The Development and Validation of Simultaneous Multi-Component Quantitative Analysis via HPLC–PDA Detection of 12 Secondary Metabolites Isolated from Drynariae Rhizoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Plant Materials
2.3. Material Evaluation
2.3.1. Determination of TPC and TFC
2.3.2. Antioxidant Activity Assay
2.4. Extraction and Fractionation
2.4.1. Extraction
2.4.2. Isolation of Compounds from the EtOAc Fraction
2.4.3. Isolation of Compounds from the BuOH Fraction
2.5. Compound Identification
2.5.1. NMR Spectroscopy
2.5.2. Mass Spectrometry
2.6. HPLC Analysis
2.6.1. Preparation of Standard Solution
2.6.2. Preparation of Sample Solution
2.6.3. HPLC Analysis Method Development
2.6.4. Validation of HPLC Analysis
Specificity
Linearity
LOD and LOQ
Intra- and Inter-Day Accuracy and Precision
Repeatability
Recovery
2.6.5. Content Analysis
3. Results and Discussion
3.1. Structural Identification of Isolated Compounds 1–14
3.2. Validation of HPLC Analysis
3.2.1. Specificity
3.2.2. Linearity, LOD, and LOQ
3.2.3. Intra- and Inter-Day Precision and Accuracy
3.2.4. Repeatability
3.2.5. Recovery
3.3. Simultaneous Quantitative HPLC Analysis of 12 Marker Components of D. fortunei, D. mollis, and D. mariesii
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia; China Medical Science Press: Beijing, China, 2015; Volume 1, pp. 191–193. [Google Scholar]
- Ministry of Food and Drug Safety. The Korean Pharmacopoeia; Ministry of Food and Drug Safety: Osong, Republic of Korea, 2022. [Google Scholar]
- Shang, Z.-P.; Meng, J.-J.; Zhao, Q.-C.; Su, M.-Z.; Luo, Z.; Yang, L.; Tan, J.-J. Two new chromone glycosides from Drynaria fortunei. Fitoterapia 2012, 84, 130–134. [Google Scholar] [CrossRef]
- Dong, Y.; Toume, K.; Kimijima, S.; Zhang, H.; Zhu, S.; He, Y.; Cai, S.; Maruyama, T.; Komatsu, K. Metabolite profiling of Drynariae Rhizoma using 1H NMR and HPLC coupled with multivariate statistical analysis. J. Nat. Med. 2023, 77, 839–857. [Google Scholar] [CrossRef]
- Bharti, S.; Rani, N.; Krishnamurthy, B.; Arya, D.S. Preclinical Evidence for the Pharmacological Actions of Naringin: A Review. Planta Med. 2014, 80, 437–451. [Google Scholar] [CrossRef]
- Yang, Z.-Y.; Kuboyama, T.; Kazuma, K.; Konno, K.; Tohda, C. Active constituents from Drynaria fortunei rhizomes on the attenuation of Aβ25–35-induced axonal atrophy. J. Nat. Prod. 2015, 78, 2297–2300. [Google Scholar] [CrossRef]
- Li, F.; Meng, F.H.; Xiong, Z.L.; Li, Y.; Liu, R.; Liu, H. Stimulative activity of Drynaria fortunei (Kunze) J. Sm. extracts and two of its flavonoids on the proliferation of os-teoblastic like cells. Pharmazie 2006, 61, 962–965. [Google Scholar]
- Aldemir, E.E.; Selmanoğlu, G.; Karacaoğlu, E. The Potential Protective Role of Neoeriocitrin in a Streptozotocin-Induced Diabetic Model in INS-1E Pancreatic ß-Cells. Braz. Arch. Biol. Technol. 2023, 66, e23220138. [Google Scholar] [CrossRef]
- Wong, K.-C.; Pang, W.-Y.; Wang, X.-L.; Mok, S.-K.; Lai, W.-P.; Chow, H.-K.; Leung, P.-C.; Yao, X.-S.; Wong, M.-S. Drynaria fortunei-derived total flavonoid fraction and isolated compounds exert oestrogen-like protective effects in bone. Br. J. Nutr. 2013, 110, 475–485. [Google Scholar] [CrossRef]
