Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (936)

Search Parameters:
Keywords = tyrosinase inhibition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1636 KB  
Article
Examination of Alginite Mineral Supplementation During Fermentation of Probiotics and Its Effect on Skincare Activity of Ferment Lysates
by Pál Tóth and Áron Németh
Appl. Sci. 2025, 15(17), 9350; https://doi.org/10.3390/app15179350 - 26 Aug 2025
Viewed by 57
Abstract
Technological advancements, shifting consumer preferences, and societal changes drive the cosmetics industry to evolve continuously. The cosmetics industry is experiencing a renaissance, with new ingredients that are more environmentally friendly, natural, and transparent in terms of sourcing and manufacturing and, last but not [...] Read more.
Technological advancements, shifting consumer preferences, and societal changes drive the cosmetics industry to evolve continuously. The cosmetics industry is experiencing a renaissance, with new ingredients that are more environmentally friendly, natural, and transparent in terms of sourcing and manufacturing and, last but not least, which are also multifunctional. The use of technology in cosmetics has been rising, including AI (artificial intelligence) and AR (augmented reality) for virtual try-ons, skin analysis tools, and smart beauty devices that provide at-home skincare treatments. Meanwhile, fermented cosmetic ingredients are becoming increasingly popular in the beauty industry due to their improved efficacy and skin benefits. The benefits include enhanced absorption, improved stability (due to the self-produced preservatives), microbiome-friendliness (supporting the skin’s microbiome), and anti-inflammatory and soothing effects. The most common cosmetic ingredients produced by microorganisms are fermented rice, soy, green tea, fruits, and vegetables. Our laboratory investigates a mineral rock called alginite, which has shown many benefits in other fields, such as agriculture and cosmetics (e.g., as a facemask). It has been proven that alginite combined with LAB (lactic acid-producing bacteria) probiotics is beneficial for health and can increase biomass production. However, cell lysates with alginite have never been investigated for cosmetic purposes. This study aimed to investigate the potential of alginite, a mineral rock, in enhancing the cosmetic properties of LAB lysates, specifically focusing on antioxidant effects, skin-whitening properties, and, in preliminary tests, skin-moisturising effects. LAB strains were cultured with and without alginite, and the resulting cell lysates were analysed for these cosmetic applications. The preliminary results suggested that alginite may boost the hydrating effect of LAB lysate, increasing it tenfold compared to LAB lysate alone. The antioxidant effect was enhanced fivefold in the case of Lactobacillus acidophilus when cultured with alginite. However, no significant effect was observed on mushroom tyrosinase inhibition, suggesting no impact on pigment formation. Further research is needed to fully understand the mechanisms underlying these effects and to explore potential applications in cosmetic formulations. Limitations of this study include the focus on specific LAB strains and the need for in vivo studies to confirm the observed effects on human skin. Full article
Show Figures

Figure 1

28 pages, 1682 KB  
Article
Anti-Aging Potential of Illyrian Iris Rhizome Extract: Preliminary Chemical and Biological Profiling and Chemosensor Analysis via GC/MS and UHPLC-DAD-MS/MS Combined with HPTLC Bioautography
by Ivana Stojiljković, Đurđa Ivković, Jelena Stanojević, Jelena Zvezdanović, Jelena Beloica, Maja Krstić Ristivojević, Dalibor Stanković, Mihajlo Jakanovski and Petar Ristivojević
Chemosensors 2025, 13(9), 319; https://doi.org/10.3390/chemosensors13090319 - 25 Aug 2025
Viewed by 178
Abstract
Illyrian iris (Iris pallida subsp. illyrica (Tomm. ex Vis.) K.Richt.) is a rhizomatous geophyte, an endemic species (subspecies), occurring within a limited range along the eastern coast of the Adriatic Sea. The study presents the first in-depth chemical and functional investigation of [...] Read more.
Illyrian iris (Iris pallida subsp. illyrica (Tomm. ex Vis.) K.Richt.) is a rhizomatous geophyte, an endemic species (subspecies), occurring within a limited range along the eastern coast of the Adriatic Sea. The study presents the first in-depth chemical and functional investigation of its rhizome extracts using both conventional and greener solvents, as well as essential oil (EO) via hydrodistillation, employing gas chromatography-mass spectrometry (GC/MS) and ultra-high-performance liquid chromatography-diode array detector-tandem mass spectrometry (UHPLC-DAD-MS/MS) for metabolic fingerprinting, which was further interpreted through a chemosensory lens. High-performance thin-layer chromatography (HPTLC) bioautography (HPTLC-DPPH/ HPTLC-Tyrosinase) was applied for the first time to this species, revealing zones of bioactivity. HaCaT cell viability and spectrophotometric assays were employed to further evaluate the cosmetic potential. Results showed a distinctive volatile profile of EO, including, to the best of our knowledge, the first identification of a silphiperfol-type sesquiterpenoid in the Illyrian iris rhizome. UHPLC-DAD-MS/MS and HPTLC fingerprinting further supported solvent-dependent differences in metabolite composition. Notably, acetone, ethyl acetate, and ethanol extracts exhibited similar chemical profiles, while greener extracts showed more divergent patterns. The results provide a foundation for the future exploration of Illyrian iris in sustainable cosmetic applications, emphasizing the need for further in vitro and in vivo validation. Full article
Show Figures

