,32] |
51 | √ | trans-ε-viniferin hexoside | C34H32O11 | 615.1873 | [M-H]− | 453, 347, 359, 333, 227 | [18] | |
52 | √ | √ | kaempferol arabinoside | C20H18O10 | 417.0833 | [M-H]− | 285 | [29] |
53 | √ | apigenin | C15H10O5 | 269.0459 | [M-H]− | 151, 225 | [18] | |
54 | √ | √ | cis-ε-viniferin | C28H22O6 | 453.1349499.1405 | [M-H]−[M + FA-H]− | 347, 225, 93, 411 | [35] |
55 | √ | √ | carasiphenol A | C27H24O5 | 427.1555 | [M-H]− | 119,265, 307, 145, 161, 369 | [18,36] |
56 | √ | √ | mudanpioside J | C31H34O14 | 629.1884 | [M-H]− | 121, 165 | [30] |
57 | √ | hispidulin | C16H12O6 | 299.0563 | [M-H]− | 284 | [37] | |
58 | √ | isorhamnetin | C16H12O7 | 315.0515 | [M-H]− | 300, 315, 91, 149 | [13,19] | |
59 | √ | √ | trans-ε-viniferin | C28H22O6 | 453.1347 | [M-H]− | 347, 225, 93, 411 | [35] |
60 | √ | cis-gnetin H | C42H32O9 | 679.1984 | [M-H]− | 93, 491, 478, 449, 357, 225, 585 | [9,32] | |
61 | √ | √ | trans-gnetin H | C42H32O9 | 679.1981 | [M-H]− | 93, 345, 225, 491, 449, 357, 585 | [9,32] |
62 | √ | √ | ursolic acid | C30H48O3 | 455.3537 | [M-H]− | 455 | [18] |
Studied Extracts | TPC (mg GAE/g Extract) | % DPPH• Inhibition | % Tyrosinase Inhibition | ||
---|---|---|---|---|---|
200 μg/mL | 100 μg/mL | 50 μg/mL | 300 μg/mL | ||
P. clusii subsp. clusii | 116.04 ± 2.6 | 75.24 ± 0.7 | 43.47 ± 1.04 | 21.08 ± 0.16 | 61.39 ± 1.57 |
P. mascula subsp. mascula | 103.63 ± 2.6 | 91.54 ± 0.94 | 56.04 ± 1.12 | 30.08 ± 1.15 | 70.79 ± 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitropoulou, E.; Graikou, K.; Klontza, V.; Chinou, I. Chemical Profiling on Bioactive Stilbenoids in the Seeds of Paeonia Species Growing Wild in Greece. Separations 2023, 10, 540. https://doi.org/10.3390/separations10100540
Dimitropoulou E, Graikou K, Klontza V, Chinou I. Chemical Profiling on Bioactive Stilbenoids in the Seeds of Paeonia Species Growing Wild in Greece. Separations. 2023; 10(10):540. https://doi.org/10.3390/separations10100540
Chicago/Turabian StyleDimitropoulou, Eleni, Konstantia Graikou, Vithleem Klontza, and Ioanna Chinou. 2023. "Chemical Profiling on Bioactive Stilbenoids in the Seeds of Paeonia Species Growing Wild in Greece" Separations 10, no. 10: 540. https://doi.org/10.3390/separations10100540
APA StyleDimitropoulou, E., Graikou, K., Klontza, V., & Chinou, I. (2023). Chemical Profiling on Bioactive Stilbenoids in the Seeds of Paeonia Species Growing Wild in Greece. Separations, 10(10), 540. https://doi.org/10.3390/separations10100540