- Shrestha, S.; Lee, D.Y.; Park, J.H.; Cho, J.G.; Lee, D.S.; Li, B.; Bang, M.-H.; Baek, N.I. Phenolic components from Rhus parviflora fruits and their inhibitory effects on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages. Nat. Prod. Res. 2013, 27, 2244–2247. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.; Li, X.; Zhang, H.; Zhou, D.; Wang, W.; Li, W.; Zhang, X.; Li, X.; Hou, Y.; et al. Bioactive phenols as potential neuroinflammation inhibitors from the leaves of Xanthoceras sorbifolia Bunge. Bioorg. Med. Chem. Lett. 2016, 26, 5018–5023. [Google Scholar] [CrossRef]
- Xue, C.-Y.; Xue, H.-G. Application of Real-Time Scorpion PCR for Authentication and Quantification of the Traditional Chinese Medicinal Plant Drynaria fortunei. Planta Med. 2008, 74, 1416–1420. [Google Scholar] [CrossRef] [PubMed]
- Goya, C. List of Fake Korean Medicinal Herbs; Institute of Oriental Medicine: Daejeon, Republic of Korea, 2016. [Google Scholar]
- Muyumba, N.; Mutombo, S.; Sheridan, H.; Nachtergael, A.; Duez, P. Quality control of herbal drugs and preparations: The methods of analysis, their relevance and applications. Talanta Open 2021, 4, 100070. [Google Scholar] [CrossRef]
- Boligon, A.; Athayde, M. Importance of HPLC in analysis of plants extracts. Austin Chromatogr. 2014, 1, 2. [Google Scholar]
- Liu, H.; Zou, S.; Qi, Y.; Zhu, Y.; Li, X.; Zhang, B. Quantitative determination of four compounds and fingerprint analysis in the rhizomes of Drynaria fortunei (Kunze) J. Sm. J. Nat. Med. 2011, 66, 413–419. [Google Scholar] [CrossRef]
- Huang, S.-T.; Chang, C.C.; Pang, J.H.S.; Huang, H.S.; Chou, S.C.; Kao, M.C.; You, H.L. Drynaria fortunei promoted angiogenesis associated with modified MMP-2/TIMP-2 balance and activation of VEGF ligand/receptors expression. Front. Pharmacol. 2018, 9, 979. [Google Scholar] [CrossRef]
- Zhu, C.; Li, X.; Zhang, B.; Lin, Z. Quantitative analysis of multi-components by single marker—A rational method for the internal quality of Chinese herbal medicine. Integr. Med. Res. 2017, 6, 1–11. [Google Scholar] [CrossRef]
- Caesar, L.K.; Cech, N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef]
- Mani, J.; Johnson, J.; Hosking, H.; Hoyos, B.E.; Walsh, K.B.; Neilsen, P.; Naiker, M. Bioassay Guided Fractionation Protocol for Determining Novel Active Compounds in Selected Australian Flora. Plants 2022, 11, 2886. [Google Scholar] [CrossRef]
- Ku, K.M.; Choi, J.N.; Kim, J.; Kim, J.K.; Yoo, L.G.; Lee, S.J.; Hong, Y.-S.; Lee, C.H. Metabolomics Analysis Reveals the Compositional Differences of Shade Grown Tea (Camellia sinensis L.). J. Agric. Food Chem. 2009, 58, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Hatano, T.; Edamatsu, R.; Hiramatsu, M.; MORI, A.; Fujita, Y.; Yasuhara, T. Effects of the interaction of tannins with co-existing substances. VI.: Effects of tannins and related polyphenols on superoxide anion radical, and on 1, 1-Diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 1989, 37, 2016–2021. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical biochemistry 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Qiao, X.; Lin, X.-H.; Liang, Y.-H.; Dong, J.; Guo, D.-A.; Ye, M. Comprehensive Chemical Analysis of the Rhizomes of Drynaria fortunei by Orthogonal Pre-Separation and Liquid Chromatography Mass Spectrometry. Planta Med. 2014, 80, 330–336. [Google Scholar] [CrossRef]