Figure 1

26 pages, 1955 KB  
Article
A Bioactive Emulgel Formulation of Equisetum telmateia Ehrh. Methanol Extract: Integrating Antioxidant Activity, Skin Enzyme Inhibition, and Permeation Kinetics
by Tuğba Buse Şentürk, Timur Hakan Barak, Emre Şefik Çağlar, Emine Saldamlı, Ebru Özdemir Nath and Zafer Ömer Özdemir
Gels 2025, 11(8), 662; https://doi.org/10.3390/gels11080662 - 20 Aug 2025
Viewed by 421
Abstract
Equisetum telmateia Ehrh. (great horsetail) belongs to the Equisetaceae family and its aerial parts have been traditionally used for skin conditions and to achieve healthy and resilient skin, nails, and hair. This study aimed to evaluate the inhibition of skin-related enzymes by, the [...] Read more.
Equisetum telmateia Ehrh. (great horsetail) belongs to the Equisetaceae family and its aerial parts have been traditionally used for skin conditions and to achieve healthy and resilient skin, nails, and hair. This study aimed to evaluate the inhibition of skin-related enzymes by, the antioxidant capacity of, and the phytochemical composition of E. telmateia. Additionally, a novel emulgel was formulated from the main methanolic extract and characterized in terms of pH, viscosity, determination of content quantification, textural profile analysis, and spreadability. After the characterization studies, in vitro release and ex vivo permeation and penetration studies were performed. Firstly, the dried aerial parts of E. telmateia were macerated in methanol, followed by partitioning with solvents of increasing polarity: n-hexane, chloroform, ethyl acetate, and n-butanol. Antioxidant activity was assessed using DPPH, FRAP, CUPRAC, and TOAC assays, while enzyme inhibition was analyzed for collagenase, elastase, hyaluronidase, and tyrosinase. LC-MS/MS analysis identified 53 phytochemical compounds. Protocatechuic acid, the main phenolic compound, was quantitatively analyzed in each subfraction by HPTLC. The in vitro release studies showed sustained release of the reference substance (protocatechuic acid) and the kinetic modeling of the release was fitted to the Higuchi model. The ex vivo permeation and penetration studies showed that the formulation exhibited a retention of 3.06 ± 0.21 µg.cm−2 after 24 h, whereas the suspended extract demonstrated a skin retention of 1.28 ± 0.47 µg.cm−2. Both the extracts and the formulated emulgel exhibited inhibitory effects on skin-related enzymes. Our finding suggested that E. telmateia might be a valuable ingredient for wrinkle care and skin-regenerating cosmetics. Full article
(This article belongs to the Special Issue Properties and Structure of Plant-Based Emulsion Gels)
Show Figures

Figure 1

25 pages, 3037 KB  
Article
Bioactive Potential of Nepenthes miranda Flower Extracts: Antidiabetic, Anti-Skin Aging, Cytotoxic, and Dihydroorotase-Inhibitory Activities
by Kuan-Ming Lai, Yen-Hua Huang, Yi Lien and Cheng-Yang Huang
Plants 2025, 14(16), 2579; https://doi.org/10.3390/plants14162579 - 19 Aug 2025
Viewed by 386
Abstract
Carnivorous plants have garnered attention as sources of pharmacologically active compounds, yet their floral tissues remain largely underexplored. In this study, we investigated the bioactive properties of Nepenthes miranda flower extracts prepared using water, methanol, ethanol, and acetone. Among these, the ethanol extract [...] Read more.
Carnivorous plants have garnered attention as sources of pharmacologically active compounds, yet their floral tissues remain largely underexplored. In this study, we investigated the bioactive properties of Nepenthes miranda flower extracts prepared using water, methanol, ethanol, and acetone. Among these, the ethanol extract exhibited the highest total phenolic content (18.2 mg GAE/g), flavonoid content (68.9 mg QUE/g), and antioxidant activity (DPPH IC50 = 66.9 μg/mL), along with strong antibacterial effects against Escherichia coli and Staphylococcus aureus. Cosmetically relevant enzyme inhibition assays revealed significant activity against tyrosinase (IC50 = 48.58 μg/mL), elastase (IC50 = 1.77 μg/mL), and hyaluronidase (IC50 = 7.33 μg/mL), supporting its potential as an anti-skin aging agent. For antidiabetic evaluation, the ethanol extract demonstrated potent α-glucosidase inhibition (IC50 = 24.53 μg/mL), outperforming standard inhibitors such as acarbose and quercetin. The extract also displayed marked cytotoxicity against A431 epidermoid carcinoma cells (IC50 = 90.61 μg/mL), inducing dose-dependent apoptosis, inhibiting cell migration and colony formation, and causing significant DNA damage as shown by comet assay. Furthermore, the ethanol extract strongly inhibited the activity of purified human dihydroorotase (IC50 = 25.11 μg/mL), indicating that disruption of pyrimidine biosynthesis may underlie its anticancer activity. Overall, this study provides the first characterization of N. miranda flower extracts, particularly the ethanol fraction, as a promising source of multifunctional bioactive compounds with possible applications in cosmetics, antidiabetic therapy, and cancer treatment. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

21 pages, 3050 KB  
Article
Cosmetic Upgrade of EGF: Genetically Modified Probiotic-Derived Cell-Free Supernatants Containing Human EGF Protein Exhibit Diverse Biological Activities
by Jun Young Ahn, Seungwoo Kim, Jaewon Ha, Yoon Jin Roh, Yongku Ryu, Myung Jun Chung, Kui Young Park and Byung Chull An
Cosmetics 2025, 12(4), 176; https://doi.org/10.3390/cosmetics12040176 - 19 Aug 2025
Viewed by 441
Abstract
Although epidermal growth factor (EGF) has potential wide applications in the cosmetic industry, it still has limitations, such as a costly purification process and low stability in the surrounding environment. To overcome these limitations, we developed genetically modified Pediococcus pentosaceus CBT SL4, which [...] Read more.
Although epidermal growth factor (EGF) has potential wide applications in the cosmetic industry, it still has limitations, such as a costly purification process and low stability in the surrounding environment. To overcome these limitations, we developed genetically modified Pediococcus pentosaceus CBT SL4, which can secrete EGF protein in growth media, thereby producing probiotic-derived PP-EGF culture medium supernatant (PP-EGF-SUP). Even at low EGF concentrations, PP-EGF-SUP exhibited EGF activities, such as cell scratch wound healing, tyrosinase inhibition, and improvements in anti-wrinkle factors, similar to or stronger than those of recombinant human EGF (rhEGF), which was used as a positive control. PP-EGF-SUP exhibited strong additional biological activities, such as antioxidant, anti-inflammatory, and anti-microbial activities, even though rhEGF did not have such properties. PP-EGF-SUP could be easily transformed to PP-EGF-SUP dried powder (PP-EGF-DP) using the freeze-drying method, and it could also be well resolved in water up to 20 mg/mL; furthermore, it still maintained its bioactivity after the manufacturing process. To determine melasma improvement efficacy, a human application test was performed using melasma ampoules containing 1% or 5% PP-EGF-DP formulations for four weeks. When comparing the melasma values before and after treatment, it was found that the light melasma value statistically decreased by 3.38% and 3.79% and that the dark melasma value statistically decreased by 1.74% and 2.93% in the test groups applying the 1% and 5% PP-EGF-DP melasma ampoules, respectively. In addition, the melasma area also decreased by 21.21% and 29.1%, while the control group showed no statistical difference. During the study period, no significant adverse skin reactions were observed due to the application of the PP-EGF-DP melasma ampoule. In conclusion, PP-EGF-DP may offer unique advantages in the cosmetic ingredient market, such as safety (as a probiotic derivative), stability (postbiotics protect EGF activity), and diverse bioactivities (activity potentiation and postbiotic-derived biological activities). Full article
(This article belongs to the Section Cosmetic Technology)
Show Figures