- Ryu, H.-S. Isolation of Anti-Diabetic Bioactive Compounds from Benincasae Exocarpium and Development of Multi-Components Simultaneous Analysis by HPLC; Chung-Ang University: Seoul, Republic of Korea, 2022. [Google Scholar]
- Gutzeit, D.; Wray, V.; Winterhalter, P.; Jerz, G. Preparative isolation and purification of flavonoids and protocatechuic acid from sea buckthorn juice concentrate (Hippophaë rhamnoides L. ssp. rhamnoides) by high-speed counter-current chromatography. Chromatographia 2007, 65, 1–7. [Google Scholar]
- Takada, N.; Kato, E.; Ueda, K.; Yamamura, S.; Ueda, M. A novel leaf-movement inhibitor of a nyctinastic weed, Sesbania exaltata Cory, designed on a naturally occurring leaf-opening substance and its application to a potential, highly selective herbicide. Tetrahedron Lett. 2002, 43, 7655–7658. [Google Scholar] [CrossRef]
- Johnsson, P.; Peerlkamp, N.; Kamal-Eldin, A.; Andersson, R.E.; Andersson, R.; Lundgren, L.N.; Åman, P. Polymeric fractions containing phenol glucosides in flaxseed. Food Chem. 2002, 76, 207–212. [Google Scholar] [CrossRef]
- Liang, Y.-H.; Ye, M.; Zhang, L.-Z.; Li, H.-F.; Han, J.; Wang, B.-R.; Guo, D.-A. Two new phenolic acids from Drynariae rhizoma. Acta Pharm. Sin. 2010, 45, 874–878. [Google Scholar]
- Wang, X.-L.; Wang, N.L.; Zhang, Y.; Gao, H.; Pang, W.Y.; Wong, M.S.; Zhang, G.; Qin, L.; Yao, X.-S. Effects of eleven flavonoids from the osteoprotective fraction of Drynaria fortunei (K UNZE) J. S M. on osteo-blastic proliferation using an osteoblast-like cell line. Chem. Pharm. Bull. 2008, 56, 46–51. [Google Scholar] [CrossRef]
- Oh, C.-H.; Kim, N.-S.; Yang, J.H.; Lee, H.; Yang, S.; Park, S.; So, U.-K.; Bae, J.-B.; Eun, J.S.; Jeon, H.; et al. Effects of isolated compounds from Catalpa ovata on the T cell-mediated immune responses and proliferation of leukemic cells. Arch. Pharm. Res. 2010, 33, 545–550. [Google Scholar] [CrossRef]
- Wolfram, K.; Schmidt, J.; Wray, V.; Milkowski, C.; Schliemann, W.; Strack, D. Profiling of phenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus). Phytochemistry 2010, 71, 1076–1084. [Google Scholar] [CrossRef]
- Zhu, Y.; Ralph, J. Stereoselective synthesis of 1-O-β-feruloyl and 1-O-β-sinapoyl glucopyranoses. Tetrahedron Lett. 2011, 52, 3729–3731. [Google Scholar] [CrossRef]
- Woo, K.W.; Lee, K.R. Phytochemical constituents of Allium victorialis var. platyphyllum. Nat. Prod. Sci. 2013, 19, 221–226. [Google Scholar]
- Wang, X.; Wong, M.; Yao, X. Phenylpropanoid compounds isolated from Drynaria fortunei and their proliferation effects on UMR 106 cells. J. Shenyang Pharm. Univ. 2008, 25, 25–27. [Google Scholar]
- Wang, N.; Wang, J.H.; Li, X.; Ling, J.H.; Li, N. Flavonoids from Pyrrosia petiolosa (Christ) Ching: Note. J. Asian Nat. Prod. Res. 2006, 8, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Cordenonsi, L.M.; Sponchiado, R.M.; Campanharo, S.C.; Garcia, C.V.; Raffin, R.P.; Schapoval, E.E.S. Study of flavonoids present in pomelo (Citrus máxima) by DSC, UV-VIS, IR, 1H and 13C NMR and MS. Drug Anal. Res. 2017, 1, 31–37. [Google Scholar] [CrossRef]