Figure 1

19 pages, 1567 KB  
Article
Novel Carbazole–Thiazole Conjugates: Synthesis and Biophysical Characterization
by Beata Donarska, Klaudia Seklecka, Joanna Cytarska, Katarzyna Piechowska, Przemyslaw Ledwon, Sławomir Kula, Przemysław Krawczyk, Angelika Baranowska-Łączkowska and Krzysztof Z. Łączkowski
Int. J. Mol. Sci. 2025, 26(16), 7945; https://doi.org/10.3390/ijms26167945 - 18 Aug 2025
Viewed by 297
Abstract
This presented study depicts the synthesis of three novel carbazole–thiazole conjugates, thoroughly investigating their spectroscopic properties as well as evaluating their biological activity as tyrosinase inhibitors. Additionally, we investigated the possibility of using Concanavalin A (ConA) complexes with dyes from a theoretical point [...] Read more.
This presented study depicts the synthesis of three novel carbazole–thiazole conjugates, thoroughly investigating their spectroscopic properties as well as evaluating their biological activity as tyrosinase inhibitors. Additionally, we investigated the possibility of using Concanavalin A (ConA) complexes with dyes from a theoretical point of view, developing a promising protein-based strategy of delivery of dyes to the target cells. The tyrosinase inhibition assay showed that compounds K1 and K3 demonstrated higher activity than the kojic acid with IC50 values of 46 and 59 mM, respectively. Among the tested compounds, carbazole K3 exhibits the most pronounced nonlinear optical response due to its high electronic flexibility, strong solvatochromism, large excited-state dipole moments, and efficient intramolecular charge transfer. Additionally, all investigated carbazoles demonstrate high ability to form stable supramolecular complexes with ConA, which was confirmed using molecular docking studies. It was found experimentally and theoretically that the compound K3 has the best biophysical parameters, making it a promising candidate for potential diagnostic applications. Full article
(This article belongs to the Special Issue Spectroscopic Techniques in Molecular Sciences)
Show Figures

Figure 1

13 pages, 1101 KB  
Article
Bioassay-Guided Isolation of Chemical Constituents from Lycopodiastrum casuarinoides and Targeted Evaluation of Their Potential Efficacy in Cosmetics
by Jian-Ye Zhu, Zeng-Yue Ge, Qi-Bin Yang, Cai-Fu Jiang, Lei Wu, Xin-Yuan Jiang and Lin-Fu Liang
Cosmetics 2025, 12(4), 174; https://doi.org/10.3390/cosmetics12040174 - 16 Aug 2025
Viewed by 329
Abstract
Natural tyrosinase inhibitors are currently a hot research topic due to their potential application in cosmetic and medicinal products. For the plant Lycopodiastrum casuarinoides, the chemical constituents with a tyrosinase inhibitory effect have not been investigated yet. Bioassay-guided isolation was conducted on [...] Read more.
Natural tyrosinase inhibitors are currently a hot research topic due to their potential application in cosmetic and medicinal products. For the plant Lycopodiastrum casuarinoides, the chemical constituents with a tyrosinase inhibitory effect have not been investigated yet. Bioassay-guided isolation was conducted on the aboveground parts, resulting in the isolation of 10 compounds (110). Their chemical structures were confirmed by their spectral data and comparison with literature data. It might be worth pointing out that compounds 39 were isolated from the genus Lycopodiastrum for the first time. The bioassay revealed that compounds 6 and 7 displayed moderate mushroom tyrosinase inhibitory activity (IC50 = 1.90 and 2.43 mM, respectively), which was close to the positive control kojic acid (IC50 = 0.17 mM). Moreover, the in silico experiments disclosed that Lys180, His178 and other amino residues played key roles in the binding modes between compounds 6 and 7 and mushroom tyrosinase (PDB: 2Y9X). These findings suggested potential for further investigation on this species as a source of cosmetic ingredients. Full article
Show Figures