Sample | Species | Native | Note |
---|---|---|---|
S1 | Drynaria fortunei | Hubei, China | Collected |
S2 | Drynaria fortunei | Guizhou, China | Collected |
S3, S4, S5, S6 | Drynaria fortunei | Hunan, China | Collected |
S7, S8, S9, S10 | Drynaria mollis | Myanmar | Market-purchased |
S11 | Drynaria mollis | China | Market-purchased |
S12 | Drynaria mollis | China | Market-purchased |
S13, S14, S15 | Davallia mariesii | Republic of Korea | Market-purchased |
Sample | Total Content | Antioxidant Activity Assay | |||
---|---|---|---|---|---|
TPC | TFC | ABTS | DPPH | FRAP | |
(mg GAE 1/g) | (mg CE 2/g) | IC50 (μg/mL) | |||
GA 3 | - | - | 1.74 ± 0.01 | 2.75 ± 0.02 | 0.34 ± 0.00 |
1 | 161.94 ± 2.20 | 545.89 ± 5.67 | 432.50 ± 8.46 | 253.30 ± 3.66 | - |
2 | 160.36 ± 1.38 | 38.21 ± 0.17 | 224.85 ± 7.94 | 310.18 ± 2.71 | 162.41 ± 2.30 |
3 | 213.19 ± 1.25 | 52.17 ± 0.13 | 151.58 ± 4.53 | 287.26 ± 7.14 | 114.34 ± 1.67 |
4 | 222.95 ± 0.75 | 54.75 ± 0.00 | 108.46 ± 4.75 | 156.13 ± 4.33 | 94.21 ± 2.28 |
5 | 193.49 ± 2.20 | 46.96 ± 0.39 | 151.65 ± 3.18 | 282.52 ± 5.10 | 133.54 ± 2.54 |
6 | 233.42 ± 0.89 | 57.51 ± 0.04 | 99.50 ± 2.20 | 154.77 ± 2.98 | 88.03 ± 2.60 |
DCM 4 | 22.95 ± 0.38 | 0.90 ± 0.09 | 1816.61 ± 35.17 | 3158.47 ± 82.69 | 940.84 ± 7.27 |
EtOAc 5 | 483.31 ± 3.31 | 100.30 ± 0.41 | 38.62 ± 1.27 | 79.98 ± 2.41 | 37.93 ± 1.54 |
BuOH 6 | 411.09 ± 0.07 | 119.38 ± 0.48 | 81.77 ± 2.38 | 117.44 ± 1.99 | 69.78 ± 0.93 |
Water 7 | 44.06 ± 0.82 | 3.32 ± 0.18 | 293.50 ± 7.78 | 582.39 ± 7.24 | 435.28 ± 8.16 |
Compound 4 | Compound 5 | |
---|---|---|
Retention time (UV) | 2.51 min | 2.43 min |
Retention time (MS) | 2.43 min | 2.36 min |
Predicted Formula [M] | C15H18O8 | C15H18O9 |
Monoisotopic Mwt * | 326.2986 | 342.0951 |
[M − H]− | 325.0909 | 341.0848 |
[M + H COOH − H]− | 371.0959 | - |
[2M − H]− | - | 683.1767 |
Identification of compound | Coumaric acid 4-O-β-D-glucopyranoside | Caffeic acid 4-O-β-D-glucopyranoside. |
Compound No | Rt 1 (min) | Regression Equation | r2 * | Linear Range (μg/mL) | LOD (μg/mL) | LOQ (μg/mL) |
---|---|---|---|---|---|---|
2 | 7.56 | y = 74,736x + 52,127 | 0.999 | 3.9–62.5 | 0.65 | 1.97 |
3 | 12.13 | y = 10,100x − 6844.1 | 0.999 | 5.2–83.3 | 0.46 | 1.39 |
4 | 19.32 | y = 14,172x + 4127.5 | 0.999 | 5.2–83.3 | 0.45 | 1.37 |
5 | 20.19 | y = 13,076x + 4101.6 | 1 | 5.2–83.3 | 0.22 | 0.65 |
7 | 25.28 | y = 17,140x + 2496.6 | 0.999 | 5.2–83.3 | 0.03 | 0.08 |
8 | 28.54 | y = 4482.1x − 4792.3 | 0.999 | 5.2–83.3 | 0.21 | 0.64 |
9 | 29.75 | y = 1577.8x + 2011.2 | 0.999 | 5.2–83.3 | 0.01 | 0.04 |
10 | 36.29 | y = 6002.6x + 3961 | 1 | 5.2–83.3 | 0.62 | 1.88 |
11 | 38.00 | y = 1991.6x + 1564.7 | 1 | 5.2–83.3 | 0.57 | 1.71 |
12 | 38.45 | y = 10,522x − 2012.8 | 0.999 | 5.2–83.3 | 0.20 | 0.61 |
13 | 40.47 | y = 14,009x + 10,548 | 1 | 5.2–83.3 | 0.02 | 0.06 |
14 | 41.00 | y = 9620.6x + 48,604 | 0.999 | 5.2–83.3 | 0.18 | 0.55 |
Compound No. | Content (μg/mL) | |||||
---|---|---|---|---|---|---|
Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 | |