Figure 1

18 pages, 2191 KB  
Article
Neuroprotective Properties of Fermented Malted Rice Obtained Under Different Processing Conditions
by Micaela Albarracín, Franco Van de Velde, Raúl E. Cian and Silvina R. Drago
Fermentation 2025, 11(8), 459; https://doi.org/10.3390/fermentation11080459 - 10 Aug 2025
Viewed by 554
Abstract
Two products fermented with lactic acid bacteria (LAB) were obtained using malted rice (FR) and mashed malted rice (FMR). Peptide, phenolic acids, and γ-aminobutyric acid (GABA) contents and neuroprotective activities were evaluated before and after simulated gastrointestinal digestion. GABA contents of fermented products [...] Read more.
Two products fermented with lactic acid bacteria (LAB) were obtained using malted rice (FR) and mashed malted rice (FMR). Peptide, phenolic acids, and γ-aminobutyric acid (GABA) contents and neuroprotective activities were evaluated before and after simulated gastrointestinal digestion. GABA contents of fermented products were 45 and 51 mg 100 g−1, with a bioaccessibility of 51 and 45% for FR and FMR, respectively. Both fermented malted rice products exhibited inhibitory effects against tyrosinase, acetylcholinesterase, and prolyl oligopeptidase, with FR demonstrating the highest inhibitory activity. The neuroprotective properties were increased after digestion and could potentially be attributed to bioactive peptides generated by germination, fermentation, and digestion, as well as free phenolic acids. These findings suggest that fermented malted rice possesses promising biofunctional properties and may serve as suitable dietary options for individuals with gluten and lactose intolerance, offering additional neuroprotective benefits. Full article
(This article belongs to the Special Issue Recent Trends in Lactobacillus and Fermented Food, 3rd Edition)
Show Figures

Figure 1

20 pages, 2124 KB  
Article
Repurposing the Antibiotic D-Cycloserine for the Treatment of Hyperpigmentation: Therapeutic Potential and Mechanistic Insights
by Ye-Jin Lee and Chang-Gu Hyun
Int. J. Mol. Sci. 2025, 26(16), 7721; https://doi.org/10.3390/ijms26167721 - 10 Aug 2025
Viewed by 349
Abstract
Melanin overproduction contributes to hyperpigmentation disorders such as melasma and solar lentigines, leading to increasing demand for safe and effective skin-lightening agents. D-cycloserine (DCS), a known antimicrobial agent, has not been previously evaluated for dermatological applications. This study aimed to explore the potential [...] Read more.
Melanin overproduction contributes to hyperpigmentation disorders such as melasma and solar lentigines, leading to increasing demand for safe and effective skin-lightening agents. D-cycloserine (DCS), a known antimicrobial agent, has not been previously evaluated for dermatological applications. This study aimed to explore the potential of DCS as a novel anti-melanogenic compound and to elucidate its underlying molecular mechanisms in melanogenesis inhibition. The cytotoxicity and anti-melanogenic effects of DCS were assessed in B16F10 melanoma cells stimulated with α-MSH. Cell viability was determined via MTT assays, while melanin content, tyrosinase activity, and the expression levels of MITF, TYR, TRP-1, TRP-2, and major signaling proteins (e.g., CREB, MAPKs, GSK-3β/β-catenin) were evaluated using colorimetric assays and Western blotting. A 3D human skin model was also used to confirm in vitro findings, and a primary skin irritation test was conducted to assess dermal safety. DCS significantly reduced α-MSH-induced melanin content and tyrosinase activity without cytotoxicity at concentrations ≤100 µM. It downregulated MITF and melanogenic enzyme expression and modulated signaling pathways by enhancing ERK activation while inhibiting CREB, JNK, and p38 phosphorylation. Additionally, DCS suppressed β-catenin stabilization via GSK-3β activation. These effects were confirmed in a 3D human skin model, and a clinical skin irritation study revealed no adverse reactions in human volunteers. DCS exerts its anti-melanogenic effect by targeting multiple pathways, including CREB/MITF, MAPK, and GSK-3β/β-catenin signaling. Its efficacy and safety profiles support its potential as a novel cosmeceutical agent for the treatment of hyperpigmentation. Further clinical studies are warranted to confirm its therapeutic utility in human skin pigmentation disorders. Full article
Show Figures

Figure 1

22 pages, 2511 KB  
Article
Bridging Phytochemistry and Cosmetic Science: Molecular Insights into the Cosmeceutical Promise of Crotalaria juncea L.
by Tanatchaporn Aree, Siripat Chaichit, Jintana Junlatat, Kanokwan Kiattisin and Aekkhaluck Intharuksa
Int. J. Mol. Sci. 2025, 26(16), 7716; https://doi.org/10.3390/ijms26167716 - 9 Aug 2025
Viewed by 240
Abstract
Crotalaria juncea L. (Fabaceae: Faboideae), traditionally used as green manure due to its nitrogen-fixing capacity, also exhibits therapeutic potential for conditions such as anemia and psoriasis. However, its cosmetic applications remain largely unexplored. This study examined the phytochemical profiles and biological activities of [...] Read more.
Crotalaria juncea L. (Fabaceae: Faboideae), traditionally used as green manure due to its nitrogen-fixing capacity, also exhibits therapeutic potential for conditions such as anemia and psoriasis. However, its cosmetic applications remain largely unexplored. This study examined the phytochemical profiles and biological activities of ethanolic extracts from the root, flower, and leaf of C. juncea, focusing on their potential use in cosmetic formulations. Soxhlet extraction with 95% ethanol was employed. Among the extracts, the leaf showed the highest total flavonoid content, while the root contained the highest total phenolic content. The root extract demonstrated the strongest antioxidant activity, as assessed by DPPH, FRAP, and lipid peroxidation assays, along with significant anti-tyrosinase and anti-aging effects via collagenase and elastase inhibition. LC-MS/QTOF analysis identified genistein and kaempferol as the major bioactive constituents in the root extract. Molecular docking confirmed their strong interactions with enzymes associated with skin aging. Additionally, the root extract exhibited notable anti-inflammatory activity. These results suggest that C. juncea root extract is a promising multifunctional natural ingredient for cosmetic applications due to its antioxidant, anti-tyrosinase, anti-aging, and anti-inflammatory properties. Full article
(This article belongs to the Special Issue Biological Research on Plant Bioactive Compounds)
Show Figures

Figure 1

24 pages, 2024 KB  
Article
New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
by Hubert Sytykiewicz, Sylwia Goławska and Iwona Łukasik
Molecules 2025, 30(15), 3294; https://doi.org/10.3390/molecules30153294 - 6 Aug 2025
Viewed by 483
Abstract
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in [...] Read more.
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in skin-related applications, particularly through the modulation of melanin biosynthesis and protection of skin-relevant cells from oxidative damage—a primary contributor to hyperpigmentation disorders. Zingiber officinale Rosc. (ginger) and Humulus lupulus L. (hop) are medicinal plants widely recognized for their diverse pharmacological properties. To the best of our knowledge, this study provides the first report on the synergistic interactions between essential oils derived from these species (referred to as EOZ and EOH) offering novel insights into their combined bioactivity. The purpose of this study was to evaluate essential oils extracted from ginger rhizomes and hop strobiles with respect to the following: (1) chemical composition, determined by gas chromatography–mass spectrometry (GC-MS); (2) tyrosinase inhibitory activity; (3) capacity to inhibit linoleic acid peroxidation; (4) ABTS•+ radical scavenging potential. Furthermore, the study utilizes both the combination index (CI) and dose reduction index (DRI) as quantitative parameters to evaluate the nature of interactions and the dose-sparing efficacy of essential oil (EO) combinations. GC–MS analysis identified EOZ as a zingiberene-rich chemotype, containing abundant sesquiterpene hydrocarbons such as α-zingiberene, β-bisabolene, and α-curcumene, while EOH exhibited a caryophyllene diol/cubenol-type profile, dominated by oxygenated sesquiterpenes including β-caryophyllene-9,10-diol and 1-epi-cubenol. In vitro tests demonstrated that both oils, individually and in combination, showed notable anti-tyrosinase, radical scavenging, and lipid peroxidation inhibitory effects. These results support their multifunctional bioactivity profiles with possible relevance to skin care formulations, warranting further investigation. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