2 | 0.001 ± 0.003 | 0.000 ± 0.001 | ND * | ND * | 0.001 ± 0.000 | 0.032 ± 0.006 |
3 | ND * | ND * | 0.171 ± 0.019 | ND * | ND * | 0.059 ± 0.035 |
4 | 1.042 ± 0.001 | 1.044 ± 0.002 | 0.329 ± 0.003 | 0.958 ± 0.001 | 0.343 ± 0.000 | 1.082 ± 0.001 |
5 | 1.830 ± 0.002 | 2.398 ± 0.002 | 0.716 ± 0.000 | 2.548 ± 0.003 | 0.984 ± 0.000 | 2.696 ± 0.003 |
7 | 0.050 ± 0.000 | 0.135 ± 0.000 | 0.058 ± 0.000 | 0.098 ± 0.000 | 0.088 ± 0.000 | 0.136 ± 0.000 |
8 | 0.207 ± 0.000 | 0.382 ± 0.000 | 0.226 ± 0.000 | 0.685 ± 0.015 | 0.337 ± 0.001 | 0.455 ± 0.000 |
9 | 0.810 ± 0.000 | 1.660 ± 0.005 | 1.992 ± 0.000 | 1.577 ± 0.011 | 0.669 ± 0.001 | 2.457 ± 0.000 |
10 | 0.175 ± 0.002 | 0.115 ± 0.009 | 0.157 ± 0.002 | 0.290 ± 0.019 | 0.494 ± 0.000 | 0.343 ± 0.000 |
11 | 0.109 ± 0.003 | 0.037 ± 0.005 | 0.247 ± 0.000 | 0.334 ± 0.000 | 0.417 ± 0.003 | 0.361 ± 0.001 |
12 | 3.637 ± 0.004 | 2.364 ± 0.004 | 4.624 ± 0.003 | 7.175 ± 0.008 | 2.770 ± 0.000 | 4.857 ± 0.003 |
13 | 5.488 ± 0.005 | 4.946 ± 0.010 | 6.767 ± 0.001 | 5.827 ± 0.006 | 8.815 ± 0.002 | 5.748 ± 0.002 |
14 | ND * | 0.016 ± 0.000 | 0.035 ± 0.000 | ND * | ND * | 0.032 ± 0.000 |
Compound No. | Content (μg/mL) | |||||
Sample 7 | Sample 8 | Sample 9 | Sample 10 | Sample 11 | Sample 12 | |
3 | 0.337 ± 0.000 | 0.141 ± 0.054 | 0.146 ± 0.017 | 0.164 ± 0.013 | 0.286 ± 0.006 | 0.125 ± 0.016 |
4 | 0.142 ± 0.008 | 0.125 ± 0.001 | 0.141 ± 0.000 | 0.103 ± 0.011 | 0.133 ± 0.000 | 0.121 ± 0.001 |
5 | 0.481 ± 0.028 | 0.561 ± 0.000 | 0.515 ± 0.000 | 0.420 ± 0.029 | 0.612 ± 0.000 | 0.442 ± 0.000 |
12 | 0.208 ± 0.012 | 0.466 ± 0.003 | 0.608 ± 0.001 | 0.363 ± 0.052 | 0.304 ± 0.002 | 0.258 ± 0.001 |
13 | 0.007 ± 0.001 | 0.017 ± 0.000 | 0.019 ± 0.001 | 0.094 ± 0.037 | 0.013 ± 0.000 | 0.048 ± 0.000 |
Compound No. | Content (μg/mL) | |||||
Sample 13 | Sample 14 | Sample 15 | ||||
3 | 0.039 ± 0.022 | 0.054 ± 0.024 | 0.012 ± 0.000 | |||
4 | 0.072 ± 0.001 | 0.047 ± 0.000 | 0.051 ± 0.000 | |||
5 | 0.086 ± 0.000 | 0.125 ± 0.000 | 0.076 ± 0.000 | |||
12 | 0.560 ± 0.001 | 1.354 ± 0.001 | 0.737 ± 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.S.; Whang, W.K. The Development and Validation of Simultaneous Multi-Component Quantitative Analysis via HPLC–PDA Detection of 12 Secondary Metabolites Isolated from Drynariae Rhizoma. Separations 2023, 10, 601. https://doi.org/10.3390/separations10120601
Ahn JS, Whang WK. The Development and Validation of Simultaneous Multi-Component Quantitative Analysis via HPLC–PDA Detection of 12 Secondary Metabolites Isolated from Drynariae Rhizoma. Separations. 2023; 10(12):601. https://doi.org/10.3390/separations10120601
Chicago/Turabian StyleAhn, Jin Sung, and Wan Kyunn Whang. 2023. "The Development and Validation of Simultaneous Multi-Component Quantitative Analysis via HPLC–PDA Detection of 12 Secondary Metabolites Isolated from Drynariae Rhizoma" Separations 10, no. 12: 601. https://doi.org/10.3390/separations10120601
APA StyleAhn, J. S., & Whang, W. K. (2023). The Development and Validation of Simultaneous Multi-Component Quantitative Analysis via HPLC–PDA Detection of 12 Secondary Metabolites Isolated from Drynariae Rhizoma. Separations, 10(12), 601. https://doi.org/10.3390/separations10120601