16 pages, 2650 KB  
Article
Inhibition of Tyrosinase and Melanogenesis by a White Mulberry Fruit Extract
by Nuttawadee Prasawang, Nareerat Sutjarit, Athisri Sitthipunya, Prasit Suwannalert, Wutarak Monsuwan and Nisamanee Charoenchon
Int. J. Mol. Sci. 2025, 26(15), 7589; https://doi.org/10.3390/ijms26157589 - 6 Aug 2025
Viewed by 507
Abstract
Ultraviolet B (UVB) radiation is a key factor in the overproduction of melanin in the skin. Melanocytes produce melanin through melanogenesis to protect the skin from UVB radiation-induced damage. However, excessive melanogenesis can lead to hyperpigmentation and increase the risk of malignant melanoma. [...] Read more.
Ultraviolet B (UVB) radiation is a key factor in the overproduction of melanin in the skin. Melanocytes produce melanin through melanogenesis to protect the skin from UVB radiation-induced damage. However, excessive melanogenesis can lead to hyperpigmentation and increase the risk of malignant melanoma. Tyrosinase is the rate-limiting enzyme in melanogenesis; it catalyzes the oxidation of tyrosine to 3,4-dihydroxy-L-phenylalanine and subsequently to dopaquinone. Thus, inhibiting tyrosinase is a promising strategy for preventing melanogenesis and skin hyperpigmentation. White mulberry (Morus alba L.) is rich in antioxidants, and mulberry fruit extracts have been used as cosmetic skin-lightening agents. However, data on the capacity of mulberry fruit extracts to inhibit tyrosinase under UVB radiation-induced melanogenic conditions remain scarce, especially in an in vivo model. In this study, we evaluated the effects of a mulberry crude extract (MCE) on UVB radiation-induced melanogenesis in B16F10 melanoma cells and zebrafish embryos. The MCE significantly reduced tyrosinase activity and melanogenesis in a dose-dependent manner without inducing cytotoxicity. These effects are likely attributable to the antioxidant constituents of the extract. Our findings highlight the potential of this MCE as an effective tyrosinase inhibitor for the prevention of UVB radiation-induced skin hyperpigmentation. Full article
Show Figures

Graphical abstract

6 pages, 640 KB  
Short Note
Bis(4-((E)-3,5–Diacetoxystyryl)phenyl)nonanedioate
by Claudia Sciacca, Giulia Maria Grasso, Nunzio Cardullo and Vera Muccilli
Molbank 2025, 2025(3), M2044; https://doi.org/10.3390/M2044 - 5 Aug 2025
Viewed by 243
Abstract
Resveratrol is a natural stilbene known for its wide range of biological activities, including antioxidant, anti-inflammatory, and anti-aging effects. However, its application in cosmetics and dermatology is limited by poor stability and bioavailability. Azelaic acid is a natural carboxylic acid employed in cosmetics [...] Read more.
Resveratrol is a natural stilbene known for its wide range of biological activities, including antioxidant, anti-inflammatory, and anti-aging effects. However, its application in cosmetics and dermatology is limited by poor stability and bioavailability. Azelaic acid is a natural carboxylic acid employed in cosmetics for its tyrosinase inhibition activity and for cutaneous hyperpigmentation disorders. In this work, we report a concise chemoenzymatic procedure for the synthesis of a novel hybrid molecule combining acetylated resveratrol and azelaic acid. This methodology offers a valuable route for the development of new bioactive compounds for potential cosmetic and dermatological applications. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

17 pages, 1768 KB  
Article
Quality Status and Skin-Related Functional Properties of Traditional Korean Fermented Vinegars
by Hwan Hee Yu, So-Won Jang, Eungyeong Kim, Jong-Chan Kim and Mi Jang
Foods 2025, 14(15), 2728; https://doi.org/10.3390/foods14152728 - 4 Aug 2025
Viewed by 484
Abstract
The correlation between fermented vinegar’s physicochemical properties and functional characteristics, particularly skin-related functionalities, remains unclear. We analyzed the quality of widely consumed Korean fermented vinegars, including grain and persimmon vinegars, and their correlation with skin-related functionalities to establish quality control criteria linked to [...] Read more.
The correlation between fermented vinegar’s physicochemical properties and functional characteristics, particularly skin-related functionalities, remains unclear. We analyzed the quality of widely consumed Korean fermented vinegars, including grain and persimmon vinegars, and their correlation with skin-related functionalities to establish quality control criteria linked to functional properties. Fifteen traditional Korean grain vinegars and fourteen persimmon vinegars were collected; distilled white vinegar was used as the control group. Grain vinegars showed 3.57–100.00% collagenase and 62.38–77.03% tyrosinase inhibition; persimmon vinegars showed 0.00–94.50% and 30.75–71.54%, respectively. To determine which quality characteristics are high in fermented vinegar with high skin-related functionality, a correlation analysis was conducted. In grain vinegar, total nitrogen and free amino acids were strongly associated with skin-related functionalities. In persimmon vinegar, organic acids, particularly lactic acid, were correlated with skin-related effects; thus, both demonstrated the importance of quality assessment. Insights into relationships between the composition and functional properties of fermented vinegar were gained. Specific quality markers for managing skin-related functionality of Korean fermented vinegar established a scientific basis for standardizing quality control, developing high-value functional vinegar products, and ensuring consistent product quality. Full article
Show Figures

Figure 1

21 pages, 2074 KB  
Article
Preliminary Analysis of Bilberry NaDES Extracts as Versatile Active Ingredients of Natural Dermocosmetic Products: In Vitro Evaluation of Anti-Tyrosinase, Anti-Hyaluronidase, Anti-Collagenase, and UV Protective Properties
by Milica Martinović, Ivana Nešić, Ana Žugić and Vanja M. Tadić
Plants 2025, 14(15), 2374; https://doi.org/10.3390/plants14152374 - 1 Aug 2025
Viewed by 401
Abstract
Bilberry (Vaccinium myrtillus L.) fruits represent the recognized wellspring of bioactive compounds with various documented bioactivities. Although bilberry leaves are often treated as industrial by-products, they also represent a valuable source of phytochemicals with potential dermocosmetic applications. In this study, extracts of [...] Read more.
Bilberry (Vaccinium myrtillus L.) fruits represent the recognized wellspring of bioactive compounds with various documented bioactivities. Although bilberry leaves are often treated as industrial by-products, they also represent a valuable source of phytochemicals with potential dermocosmetic applications. In this study, extracts of bilberry fruits and leaves were prepared using both conventional solvents (water and 50% ethanol) and natural deep eutectic solvents (NaDES) as green, biodegradable alternatives. The aim of this study was to examine the UV protective activity and inhibitory potential of those extracts against some enzymes (tyrosinase, hyaluronidase, collagenase) that are important in terms of skin conditioning and skin aging. The results of in vitro tests have shown the superiority of NaDES extracts compared to conventional extracts regarding all tested bioactivities. In addition, bilberry leaves extracts were more potent compared to fruit extracts in all cases. The most potent extract was bilberry leaf extract made with malic acid–glycerol, which exhibited strong anti-tyrosinase (IC50 = 3.52 ± 0.26 mg/mL), anti-hyaluronidase (IC50 = 3.23 ± 0.30 mg/mL), and anti-collagenase (IC50 = 1.84 ± 0.50 mg/mL) activities. The correlation analysis revealed correlation between UV protective and anti-tyrosinase, UV protective and anti-collagenase as well as between anti-hyaluronidase and anti-collagenase activity. UV protection and anti-tyrosinase activity correlated significantly with chlorogenic acid and hyperoside contents in extracts. The extracts with the best activities also demonstrated a good safety profile in a 24 h in vivo study on human volunteers. Full article
Show Figures

Figure 1

Back to TopTop